Klasse 5
Klasse 6
Klasse 7
Klasse 8
Klasse 9
Klasse 10
Fit für die Oberstufe
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
ohne Zurücklegen (einfach)
Beispiel:
In einem Kartenstapel sind 2 Asse, 2 Könige und 2 Damen. Es werden 2 Karten gleichzeitig vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit "mindestens 1 mal Ass"?
Da ja ausschließlich nach 'Ass' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Ass' und 'nicht Ass'
Einzel-Wahrscheinlichkeiten :"Ass": ; "nicht Ass": ;
Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal Ass' alle Möglichkeiten enthalten, außer eben kein 'Ass' bzw. 0 mal 'Ass'
Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:
P=1-P(0 mal 'Ass')=1- =
| Ereignis | P |
|---|---|
| Ass -> Ass | |
| Ass -> nicht Ass | |
| nicht Ass -> Ass | |
| nicht Ass -> nicht Ass |
Einzel-Wahrscheinlichkeiten: P("Ass")=; P("nicht Ass")=;
Die relevanten Pfade sind:
'Ass'-'nicht Ass' (P=)
'nicht Ass'-'Ass' (P=)
'Ass'-'Ass' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + =
Ziehen ohne Zurücklegen
Beispiel:
In einem Kartenstapel sind 2 Asse, 4 Könige und 2 Damen. Es werden 2 Karten vom Stapel gleichzeitig gezogen. Wie groß ist die Wahrscheinlichkeit "mindestens 1 mal König"?
Da ja ausschließlich nach 'König' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'König' und 'nicht König'
Einzel-Wahrscheinlichkeiten :"König": ; "nicht König": ;
Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal König' alle Möglichkeiten enthalten, außer eben kein 'König' bzw. 0 mal 'König'
Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:
P=1-P(0 mal 'König')=1- =
| Ereignis | P |
|---|---|
| König -> König | |
| König -> nicht König | |
| nicht König -> König | |
| nicht König -> nicht König |
Einzel-Wahrscheinlichkeiten: P("König")=; P("nicht König")=;
Die relevanten Pfade sind:
'König'-'nicht König' (P=)
'nicht König'-'König' (P=)
'König'-'König' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + =
nur Summen
Beispiel:
In einer Urne sind 8 Kugeln, die mit einer 1 beschriftet sind, 8 2er und 4 Kugeln mit einer 3. Es wird zwei mal mit Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen gerade 6 ist?
Da ja ausschließlich nach '3' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '3' und 'nicht 3'
Einzel-Wahrscheinlichkeiten :"3": ; "nicht 3": ;
| Ereignis | P |
|---|---|
| 3 -> 3 | |
| 3 -> nicht 3 | |
| nicht 3 -> 3 | |
| nicht 3 -> nicht 3 |
Einzel-Wahrscheinlichkeiten: P("3")=; P("nicht 3")=;
Die relevanten Pfade sind:- '3'-'3' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
=
Ziehen bis erstmals x kommt
Beispiel:
Werder Bremen hat mal wieder das Halbfinale des DFB-Pokals erreicht. Wie hoch ist die Wahrscheinlichkeit, dass bei der Auslosung Werder an 2. Stelle gezogen wird?
(Denk daran, den Bruch vollständig zu kürzen!)
Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:
P= ⋅
= ⋅
=
Ziehen mit Zurücklegen
Beispiel:
Ein Würfel wird 2 mal geworfen. Wie groß ist die Wahrscheinlichkeit, mindestens 1 mal eine durch 3 teilbare Zahl zu würfeln?
Da ja ausschließlich nach 'Teiler' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Teiler' und 'nicht Teiler'
Einzel-Wahrscheinlichkeiten :"Teiler": ; "nicht Teiler": ;
Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal Teiler' alle Möglichkeiten enthalten, außer eben kein 'Teiler' bzw. 0 mal 'Teiler'
Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:
P=1-P(0 mal 'Teiler')=1- =
| Ereignis | P |
|---|---|
| Teiler -> Teiler | |
| Teiler -> nicht Teiler | |
| nicht Teiler -> Teiler | |
| nicht Teiler -> nicht Teiler |
Einzel-Wahrscheinlichkeiten: P("Teiler")=; P("nicht Teiler")=;
Die relevanten Pfade sind:- 'Teiler'-'nicht Teiler' (P=)
- 'nicht Teiler'-'Teiler' (P=)
- 'Teiler'-'Teiler' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + =
