nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

ohne Zurücklegen (einfach)

Beispiel:

In einem Kartenstapel sind 4 Asse, 4 Könige und 2 Damen. Es werden 2 Karten gleichzeitig vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit "1 mal Ass und 1 mal König"?

Lösung einblenden
EreignisP
Ass -> Ass 2 15
Ass -> König 8 45
Ass -> Dame 4 45
König -> Ass 8 45
König -> König 2 15
König -> Dame 4 45
Dame -> Ass 4 45
Dame -> König 4 45
Dame -> Dame 1 45

Einzel-Wahrscheinlichkeiten: P("Ass")= 2 5 ; P("König")= 2 5 ; P("Dame")= 1 5 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Ass'-'König' (P= 8 45 )
'König'-'Ass' (P= 8 45 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

8 45 + 8 45 = 16 45


Ziehen ohne Zurücklegen

Beispiel:

In einem Lostopf sind 10 Kugeln mit einer Eins beschriftet, 9 Kugeln mit einer Zwei, 7 mit Drei und 4 mit einer Vier. Es werden zwei Kugeln gleichzeitig gezogen. Wie groß ist die Wahrscheinlichkiet dass die beiden gezogenen Zahlen zusammen 3 ergeben?

Lösung einblenden
EreignisP
1 -> 1 3 29
1 -> 2 3 29
1 -> 3 7 87
1 -> 4 4 87
2 -> 1 3 29
2 -> 2 12 145
2 -> 3 21 290
2 -> 4 6 145
3 -> 1 7 87
3 -> 2 21 290
3 -> 3 7 145
3 -> 4 14 435
4 -> 1 4 87
4 -> 2 6 145
4 -> 3 14 435
4 -> 4 2 145

Einzel-Wahrscheinlichkeiten: P("1")= 1 3 ; P("2")= 3 10 ; P("3")= 7 30 ; P("4")= 2 15 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'1'-'2' (P= 3 29 )
'2'-'1' (P= 3 29 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

3 29 + 3 29 = 6 29


nur Summen

Beispiel:

In einem Stapel sind 4 Karten vom Wert 7, 2 Karten vom Wert 8 und 4 9er. Man zieht 2 Karten aus dem Stapel. Wie groß ist die Wahrscheinlichkeit, dass die Summe der beiden Karten gerade 15 ist?

Lösung einblenden
EreignisP
7 -> 7 2 15
7 -> 8 4 45
7 -> 9 8 45
8 -> 7 4 45
8 -> 8 1 45
8 -> 9 4 45
9 -> 7 8 45
9 -> 8 4 45
9 -> 9 2 15

Einzel-Wahrscheinlichkeiten: P("7")= 2 5 ; P("8")= 1 5 ; P("9")= 2 5 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'7'-'8' (P= 4 45 )
'8'-'7' (P= 4 45 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

4 45 + 4 45 = 8 45


Ziehen bis erstmals x kommt

Beispiel:

Werder Bremen hat mal wieder das Halbfinale des DFB-Pokals erreicht. Wie hoch ist die Wahrscheinlichkeit, dass bei der Auslosung Werder an 4. Stelle gezogen wird?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 3 4 2 3 1 2 1
= 1 2 1 1 2 1
= 1 4

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Ziehen mit Zurücklegen

Beispiel:

Beim Roulette gibt es 18 rote, 18 scharze und ein grünes Feld (für die Null). Es wird zwei mal eine Kugel im Roulette gespielt. Wie groß ist die Wahrscheinlichkeit für "genau 2 mal rot"?

Lösung einblenden

Da ja ausschließlich nach 'rot' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'rot' und 'nicht rot'

Einzel-Wahrscheinlichkeiten :"rot": 18 37 ; "nicht rot": 19 37 ;

EreignisP
rot -> rot 324 1369
rot -> nicht rot 342 1369
nicht rot -> rot 342 1369
nicht rot -> nicht rot 361 1369

Einzel-Wahrscheinlichkeiten: P("rot")= 18 37 ; P("nicht rot")= 19 37 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'rot'-'rot' (P= 324 1369 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

324 1369 = 324 1369