nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

ohne Zurücklegen (einfach)

Beispiel:

Auf einen Schüleraustausch bewerben sich 3 Mädchen und 7 Jungs. Weil aber leider weniger Plätze zur Verfügung stehen, muss gelost werden. Wie groß ist die Wahrscheinlichkeit, dass von den ersten 3 verlosten Plätzen genau 0 an ein Mädchen gehen?

Lösung einblenden
EreignisP
Mädchen -> Mädchen -> Mädchen 1 120
Mädchen -> Mädchen -> Jungs 7 120
Mädchen -> Jungs -> Mädchen 7 120
Mädchen -> Jungs -> Jungs 7 40
Jungs -> Mädchen -> Mädchen 7 120
Jungs -> Mädchen -> Jungs 7 40
Jungs -> Jungs -> Mädchen 7 40
Jungs -> Jungs -> Jungs 7 24

Einzel-Wahrscheinlichkeiten: P("Mädchen")= 3 10 ; P("Jungs")= 7 10 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Jungs'-'Jungs'-'Jungs' (P= 7 24 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

7 24 = 7 24


Ziehen ohne Zurücklegen

Beispiel:

In einem Kartenstapel sind 2 Karten der Farbe Kreuz, 10 der Farbe Pik, 6 der Farbe Herz und 6 der Farbe Karo. Es werden 2 Karten gleichzeitig vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit für "1 mal Pik und 1 mal Herz"? (Unter Farben versteht man beim Kartenspiel Herz, Kreuz, Pig und Karo - nicht rot und schwarz)

Lösung einblenden
EreignisP
Kreuz -> Kreuz 1 276
Kreuz -> Pik 5 138
Kreuz -> Herz 1 46
Kreuz -> Karo 1 46
Pik -> Kreuz 5 138
Pik -> Pik 15 92
Pik -> Herz 5 46
Pik -> Karo 5 46
Herz -> Kreuz 1 46
Herz -> Pik 5 46
Herz -> Herz 5 92
Herz -> Karo 3 46
Karo -> Kreuz 1 46
Karo -> Pik 5 46
Karo -> Herz 3 46
Karo -> Karo 5 92

Einzel-Wahrscheinlichkeiten: P("Kreuz")= 1 12 ; P("Pik")= 5 12 ; P("Herz")= 1 4 ; P("Karo")= 1 4 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Pik'-'Herz' (P= 5 46 )
'Herz'-'Pik' (P= 5 46 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

5 46 + 5 46 = 5 23


nur Summen

Beispiel:

In einem Stapel sind 4 Karten vom Wert 7, 4 Karten vom Wert 8 und 4 9er. Man zieht 2 Karten aus dem Stapel. Wie groß ist die Wahrscheinlichkeit, dass die Summe der beiden Karten gerade 18 ist?

Lösung einblenden

Da ja ausschließlich nach '9' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '9' und 'nicht 9'

Einzel-Wahrscheinlichkeiten :"9": 1 3 ; "nicht 9": 2 3 ;

EreignisP
9 -> 9 1 11
9 -> nicht 9 8 33
nicht 9 -> 9 8 33
nicht 9 -> nicht 9 14 33

Einzel-Wahrscheinlichkeiten: P("9")= 1 3 ; P("nicht 9")= 2 3 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'9'-'9' (P= 1 11 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 11 = 1 11


Ziehen bis erstmals x kommt

Beispiel:

Eine Lehrerin sammelt die Hausaufgaben von einigen Schülern ein, um zu kontrollieren, ob diese auch ordentlich gemacht wurden. Aus Zeitgründen möchte sie aber nicht alle, sondern nur ein paar wenige einsammeln, welche durch ein Losverfahren ausgewählt werden. Aus (der unbegründeten) Angst ungerecht behandelt zu werden, bestehen die 3 Jungs darauf, dass unbedingt immer eine Hausaufgabe eines der 21 Mädchen der Klasse eingesammelt wird. Deswegen wird solange gelost, bis das erste Mädchen gezogen wird. Wie groß ist die Wahrscheinlichkeit, dass dies beim 4. Losdurchgang passiert?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 3 24 2 23 1 22 21 21
= 1 4 1 23 1 22 7 7
= 1 2024

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Ziehen bis erstmals x kommt

Beispiel:

Eine Lehrerin sammelt die Hausaufgaben von einigen Schülern ein, um zu kontrollieren, ob diese auch ordentlich gemacht wurden. Aus Zeitgründen möchte sie aber nicht alle, sondern nur ein paar wenige einsammeln, welche durch ein Losverfahren ausgewählt werden. Aus (der unbegründeten) Angst ungerecht behandelt zu werden, bestehen die 3 Jungs darauf, dass unbedingt immer eine Hausaufgabe eines der 15 Mädchen der Klasse eingesammelt wird. Deswegen wird solange gelost, bis das erste Mädchen gezogen wird. Wie groß ist die Wahrscheinlichkeit, dass dies beim 3. Losdurchgang passiert?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 3 18 2 17 15 16
= 3 3 1 17 5 16
= 5 272

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(