Klasse 5
Klasse 6
Klasse 7
Klasse 8
Klasse 9
Klasse 10
Fit für die Oberstufe
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
ohne Zurücklegen (einfach)
Beispiel:
In einem Kartenstapel sind 2 Asse, 4 Könige und 4 Damen. Es werden 2 Karten gleichzeitig vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit "genau 2 mal Dame"?
Da ja ausschließlich nach 'Dame' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Dame' und 'nicht Dame'
Einzel-Wahrscheinlichkeiten :"Dame": ; "nicht Dame": ;
| Ereignis | P |
|---|---|
| Dame -> Dame | |
| Dame -> nicht Dame | |
| nicht Dame -> Dame | |
| nicht Dame -> nicht Dame |
Einzel-Wahrscheinlichkeiten: P("Dame")=; P("nicht Dame")=;
Die relevanten Pfade sind:
'Dame'-'Dame' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
=
Ziehen ohne Zurücklegen
Beispiel:
In einer Urne sind 4 rote, 5 blaue , 7 gelbe und 4 schwarze Kugeln. Es wird zwei mal ohne Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "genau 2 mal rot"?
Da ja ausschließlich nach 'rot' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'rot' und 'nicht rot'
Einzel-Wahrscheinlichkeiten :"rot": ; "nicht rot": ;
| Ereignis | P |
|---|---|
| rot -> rot | |
| rot -> nicht rot | |
| nicht rot -> rot | |
| nicht rot -> nicht rot |
Einzel-Wahrscheinlichkeiten: P("rot")=; P("nicht rot")=;
Die relevanten Pfade sind:
'rot'-'rot' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
=
nur Summen
Beispiel:
In einer Urne sind 10 Kugeln, die mit einer 1 beschriftet sind, 9 2er und 5 Kugeln mit einer 3. Es wird zwei mal mit Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen gerade 3 ist?
| Ereignis | P |
|---|---|
| 1 -> 1 | |
| 1 -> 2 | |
| 1 -> 3 | |
| 2 -> 1 | |
| 2 -> 2 | |
| 2 -> 3 | |
| 3 -> 1 | |
| 3 -> 2 | |
| 3 -> 3 |
Einzel-Wahrscheinlichkeiten: P("1")=; P("2")=; P("3")=;
Die relevanten Pfade sind:- '1'-'2' (P=)
- '2'-'1' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ =
Ziehen bis erstmals x kommt
Beispiel:
Aus einem Kartenstapel mit 9 Karten der Farbe Herz und 3 weiteren Karten soll solange eine Karte gezogen werden, bis eine Herz-Karte erscheint. Wie groß ist die Wahrscheinlichkeit, dass dies im 4.Versuch passiert?
(Denk daran, den Bruch vollständig zu kürzen!)
Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:
P= ⋅ ⋅ ⋅
= ⋅ ⋅ ⋅
=
Ziehen bis erstmals x kommt
Beispiel:
Eine Lehrerin sammelt die Hausaufgaben von einigen Schülern ein, um zu kontrollieren, ob diese auch ordentlich gemacht wurden. Aus Zeitgründen möchte sie aber nicht alle, sondern nur ein paar wenige einsammeln, welche durch ein Losverfahren ausgewählt werden. Aus (der unbegründeten) Angst ungerecht behandelt zu werden, bestehen die 3 Jungs darauf, dass unbedingt immer eine Hausaufgabe eines der 18 Mädchen der Klasse eingesammelt wird. Deswegen wird solange gelost, bis das erste Mädchen gezogen wird. Wie groß ist die Wahrscheinlichkeit, dass dies beim 4. Losdurchgang passiert?
(Denk daran, den Bruch vollständig zu kürzen!)
Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:
P= ⋅ ⋅ ⋅
= ⋅ ⋅ ⋅
=
