nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

ohne Zurücklegen (einfach)

Beispiel:

In einer Urne sind 9 rote, 10 blaue , 10 gelbe und 3 schwarze Kugeln. Es wird zwei mal ohne Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "genau 2 mal blau"?

Lösung einblenden

Da ja ausschließlich nach 'blau' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'blau' und 'nicht blau'

Einzel-Wahrscheinlichkeiten :"blau": 5 16 ; "nicht blau": 11 16 ;

EreignisP
blau -> blau 45 496
blau -> nicht blau 55 248
nicht blau -> blau 55 248
nicht blau -> nicht blau 231 496

Einzel-Wahrscheinlichkeiten: P("blau")= 5 16 ; P("nicht blau")= 11 16 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'blau'-'blau' (P= 45 496 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

45 496 = 45 496


Ziehen ohne Zurücklegen

Beispiel:

In einem Kartenstapel sind verschiedene Karten, 10 vom Typ Kreuz, 4 vom Typ Herz, 8 vom Typ Pik und 3 vom Typ Karo. Es werden 2 Karten gleichzeitig vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit, 2 Karten der gleichen Farbe zu ziehen? (Unter Farben versteht man beim Kartenspiel Herz, Kreuz, Pig und Karo - nicht rot und schwarz)

Lösung einblenden
EreignisP
Kreuz -> Kreuz 3 20
Kreuz -> Herz 1 15
Kreuz -> Pik 2 15
Kreuz -> Karo 1 20
Herz -> Kreuz 1 15
Herz -> Herz 1 50
Herz -> Pik 4 75
Herz -> Karo 1 50
Pik -> Kreuz 2 15
Pik -> Herz 4 75
Pik -> Pik 7 75
Pik -> Karo 1 25
Karo -> Kreuz 1 20
Karo -> Herz 1 50
Karo -> Pik 1 25
Karo -> Karo 1 100

Einzel-Wahrscheinlichkeiten: P("Kreuz")= 2 5 ; P("Herz")= 4 25 ; P("Pik")= 8 25 ; P("Karo")= 3 25 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Kreuz'-'Kreuz' (P= 3 20 )
'Herz'-'Herz' (P= 1 50 )
'Pik'-'Pik' (P= 7 75 )
'Karo'-'Karo' (P= 1 100 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

3 20 + 1 50 + 7 75 + 1 100 = 41 150


nur Summen

Beispiel:

In einer 8. Klasse gibt es 10 SchülerInnen, die 13 Jahre alt sind, 10 14-Jährige und 2 15-Jährige. Ein Lehrer, der keine Ahnung über das Alter seiner Schüler hat, muss bei zwei SchülerInnen raten, wie alt die beiden zusammen sind. Er tippt auf 26 Jahre. Wie groß ist die Wahrscheinlichkeit, dass er zufällig richtig getippt hat?

Lösung einblenden

Da ja ausschließlich nach '13' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '13' und 'nicht 13'

Einzel-Wahrscheinlichkeiten :"13": 5 11 ; "nicht 13": 6 11 ;

EreignisP
13 -> 13 15 77
13 -> nicht 13 20 77
nicht 13 -> 13 20 77
nicht 13 -> nicht 13 2 7

Einzel-Wahrscheinlichkeiten: P("13")= 5 11 ; P("nicht 13")= 6 11 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'13'-'13' (P= 15 77 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

15 77 = 15 77


Ziehen bis erstmals x kommt

Beispiel:

Werder Bremen hat mal wieder das Halbfinale des DFB-Pokals erreicht. Wie hoch ist die Wahrscheinlichkeit, dass bei der Auslosung Werder an 4. Stelle gezogen wird?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 3 4 2 3 1 2 1
= 1 2 1 1 2 1
= 1 4

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Ziehen ohne Zurücklegen

Beispiel:

Bei der Auslosung zum Championsleague-Achtelfinale sind noch alle 4 deutsche Mannschaften im Lostopf mit den 16 Mannschaften. Wie groß ist die Wahrscheinlichkeit, dass von den erstem drei gezogenen Mannschaften genau 2 deutsche Mannschaften sind (wenn man mal von der falschen Annahme ausgeht, dass alle Mannschaften im gleichen Lostopf sind)?

Lösung einblenden
EreignisP
deutsch -> deutsch -> deutsch 1 140
deutsch -> deutsch -> andere 3 70
deutsch -> andere -> deutsch 3 70
deutsch -> andere -> andere 11 70
andere -> deutsch -> deutsch 3 70
andere -> deutsch -> andere 11 70
andere -> andere -> deutsch 11 70
andere -> andere -> andere 11 28

Einzel-Wahrscheinlichkeiten: P("deutsch")= 1 4 ; P("andere")= 3 4 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'deutsch'-'deutsch'-'andere' (P= 3 70 )
'deutsch'-'andere'-'deutsch' (P= 3 70 )
'andere'-'deutsch'-'deutsch' (P= 3 70 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

3 70 + 3 70 + 3 70 = 9 70