nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

ohne Zurücklegen (einfach)

Beispiel:

In einem Kartenstapel sind verschiedene Karten, 7 vom Typ Kreuz, 4 vom Typ Herz, 3 vom Typ Pik und 6 vom Typ Karo. Es werden 2 Karten gleichzeitig vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit, 2 Karten der gleichen Farbe zu ziehen? (Unter Farben versteht man beim Kartenspiel Herz, Kreuz, Pig und Karo - nicht rot und schwarz)

Lösung einblenden
EreignisP
Kreuz -> Kreuz 21 190
Kreuz -> Herz 7 95
Kreuz -> Pik 21 380
Kreuz -> Karo 21 190
Herz -> Kreuz 7 95
Herz -> Herz 3 95
Herz -> Pik 3 95
Herz -> Karo 6 95
Pik -> Kreuz 21 380
Pik -> Herz 3 95
Pik -> Pik 3 190
Pik -> Karo 9 190
Karo -> Kreuz 21 190
Karo -> Herz 6 95
Karo -> Pik 9 190
Karo -> Karo 3 38

Einzel-Wahrscheinlichkeiten: P("Kreuz")= 7 20 ; P("Herz")= 1 5 ; P("Pik")= 3 20 ; P("Karo")= 3 10 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Kreuz'-'Kreuz' (P= 21 190 )
'Herz'-'Herz' (P= 3 95 )
'Pik'-'Pik' (P= 3 190 )
'Karo'-'Karo' (P= 3 38 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

21 190 + 3 95 + 3 190 + 3 38 = 9 38


Ziehen ohne Zurücklegen

Beispiel:

In einer Urne sind 2 Kugeln, die mit einer 1 beschriftet sind, 5 kugel mit einer 2 und 3 Kugeln mit einer 3. Es werden zwei Kugeln gleichzeitig gezogen. Wie groß ist die Wahrscheinlichkeit, dass die Summe der Kugeln 3 ist?

Lösung einblenden
EreignisP
1 -> 1 1 45
1 -> 2 1 9
1 -> 3 1 15
2 -> 1 1 9
2 -> 2 2 9
2 -> 3 1 6
3 -> 1 1 15
3 -> 2 1 6
3 -> 3 1 15

Einzel-Wahrscheinlichkeiten: P("1")= 1 5 ; P("2")= 1 2 ; P("3")= 3 10 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'1'-'2' (P= 1 9 )
'2'-'1' (P= 1 9 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 9 + 1 9 = 2 9


nur Summen

Beispiel:

In einer 8. Klasse gibt es 15 SchülerInnen, die 13 Jahre alt sind, 10 14-Jährige und 2 15-Jährige. Ein Lehrer, der keine Ahnung über das Alter seiner Schüler hat, muss bei zwei SchülerInnen raten, wie alt die beiden zusammen sind. Er tippt auf 30 Jahre. Wie groß ist die Wahrscheinlichkeit, dass er zufällig richtig getippt hat?

Lösung einblenden

Da ja ausschließlich nach '15' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '15' und 'nicht 15'

Einzel-Wahrscheinlichkeiten :"15": 2 27 ; "nicht 15": 25 27 ;

EreignisP
15 -> 15 1 351
15 -> nicht 15 25 351
nicht 15 -> 15 25 351
nicht 15 -> nicht 15 100 117

Einzel-Wahrscheinlichkeiten: P("15")= 2 27 ; P("nicht 15")= 25 27 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'15'-'15' (P= 1 351 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 351 = 1 351


Ziehen bis erstmals x kommt

Beispiel:

Aus einem Kartenstapel mit 6 Karten der Farbe Herz und 3 weiteren Karten soll solange eine Karte gezogen werden, bis eine Herz-Karte erscheint. Wie groß ist die Wahrscheinlichkeit, dass dies im 3.Versuch passiert?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 3 9 2 8 6 7
= 3 3 2 4 1 7
= 1 14

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

mit Zurücklegen (einfach)

Beispiel:

Ein Würfel wird 3 mal geworfen. Wie groß ist die Wahrscheinlichkeit, höchstens 2 mal eine durch 3 teilbare Zahl zu würfeln?

Lösung einblenden

Da ja ausschließlich nach '3er-Zahl' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '3er-Zahl' und 'nicht 3er-Zahl'

Einzel-Wahrscheinlichkeiten :"3er-Zahl": 1 3 ; "nicht 3er-Zahl": 2 3 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal 3er-Zahl' alle Möglichkeiten enthalten, außer eben 3 mal '3er-Zahl'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(3 mal '3er-Zahl')=1- 1 27 = 26 27

EreignisP
3er-Zahl -> 3er-Zahl -> 3er-Zahl 1 27
3er-Zahl -> 3er-Zahl -> nicht 3er-Zahl 2 27
3er-Zahl -> nicht 3er-Zahl -> 3er-Zahl 2 27
3er-Zahl -> nicht 3er-Zahl -> nicht 3er-Zahl 4 27
nicht 3er-Zahl -> 3er-Zahl -> 3er-Zahl 2 27
nicht 3er-Zahl -> 3er-Zahl -> nicht 3er-Zahl 4 27
nicht 3er-Zahl -> nicht 3er-Zahl -> 3er-Zahl 4 27
nicht 3er-Zahl -> nicht 3er-Zahl -> nicht 3er-Zahl 8 27

Einzel-Wahrscheinlichkeiten: P("3er-Zahl")= 1 3 ; P("nicht 3er-Zahl")= 2 3 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '3er-Zahl'-'3er-Zahl'-'nicht 3er-Zahl' (P= 2 27 )
  • '3er-Zahl'-'nicht 3er-Zahl'-'3er-Zahl' (P= 2 27 )
  • 'nicht 3er-Zahl'-'3er-Zahl'-'3er-Zahl' (P= 2 27 )
  • '3er-Zahl'-'nicht 3er-Zahl'-'nicht 3er-Zahl' (P= 4 27 )
  • 'nicht 3er-Zahl'-'3er-Zahl'-'nicht 3er-Zahl' (P= 4 27 )
  • 'nicht 3er-Zahl'-'nicht 3er-Zahl'-'3er-Zahl' (P= 4 27 )
  • 'nicht 3er-Zahl'-'nicht 3er-Zahl'-'nicht 3er-Zahl' (P= 8 27 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

2 27 + 2 27 + 2 27 + 4 27 + 4 27 + 4 27 + 8 27 = 26 27