nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

ohne Zurücklegen (einfach)

Beispiel:

In einem Kartenstapel sind verschiedene Karten, 2 vom Typ Kreuz, 4 vom Typ Herz, 8 vom Typ Pik und 6 vom Typ Karo. Es werden 2 Karten gleichzeitig vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit, 2 Karten der gleichen Farbe zu ziehen? (Unter Farben versteht man beim Kartenspiel Herz, Kreuz, Pig und Karo - nicht rot und schwarz)

Lösung einblenden
EreignisP
Kreuz -> Kreuz 1 190
Kreuz -> Herz 2 95
Kreuz -> Pik 4 95
Kreuz -> Karo 3 95
Herz -> Kreuz 2 95
Herz -> Herz 3 95
Herz -> Pik 8 95
Herz -> Karo 6 95
Pik -> Kreuz 4 95
Pik -> Herz 8 95
Pik -> Pik 14 95
Pik -> Karo 12 95
Karo -> Kreuz 3 95
Karo -> Herz 6 95
Karo -> Pik 12 95
Karo -> Karo 3 38

Einzel-Wahrscheinlichkeiten: P("Kreuz")= 1 10 ; P("Herz")= 1 5 ; P("Pik")= 2 5 ; P("Karo")= 3 10 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Kreuz'-'Kreuz' (P= 1 190 )
'Herz'-'Herz' (P= 3 95 )
'Pik'-'Pik' (P= 14 95 )
'Karo'-'Karo' (P= 3 38 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 190 + 3 95 + 14 95 + 3 38 = 5 19


Ziehen ohne Zurücklegen

Beispiel:

In einer 8-ten Klasse gibt es 7 Schüler mit NWT-Profil, 4 Schüler mit sprachlichem Profil, 3 Schüler mit Musik-Profil und 6 Schüler mit IMP-Profil. Der NWT-Lehrer hört, dass heute 2 Schüler fehlen würden. Wie groß ist die Wahrscheinlichkeit dass genau 2 Schüler mit NWT-Profil fehlen?

Lösung einblenden

Da ja ausschließlich nach 'NWT' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'NWT' und 'nicht NWT'

Einzel-Wahrscheinlichkeiten :"NWT": 7 20 ; "nicht NWT": 13 20 ;

EreignisP
NWT -> NWT 21 190
NWT -> nicht NWT 91 380
nicht NWT -> NWT 91 380
nicht NWT -> nicht NWT 39 95

Einzel-Wahrscheinlichkeiten: P("NWT")= 7 20 ; P("nicht NWT")= 13 20 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'NWT'-'NWT' (P= 21 190 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

21 190 = 21 190


nur Summen

Beispiel:

In einer Urne sind 7 Kugeln, die mit einer 1 beschriftet sind, 3 2er und 5 Kugeln mit einer 3. Es wird zwei mal mit Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen gerade 6 ist?

Lösung einblenden

Da ja ausschließlich nach '3' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '3' und 'nicht 3'

Einzel-Wahrscheinlichkeiten :"3": 1 3 ; "nicht 3": 2 3 ;

EreignisP
3 -> 3 1 9
3 -> nicht 3 2 9
nicht 3 -> 3 2 9
nicht 3 -> nicht 3 4 9

Einzel-Wahrscheinlichkeiten: P("3")= 1 3 ; P("nicht 3")= 2 3 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '3'-'3' (P= 1 9 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 9 = 1 9


Ziehen bis erstmals x kommt

Beispiel:

In einer Urne sind 10 rote und 2 blaue Kugeln. Es soll (ohne Zurücklegen) solange gezogen werden, bis erstmals eine rote Kugel erscheint. Wie hoch ist die Wahrscheinlichkeit die rote Kugel im 2. Versuch zu ziehen?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 2 12 10 11
= 2 6 5 11
= 5 33

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

ohne Zurücklegen (einfach)

Beispiel:

In einer Urne sind 10 rote und 5 blaue Kugeln. Es wird 2 mal ohne Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "genau 2 mal blau"?

Lösung einblenden
EreignisP
rot -> rot 3 7
rot -> blau 5 21
blau -> rot 5 21
blau -> blau 2 21

Einzel-Wahrscheinlichkeiten: P("rot")= 2 3 ; P("blau")= 1 3 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'blau'-'blau' (P= 2 21 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

2 21 = 2 21