Klasse 5
Klasse 6
Klasse 7
Klasse 8
Klasse 9
Klasse 10
Fit für die Oberstufe
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
ohne Zurücklegen (einfach)
Beispiel:
In einer Urne sind 9 rote und 3 blaue Kugeln. Es wird 2 mal ohne Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "genau 1 mal rot"?
| Ereignis | P |
|---|---|
| rot -> rot | |
| rot -> blau | |
| blau -> rot | |
| blau -> blau |
Einzel-Wahrscheinlichkeiten: P("rot")=; P("blau")=;
Die relevanten Pfade sind:
'rot'-'blau' (P=)
'blau'-'rot' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ =
Ziehen ohne Zurücklegen
Beispiel:
In einer Urne sind 4 Kugeln, die mit einer 1 beschriftet sind, 2 kugel mit einer 2 und 4 Kugeln mit einer 3. Es werden zwei Kugeln gleichzeitig gezogen. Wie groß ist die Wahrscheinlichkeit, dass die Summe der Kugeln 6 ist?
Da ja ausschließlich nach '3' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '3' und 'nicht 3'
Einzel-Wahrscheinlichkeiten :"3": ; "nicht 3": ;
| Ereignis | P |
|---|---|
| 3 -> 3 | |
| 3 -> nicht 3 | |
| nicht 3 -> 3 | |
| nicht 3 -> nicht 3 |
Einzel-Wahrscheinlichkeiten: P("3")=; P("nicht 3")=;
Die relevanten Pfade sind:
'3'-'3' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
=
nur Summen
Beispiel:
In einer Urne sind 3 Kugeln, die mit einer 1 beschriftet sind, 7 2er und 5 Kugeln mit einer 3. Es wird zwei mal mit Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen gerade 3 ist?
| Ereignis | P |
|---|---|
| 1 -> 1 | |
| 1 -> 2 | |
| 1 -> 3 | |
| 2 -> 1 | |
| 2 -> 2 | |
| 2 -> 3 | |
| 3 -> 1 | |
| 3 -> 2 | |
| 3 -> 3 |
Einzel-Wahrscheinlichkeiten: P("1")=; P("2")=; P("3")=;
Die relevanten Pfade sind:- '1'-'2' (P=)
- '2'-'1' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ =
Ziehen bis erstmals x kommt
Beispiel:
In einer Urne sind 3 rote und 3 blaue Kugeln. Es soll (ohne Zurücklegen) solange gezogen werden, bis erstmals eine rote Kugel erscheint. Wie hoch ist die Wahrscheinlichkeit die rote Kugel im 2. Versuch zu ziehen?
(Denk daran, den Bruch vollständig zu kürzen!)
Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:
P= ⋅
= ⋅
=
Ziehen mit Zurücklegen
Beispiel:
Beim Roulette kann man auch auf Zahlenbereiche setzen. Z.B. auf die Zahlenbereiche 1-12, 13-24 und 25-36, wobei die grüne 0 zu keinem der Bereiche gehört. Es wird zwei mal eine Kugel im Roulette gespielt. Wie groß ist die Wahrscheinlichkeit für "höchstens 1 mal 1-12"?
Da ja ausschließlich nach '1-12' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '1-12' und 'nicht 1-12'
Einzel-Wahrscheinlichkeiten :"1-12": ; "nicht 1-12": ;
Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal 1-12' alle Möglichkeiten enthalten, außer eben 2 mal '1-12'
Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:
P=1-P(2 mal '1-12')=1- =
| Ereignis | P |
|---|---|
| 1-12 -> 1-12 | |
| 1-12 -> nicht 1-12 | |
| nicht 1-12 -> 1-12 | |
| nicht 1-12 -> nicht 1-12 |
Einzel-Wahrscheinlichkeiten: P("1-12")=; P("nicht 1-12")=;
Die relevanten Pfade sind:- '1-12'-'nicht 1-12' (P=)
- 'nicht 1-12'-'1-12' (P=)
- 'nicht 1-12'-'nicht 1-12' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + =
