nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

ohne Zurücklegen (einfach)

Beispiel:

In einer Urne sind 4 rote und 6 blaue Kugeln. Es wird 3 mal ohne Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "höchstens 1 mal blau"?

Lösung einblenden

Da ja ausschließlich nach 'blau' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'blau' und 'nicht blau'

Einzel-Wahrscheinlichkeiten :"blau": 3 5 ; "nicht blau": 2 5 ;

EreignisP
blau -> blau -> blau 1 6
blau -> blau -> nicht blau 1 6
blau -> nicht blau -> blau 1 6
blau -> nicht blau -> nicht blau 1 10
nicht blau -> blau -> blau 1 6
nicht blau -> blau -> nicht blau 1 10
nicht blau -> nicht blau -> blau 1 10
nicht blau -> nicht blau -> nicht blau 1 30

Einzel-Wahrscheinlichkeiten: P("blau")= 3 5 ; P("nicht blau")= 2 5 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'blau'-'nicht blau'-'nicht blau' (P= 1 10 )
'nicht blau'-'blau'-'nicht blau' (P= 1 10 )
'nicht blau'-'nicht blau'-'blau' (P= 1 10 )
'nicht blau'-'nicht blau'-'nicht blau' (P= 1 30 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 10 + 1 10 + 1 10 + 1 30 = 1 3


Ziehen ohne Zurücklegen

Beispiel:

In einem Stapel sind 2 Karten vom Wert 7, 2 Karten vom Wert 8 und 2 9er. Man zieht 2 Karten gleichzeitig aus dem Stapel. Wie groß ist die Wahrscheinlichkeit, dass die Summe der beiden Karten gerade 18 ist?

Lösung einblenden

Da ja ausschließlich nach '9' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '9' und 'nicht 9'

Einzel-Wahrscheinlichkeiten :"9": 1 3 ; "nicht 9": 2 3 ;

EreignisP
9 -> 9 1 15
9 -> nicht 9 4 15
nicht 9 -> 9 4 15
nicht 9 -> nicht 9 2 5

Einzel-Wahrscheinlichkeiten: P("9")= 1 3 ; P("nicht 9")= 2 3 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'9'-'9' (P= 1 15 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 15 = 1 15


nur Summen

Beispiel:

In einer Urne sind 3 Kugeln, die mit einer 1 beschriftet sind, 8 kugel mit einer 2 und 4 Kugeln mit einer 3. Es werden zwei Kugeln gleichzeitig gezogen. Wie groß ist die Wahrscheinlichkeit, dass die Summe der Kugeln 4 ist?

Lösung einblenden
EreignisP
1 -> 1 1 35
1 -> 2 4 35
1 -> 3 2 35
2 -> 1 4 35
2 -> 2 4 15
2 -> 3 16 105
3 -> 1 2 35
3 -> 2 16 105
3 -> 3 2 35

Einzel-Wahrscheinlichkeiten: P("1")= 1 5 ; P("2")= 8 15 ; P("3")= 4 15 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'1'-'3' (P= 2 35 )
'3'-'1' (P= 2 35 )
'2'-'2' (P= 4 15 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

2 35 + 2 35 + 4 15 = 8 21


Ziehen bis erstmals x kommt

Beispiel:

In einer Urne sind 6 rote und 4 blaue Kugeln. Es soll (ohne Zurücklegen) solange gezogen werden, bis erstmals eine rote Kugel erscheint. Wie hoch ist die Wahrscheinlichkeit die rote Kugel im 5. Versuch zu ziehen?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 4 10 3 9 2 8 1 7 6 6
= 1 5 1 3 1 1 7 1 2
= 1 210

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

nur Summen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Ein Glücksrad wird zwei mal gedreht. Wie hoch ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen 3 ist?

Lösung einblenden
EreignisP
1 -> 1 1 4
1 -> 2 1 8
1 -> 3 1 16
1 -> 4 1 16
2 -> 1 1 8
2 -> 2 1 16
2 -> 3 1 32
2 -> 4 1 32
3 -> 1 1 16
3 -> 2 1 32
3 -> 3 1 64
3 -> 4 1 64
4 -> 1 1 16
4 -> 2 1 32
4 -> 3 1 64
4 -> 4 1 64

Einzel-Wahrscheinlichkeiten: P("1")= 1 2 ; P("2")= 1 4 ; P("3")= 1 8 ; P("4")= 1 8 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '1'-'2' (P= 1 8 )
  • '2'-'1' (P= 1 8 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 8 + 1 8 = 1 4