nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

ohne Zurücklegen (einfach)

Beispiel:

In einer Urne sind 3 rote, 4 blaue , 3 gelbe und 5 schwarze Kugeln. Es wird zwei mal ohne Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "mindestens 1 mal rot"?

Lösung einblenden

Da ja ausschließlich nach 'rot' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'rot' und 'nicht rot'

Einzel-Wahrscheinlichkeiten :"rot": 1 5 ; "nicht rot": 4 5 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal rot' alle Möglichkeiten enthalten, außer eben kein 'rot' bzw. 0 mal 'rot'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(0 mal 'rot')=1- 22 35 = 13 35

EreignisP
rot -> rot 1 35
rot -> nicht rot 6 35
nicht rot -> rot 6 35
nicht rot -> nicht rot 22 35

Einzel-Wahrscheinlichkeiten: P("rot")= 1 5 ; P("nicht rot")= 4 5 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'rot'-'nicht rot' (P= 6 35 )
'nicht rot'-'rot' (P= 6 35 )
'rot'-'rot' (P= 1 35 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

6 35 + 6 35 + 1 35 = 13 35


Ziehen ohne Zurücklegen

Beispiel:

In einer Urne sind verschiedene Kugeln, 10 vom Typ rot, 7 vom Typ blau und 3 vom Typ gelb. Es wird 2 mal ohne Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit, 2 Kugeln gleicher Farbe zu ziehen?

Lösung einblenden
EreignisP
rot -> rot 9 38
rot -> blau 7 38
rot -> gelb 3 38
blau -> rot 7 38
blau -> blau 21 190
blau -> gelb 21 380
gelb -> rot 3 38
gelb -> blau 21 380
gelb -> gelb 3 190

Einzel-Wahrscheinlichkeiten: P("rot")= 1 2 ; P("blau")= 7 20 ; P("gelb")= 3 20 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'rot'-'rot' (P= 9 38 )
'blau'-'blau' (P= 21 190 )
'gelb'-'gelb' (P= 3 190 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

9 38 + 21 190 + 3 190 = 69 190


nur Summen

Beispiel:

In einem Stapel sind 2 Karten vom Wert 7, 2 Karten vom Wert 8 und 4 9er. Man zieht 2 Karten aus dem Stapel. Wie groß ist die Wahrscheinlichkeit, dass die Summe der beiden Karten gerade 14 ist?

Lösung einblenden

Da ja ausschließlich nach '7' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '7' und 'nicht 7'

Einzel-Wahrscheinlichkeiten :"7": 1 4 ; "nicht 7": 3 4 ;

EreignisP
7 -> 7 1 28
7 -> nicht 7 3 14
nicht 7 -> 7 3 14
nicht 7 -> nicht 7 15 28

Einzel-Wahrscheinlichkeiten: P("7")= 1 4 ; P("nicht 7")= 3 4 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'7'-'7' (P= 1 28 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 28 = 1 28


Ziehen bis erstmals x kommt

Beispiel:

Eine Lehrerin sammelt die Hausaufgaben von einigen Schülern ein, um zu kontrollieren, ob diese auch ordentlich gemacht wurden. Aus Zeitgründen möchte sie aber nicht alle, sondern nur ein paar wenige einsammeln, welche durch ein Losverfahren ausgewählt werden. Aus (der unbegründeten) Angst ungerecht behandelt zu werden, bestehen die 3 Jungs darauf, dass unbedingt immer eine Hausaufgabe eines der 18 Mädchen der Klasse eingesammelt wird. Deswegen wird solange gelost, bis das erste Mädchen gezogen wird. Wie groß ist die Wahrscheinlichkeit, dass dies beim 4. Losdurchgang passiert?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 3 21 2 20 1 19 18 18
= 1 7 1 10 1 19 3 3
= 1 1330

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Ziehen ohne Zurücklegen

Beispiel:

In einer Urne sind 3 rote, 4 blaue , 2 gelbe und 3 schwarze Kugeln. Es wird zwei mal ohne Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "1 mal rot und 1 mal blau"?

Lösung einblenden
EreignisP
rot -> rot 1 22
rot -> blau 1 11
rot -> gelb 1 22
rot -> schwarz 3 44
blau -> rot 1 11
blau -> blau 1 11
blau -> gelb 2 33
blau -> schwarz 1 11
gelb -> rot 1 22
gelb -> blau 2 33
gelb -> gelb 1 66
gelb -> schwarz 1 22
schwarz -> rot 3 44
schwarz -> blau 1 11
schwarz -> gelb 1 22
schwarz -> schwarz 1 22

Einzel-Wahrscheinlichkeiten: P("rot")= 1 4 ; P("blau")= 1 3 ; P("gelb")= 1 6 ; P("schwarz")= 1 4 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'rot'-'blau' (P= 1 11 )
'blau'-'rot' (P= 1 11 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 11 + 1 11 = 2 11