nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Kenngrößen bestimmen

Beispiel:

Bestimme jeweils das Minimum, das Maximum, die Spannweite, den Mittelwert und den Zentralwert von:

15 km; 14 km; 14 km; 7 km; 12 km; 11 km; 18 km

Lösung einblenden

Minimum und Maximum

Wenn man sich alle Werte durchschaut, erkennt man schnell, dass der kleinst Wert, also das Minimum 7 km und der größte Wert, also das Maximum 18 km ist.

Spannweite

Die Spannweite ist einfach die Differenz zwischen dem Maximum und dem Minimum, also 18 km - 7 km = 11 km.

Mittelwert

Um den Mittelwert zu ermitteln, müssen wir zuerst alle Werte addieren:

15 km + 14 km + 14 km + 7 km + 12 km + 11 km + 18 km = 91 km

... und dann diese Summe durch die Anzahl der Werte, also hier 7, teilen:

Mittelwert m = 91 7 km = 13 km

Zentralwert

Zuerst sortieren wir die Datenliste:

  1. -> 7
  2. -> 11
  3. -> 12
  4. -> 14
  5. -> 14
  6. -> 15
  7. -> 18

Da die Datenmenge eine ungerade Anzahl hat, müssen wir für den Zentralwert einfach den mittleren (hier also den 4-ten) Wert der Liste nehmen, also 14 km.

Zentralwert und Quartile (geordnet)

Beispiel:

Bestimme von der folgenden Datenmenge den Zentralwert, das untere und das obere Quartil sowie den Quartilabstand.

  • 7
  • 77
  • 183
  • 216
  • 248
  • 309
  • 319
  • 395
  • 486
  • 729

Lösung einblenden

Da die Datenliste ja bereits sortiert ist, können wir gleich die Werte suchen:

  1. -> 7
  2. -> 77
  3. -> 183
  4. -> 216
  5. -> 248
  6. -> 309
  7. -> 319
  8. -> 395
  9. -> 486
  10. -> 729

Da die Datenmenge eine gerade Anzahl hat, müssen wir für den Zentralwert den Mittelwert zwischen größtem Wert der unteren Hälfte (also 248) und dem kleinstem Wert der oberen Hälfte (hier 309) berechnen.
also (248+309):2 = 278,5

Das untere Quartil ist der Wert, der das kleinste Viertel vom zweit-kleinsten Viertel trennt. Da die Liste ja 10 Werte hat, schauen wir die Werte nach einem Viertel von 10, also bei 10 : 4 = 2,5 an.
Da es ja keinen 2,5. Wert gibt, nimmt man als unteres Quartil immer den nächst größeren Wert, also den 3. Wert der Liste. Das untere Quartil ist somit 183.
Das obere Quartil ist der Wert, der das größte Viertel vom zweit-größten Viertel trennt. Da die Liste ja 10 Werte hat, schauen wir die Werte nach Dreiviertel von 10, also bei 10 ⋅ 3 4 = 7,5 an.
Da es ja auch keinen 7,5. Wert gibt, nimmt man als oberes Quartil immer den nächst größeren Wert, also den 8. Wert der Liste. Das obere Quartil ist somit 395.
Den Quartilabstand berechnen wir nun einfach als die Differenz zwischen dem oberen und dem unteren Quartil, also hier Q = 395 - 183 = 212

Zentralwert und Quartile

Beispiel:

Bestimme von der folgenden Datenmenge den Zentralwert, das untere und das obere Quartil sowie den Quartilabstand.

  • 26
  • 84
  • 43
  • 47
  • 91
  • 32
  • 83
  • 39
  • 89

Lösung einblenden

Zuerst sortieren wir die Datenliste:

  1. -> 26
  2. -> 32
  3. -> 39
  4. -> 43
  5. -> 47
  6. -> 83
  7. -> 84
  8. -> 89
  9. -> 91

Da die Datenmenge eine ungerade Anzahl hat, müssen wir für den Zentralwert einfach den mittleren (hier also den 5.) Wert der Liste nehmen, also 47.

Das untere Quartil ist der Wert, der das kleinste Viertel vom zweit-kleinsten Viertel trennt. Da die Liste ja 9 Werte hat, schauen wir die Werte nach einem Viertel von 9, also bei 9 : 4 = 2,25 an.
Da es ja keinen 2,25. Wert gibt, nimmt man als unteres Quartil immer den nächst größeren Wert, also den 3. Wert der Liste. Das untere Quartil ist somit 39.
Das obere Quartil ist der Wert, der das größte Viertel vom zweit-größten Viertel trennt. Da die Liste ja 9 Werte hat, schauen wir die Werte nach Dreiviertel von 9, also bei 9 ⋅ 3 4 = 6,75 an.
Da es ja auch keinen 6,75. Wert gibt, nimmt man als oberes Quartil immer den nächst größeren Wert, also den 7. Wert der Liste. Das obere Quartil ist somit 84.
Den Quartilabstand berechnen wir nun einfach als die Differenz zwischen dem oberen und dem unteren Quartil, also hier Q = 84 - 39 = 45

Werte aus Boxplot ablesen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Lese am abgebildeten Boxplot das Minimum, das Maximun, den Zentralwert, das untere und das obere Quartil ab.

Lösung einblenden

Das Minimum und Maximum lässt sich ja recht einfach an den Antennen des Boxplots (äußerste senkrechte Striche) anlesen:
Minimum: 9
Maximum: 46

Den Zentralwert erkennt man an dem senkrechten Strich innerhalb der Box (also dem Rechtecks zwischen den Antennen):
Zentralwert: 21

Das untere Quartil kann man an der linken Begrenzung der Box, das obere Quartil an der rechten Begrenzug der Box ablesen:
Unteres Quartil: 19
Oberes Quartil: 38