nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

ohne Zurücklegen (einfach)

Beispiel:

In einer Urne sind 9 rote und 3 blaue Kugeln. Es wird 2 mal ohne Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "genau 1 mal rot"?

Lösung einblenden
EreignisP
rot -> rot 6 11
rot -> blau 9 44
blau -> rot 9 44
blau -> blau 1 22

Einzel-Wahrscheinlichkeiten: P("rot")= 3 4 ; P("blau")= 1 4 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'rot'-'blau' (P= 9 44 )
'blau'-'rot' (P= 9 44 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

9 44 + 9 44 = 9 22


Ziehen ohne Zurücklegen

Beispiel:

In einer Urne sind 4 Kugeln, die mit einer 1 beschriftet sind, 2 kugel mit einer 2 und 4 Kugeln mit einer 3. Es werden zwei Kugeln gleichzeitig gezogen. Wie groß ist die Wahrscheinlichkeit, dass die Summe der Kugeln 6 ist?

Lösung einblenden

Da ja ausschließlich nach '3' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '3' und 'nicht 3'

Einzel-Wahrscheinlichkeiten :"3": 2 5 ; "nicht 3": 3 5 ;

EreignisP
3 -> 3 2 15
3 -> nicht 3 4 15
nicht 3 -> 3 4 15
nicht 3 -> nicht 3 1 3

Einzel-Wahrscheinlichkeiten: P("3")= 2 5 ; P("nicht 3")= 3 5 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'3'-'3' (P= 2 15 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

2 15 = 2 15


nur Summen

Beispiel:

In einer Urne sind 3 Kugeln, die mit einer 1 beschriftet sind, 7 2er und 5 Kugeln mit einer 3. Es wird zwei mal mit Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen gerade 3 ist?

Lösung einblenden
EreignisP
1 -> 1 1 25
1 -> 2 7 75
1 -> 3 1 15
2 -> 1 7 75
2 -> 2 49 225
2 -> 3 7 45
3 -> 1 1 15
3 -> 2 7 45
3 -> 3 1 9

Einzel-Wahrscheinlichkeiten: P("1")= 1 5 ; P("2")= 7 15 ; P("3")= 1 3 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '1'-'2' (P= 7 75 )
  • '2'-'1' (P= 7 75 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

7 75 + 7 75 = 14 75


Ziehen bis erstmals x kommt

Beispiel:

In einer Urne sind 3 rote und 3 blaue Kugeln. Es soll (ohne Zurücklegen) solange gezogen werden, bis erstmals eine rote Kugel erscheint. Wie hoch ist die Wahrscheinlichkeit die rote Kugel im 2. Versuch zu ziehen?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 3 6 3 5
= 3 2 1 5
= 3 10

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Ziehen mit Zurücklegen

Beispiel:

Beim Roulette kann man auch auf Zahlenbereiche setzen. Z.B. auf die Zahlenbereiche 1-12, 13-24 und 25-36, wobei die grüne 0 zu keinem der Bereiche gehört. Es wird zwei mal eine Kugel im Roulette gespielt. Wie groß ist die Wahrscheinlichkeit für "höchstens 1 mal 1-12"?

Lösung einblenden

Da ja ausschließlich nach '1-12' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '1-12' und 'nicht 1-12'

Einzel-Wahrscheinlichkeiten :"1-12": 12 37 ; "nicht 1-12": 25 37 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal 1-12' alle Möglichkeiten enthalten, außer eben 2 mal '1-12'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(2 mal '1-12')=1- 144 1369 = 1225 1369

EreignisP
1-12 -> 1-12 144 1369
1-12 -> nicht 1-12 300 1369
nicht 1-12 -> 1-12 300 1369
nicht 1-12 -> nicht 1-12 625 1369

Einzel-Wahrscheinlichkeiten: P("1-12")= 12 37 ; P("nicht 1-12")= 25 37 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '1-12'-'nicht 1-12' (P= 300 1369 )
  • 'nicht 1-12'-'1-12' (P= 300 1369 )
  • 'nicht 1-12'-'nicht 1-12' (P= 625 1369 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

300 1369 + 300 1369 + 625 1369 = 1225 1369