nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

ohne Zurücklegen (einfach)

Beispiel:

In einem Kartenstapel sind verschiedene Karten, 3 vom Typ Kreuz, 8 vom Typ Herz, 3 vom Typ Pik und 6 vom Typ Karo. Es werden 2 Karten gleichzeitig vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit, 2 Karten der gleichen Farbe zu ziehen? (Unter Farben versteht man beim Kartenspiel Herz, Kreuz, Pig und Karo - nicht rot und schwarz)

Lösung einblenden
EreignisP
Kreuz -> Kreuz 3 190
Kreuz -> Herz 6 95
Kreuz -> Pik 9 380
Kreuz -> Karo 9 190
Herz -> Kreuz 6 95
Herz -> Herz 14 95
Herz -> Pik 6 95
Herz -> Karo 12 95
Pik -> Kreuz 9 380
Pik -> Herz 6 95
Pik -> Pik 3 190
Pik -> Karo 9 190
Karo -> Kreuz 9 190
Karo -> Herz 12 95
Karo -> Pik 9 190
Karo -> Karo 3 38

Einzel-Wahrscheinlichkeiten: P("Kreuz")= 3 20 ; P("Herz")= 2 5 ; P("Pik")= 3 20 ; P("Karo")= 3 10 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Kreuz'-'Kreuz' (P= 3 190 )
'Herz'-'Herz' (P= 14 95 )
'Pik'-'Pik' (P= 3 190 )
'Karo'-'Karo' (P= 3 38 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

3 190 + 14 95 + 3 190 + 3 38 = 49 190


Ziehen ohne Zurücklegen

Beispiel:

Auf einen Schüleraustausch bewerben sich 10 Mädchen und 5 Jungs. Weil aber leider weniger Plätze zur Verfügung stehen, muss gelost werden. Wie groß ist die Wahrscheinlichkeit, dass von den ersten 3 verlosten Plätzen genau 0 an eine Mädchen gehen?

Lösung einblenden
EreignisP
Mädchen -> Mädchen -> Mädchen 24 91
Mädchen -> Mädchen -> Jungs 15 91
Mädchen -> Jungs -> Mädchen 15 91
Mädchen -> Jungs -> Jungs 20 273
Jungs -> Mädchen -> Mädchen 15 91
Jungs -> Mädchen -> Jungs 20 273
Jungs -> Jungs -> Mädchen 20 273
Jungs -> Jungs -> Jungs 2 91

Einzel-Wahrscheinlichkeiten: P("Mädchen")= 2 3 ; P("Jungs")= 1 3 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Jungs'-'Jungs'-'Jungs' (P= 2 91 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

2 91 = 2 91


nur Summen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Ein Glücksrad wird zwei mal gedreht. Wie hoch ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen 6 ist?

Lösung einblenden
EreignisP
1 -> 1 9 64
1 -> 2 9 64
1 -> 3 3 64
1 -> 4 3 64
2 -> 1 9 64
2 -> 2 9 64
2 -> 3 3 64
2 -> 4 3 64
3 -> 1 3 64
3 -> 2 3 64
3 -> 3 1 64
3 -> 4 1 64
4 -> 1 3 64
4 -> 2 3 64
4 -> 3 1 64
4 -> 4 1 64

Einzel-Wahrscheinlichkeiten: P("1")= 3 8 ; P("2")= 3 8 ; P("3")= 1 8 ; P("4")= 1 8 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '2'-'4' (P= 3 64 )
  • '4'-'2' (P= 3 64 )
  • '3'-'3' (P= 1 64 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

3 64 + 3 64 + 1 64 = 7 64


Ziehen bis erstmals x kommt

Beispiel:

Aus einem Kartenstapel mit 8 Karten der Farbe Herz und 4 weiteren Karten soll solange eine Karte gezogen werden, bis eine Herz-Karte erscheint. Wie groß ist die Wahrscheinlichkeit, dass dies im 5.Versuch passiert?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 4 12 3 11 2 10 1 9 8 8
= 1 1 11 1 5 1 9 4 4
= 1 495

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Ziehen bis erstmals x kommt

Beispiel:

In einer Urne sind 4 rote und 7 blaue Kugeln. Es soll (ohne Zurücklegen) solange gezogen werden, bis erstmals eine blaue Kugel erscheint. Wie hoch ist die Wahrscheinlichkeit die blaue Kugel im 4. Versuch zu ziehen?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 4 11 3 10 2 9 7 8
= 1 11 1 5 1 3 7 2
= 7 330

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(