nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

ohne Zurücklegen (einfach)

Beispiel:

In einem Kartenstapel sind 2 Asse, 2 Könige und 4 Damen. Es werden 2 Karten gleichzeitig vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit "mindestens 1 mal Ass"?

Lösung einblenden

Da ja ausschließlich nach 'Ass' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Ass' und 'nicht Ass'

Einzel-Wahrscheinlichkeiten :"Ass": 1 4 ; "nicht Ass": 3 4 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal Ass' alle Möglichkeiten enthalten, außer eben kein 'Ass' bzw. 0 mal 'Ass'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(0 mal 'Ass')=1- 15 28 = 13 28

EreignisP
Ass -> Ass 1 28
Ass -> nicht Ass 3 14
nicht Ass -> Ass 3 14
nicht Ass -> nicht Ass 15 28

Einzel-Wahrscheinlichkeiten: P("Ass")= 1 4 ; P("nicht Ass")= 3 4 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Ass'-'nicht Ass' (P= 3 14 )
'nicht Ass'-'Ass' (P= 3 14 )
'Ass'-'Ass' (P= 1 28 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

3 14 + 3 14 + 1 28 = 13 28


Ziehen ohne Zurücklegen

Beispiel:

In einem Kartenstapel sind 2 Karten der Farbe Kreuz, 4 der Farbe Pik, 8 der Farbe Herz und 6 der Farbe Karo. Es werden 2 Karten gleichzeitig vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit für "1 mal Pik und 1 mal Karo"? (Unter Farben versteht man beim Kartenspiel Herz, Kreuz, Pig und Karo - nicht rot und schwarz)

Lösung einblenden
EreignisP
Kreuz -> Kreuz 1 190
Kreuz -> Pik 2 95
Kreuz -> Herz 4 95
Kreuz -> Karo 3 95
Pik -> Kreuz 2 95
Pik -> Pik 3 95
Pik -> Herz 8 95
Pik -> Karo 6 95
Herz -> Kreuz 4 95
Herz -> Pik 8 95
Herz -> Herz 14 95
Herz -> Karo 12 95
Karo -> Kreuz 3 95
Karo -> Pik 6 95
Karo -> Herz 12 95
Karo -> Karo 3 38

Einzel-Wahrscheinlichkeiten: P("Kreuz")= 1 10 ; P("Pik")= 1 5 ; P("Herz")= 2 5 ; P("Karo")= 3 10 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Pik'-'Karo' (P= 6 95 )
'Karo'-'Pik' (P= 6 95 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

6 95 + 6 95 = 12 95


nur Summen

Beispiel:

In einem Stapel sind 2 Karten vom Wert 7, 2 Karten vom Wert 8 und 4 9er. Man zieht 2 Karten aus dem Stapel. Wie groß ist die Wahrscheinlichkeit, dass die Summe der beiden Karten gerade 16 ist?

Lösung einblenden
EreignisP
7 -> 7 1 28
7 -> 8 1 14
7 -> 9 1 7
8 -> 7 1 14
8 -> 8 1 28
8 -> 9 1 7
9 -> 7 1 7
9 -> 8 1 7
9 -> 9 3 14

Einzel-Wahrscheinlichkeiten: P("7")= 1 4 ; P("8")= 1 4 ; P("9")= 1 2 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'7'-'9' (P= 1 7 )
'9'-'7' (P= 1 7 )
'8'-'8' (P= 1 28 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 7 + 1 7 + 1 28 = 9 28


Ziehen bis erstmals x kommt

Beispiel:

In einer Urne sind 4 rote und 4 blaue Kugeln. Es soll (ohne Zurücklegen) solange gezogen werden, bis erstmals eine blaue Kugel erscheint. Wie hoch ist die Wahrscheinlichkeit die blaue Kugel im 4. Versuch zu ziehen?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 4 8 3 7 2 6 4 5
= 2 1 7 1 1 5
= 2 35

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

mit Zurücklegen (einfach)

Beispiel:

Ein Würfel wird 2 mal geworfen. Wie groß ist die Wahrscheinlichkeit, höchstens 1 mal eine durch 3 teilbare Zahl zu würfeln?

Lösung einblenden

Da ja ausschließlich nach '3er-Zahl' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '3er-Zahl' und 'nicht 3er-Zahl'

Einzel-Wahrscheinlichkeiten :"3er-Zahl": 1 3 ; "nicht 3er-Zahl": 2 3 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal 3er-Zahl' alle Möglichkeiten enthalten, außer eben 2 mal '3er-Zahl'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(2 mal '3er-Zahl')=1- 1 9 = 8 9

EreignisP
3er-Zahl -> 3er-Zahl 1 9
3er-Zahl -> nicht 3er-Zahl 2 9
nicht 3er-Zahl -> 3er-Zahl 2 9
nicht 3er-Zahl -> nicht 3er-Zahl 4 9

Einzel-Wahrscheinlichkeiten: P("3er-Zahl")= 1 3 ; P("nicht 3er-Zahl")= 2 3 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '3er-Zahl'-'nicht 3er-Zahl' (P= 2 9 )
  • 'nicht 3er-Zahl'-'3er-Zahl' (P= 2 9 )
  • 'nicht 3er-Zahl'-'nicht 3er-Zahl' (P= 4 9 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

2 9 + 2 9 + 4 9 = 8 9