nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

ohne Zurücklegen (einfach)

Beispiel:

Bei der Auslosung zum Championsleague-Achtelfinale sind noch alle 4 deutsche Mannschaften im Lostopf mit den 16 Mannschaften. Wie groß ist die Wahrscheinlichkeit, dass von den erstem drei gezogenen Mannschaften höchstens 1 deutsche Mannschaften sind (wenn man mal von der falschen Annahme ausgeht, dass alle Mannschaften im gleichen Lostopf sind)?

Lösung einblenden

Da ja ausschließlich nach 'deutsch' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'deutsch' und 'nicht deutsch'

Einzel-Wahrscheinlichkeiten :"deutsch": 1 4 ; "nicht deutsch": 3 4 ;

EreignisP
deutsch -> deutsch -> deutsch 1 140
deutsch -> deutsch -> nicht deutsch 3 70
deutsch -> nicht deutsch -> deutsch 3 70
deutsch -> nicht deutsch -> nicht deutsch 11 70
nicht deutsch -> deutsch -> deutsch 3 70
nicht deutsch -> deutsch -> nicht deutsch 11 70
nicht deutsch -> nicht deutsch -> deutsch 11 70
nicht deutsch -> nicht deutsch -> nicht deutsch 11 28

Einzel-Wahrscheinlichkeiten: P("deutsch")= 1 4 ; P("nicht deutsch")= 3 4 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'deutsch'-'nicht deutsch'-'nicht deutsch' (P= 11 70 )
'nicht deutsch'-'deutsch'-'nicht deutsch' (P= 11 70 )
'nicht deutsch'-'nicht deutsch'-'deutsch' (P= 11 70 )
'nicht deutsch'-'nicht deutsch'-'nicht deutsch' (P= 11 28 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

11 70 + 11 70 + 11 70 + 11 28 = 121 140


Ziehen ohne Zurücklegen

Beispiel:

In einem Kartenstapel sind 4 Asse, 2 Könige und 4 Damen. Es werden 2 Karten vom Stapel gleichzeitig gezogen. Wie groß ist die Wahrscheinlichkeit "höchstens 1 mal Ass"?

Lösung einblenden

Da ja ausschließlich nach 'Ass' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Ass' und 'nicht Ass'

Einzel-Wahrscheinlichkeiten :"Ass": 2 5 ; "nicht Ass": 3 5 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal Ass' alle Möglichkeiten enthalten, außer eben 2 mal 'Ass'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(2 mal 'Ass')=1- 2 15 = 13 15

EreignisP
Ass -> Ass 2 15
Ass -> nicht Ass 4 15
nicht Ass -> Ass 4 15
nicht Ass -> nicht Ass 1 3

Einzel-Wahrscheinlichkeiten: P("Ass")= 2 5 ; P("nicht Ass")= 3 5 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Ass'-'nicht Ass' (P= 4 15 )
'nicht Ass'-'Ass' (P= 4 15 )
'nicht Ass'-'nicht Ass' (P= 1 3 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

4 15 + 4 15 + 1 3 = 13 15


nur Summen

Beispiel:

Ein Würfel wird zwei mal geworfen. Wie hoch ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen 10 ist?

Lösung einblenden
EreignisP
1 -> 1 1 36
1 -> 2 1 36
1 -> 3 1 36
1 -> 4 1 36
1 -> 5 1 36
1 -> 6 1 36
2 -> 1 1 36
2 -> 2 1 36
2 -> 3 1 36
2 -> 4 1 36
2 -> 5 1 36
2 -> 6 1 36
3 -> 1 1 36
3 -> 2 1 36
3 -> 3 1 36
3 -> 4 1 36
3 -> 5 1 36
3 -> 6 1 36
4 -> 1 1 36
4 -> 2 1 36
4 -> 3 1 36
4 -> 4 1 36
4 -> 5 1 36
4 -> 6 1 36
5 -> 1 1 36
5 -> 2 1 36
5 -> 3 1 36
5 -> 4 1 36
5 -> 5 1 36
5 -> 6 1 36
6 -> 1 1 36
6 -> 2 1 36
6 -> 3 1 36
6 -> 4 1 36
6 -> 5 1 36
6 -> 6 1 36

Einzel-Wahrscheinlichkeiten: P("1")= 1 6 ; P("2")= 1 6 ; P("3")= 1 6 ; P("4")= 1 6 ; P("5")= 1 6 ; P("6")= 1 6 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '4'-'6' (P= 1 36 )
  • '6'-'4' (P= 1 36 )
  • '5'-'5' (P= 1 36 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 36 + 1 36 + 1 36 = 1 12


Ziehen bis erstmals x kommt

Beispiel:

In einer Urne sind 5 rote und 2 blaue Kugeln. Es soll (ohne Zurücklegen) solange gezogen werden, bis erstmals eine rote Kugel erscheint. Wie hoch ist die Wahrscheinlichkeit die rote Kugel im 2. Versuch zu ziehen?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 2 7 5 6
= 1 7 5 3
= 5 21

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

mit Zurücklegen (einfach)

Beispiel:

In einer Urne sind 8 rote, 9 gelbe, 5 blaue und 3 schwarze Kugeln. Es wird zwei mal mit Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "höchstens 1 mal gelb"?

Lösung einblenden

Da ja ausschließlich nach 'gelb' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'gelb' und 'nicht gelb'

Einzel-Wahrscheinlichkeiten :"gelb": 9 25 ; "nicht gelb": 16 25 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal gelb' alle Möglichkeiten enthalten, außer eben 2 mal 'gelb'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(2 mal 'gelb')=1- 81 625 = 544 625

EreignisP
gelb -> gelb 81 625
gelb -> nicht gelb 144 625
nicht gelb -> gelb 144 625
nicht gelb -> nicht gelb 256 625

Einzel-Wahrscheinlichkeiten: P("gelb")= 9 25 ; P("nicht gelb")= 16 25 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'gelb'-'nicht gelb' (P= 144 625 )
  • 'nicht gelb'-'gelb' (P= 144 625 )
  • 'nicht gelb'-'nicht gelb' (P= 256 625 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

144 625 + 144 625 + 256 625 = 544 625