Klasse 5
Klasse 6
Klasse 7
Klasse 8
Klasse 9
Klasse 10
Fit für die Oberstufe
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
prozentale Änderung bestimmen
Beispiel:
Gib für die exponentielle Wachstumsfunktion f mit die prozentuale Änderung pro Zeiteinheit an. Handelt es sich um prozentuale Zunahme oder um prozentuale Abnahme?
f(0) =
f(1) = ⋅
f(2) = ⋅ ⋅
f(3) = ⋅ ⋅ ⋅
f(4) = ⋅ ⋅ ⋅ ⋅
...
Mit jeder Zeiteinheit wird also der bisherige Funktionswert mit multipliziert. Da < 1 ist, werden die Funktionswerte mit jedem Zeitschritt kleiner, und zwar auf das -fache (oder auf das -fache), also auf % des vorherigen Funktionswertes.
Die prozentuale Abnahme beträgt also 100% - 92% = 8 %
c und a gegeben
Beispiel:
Eine Bakterienkultur vermehrt sich stündlich um 2%. Zu Beobachtungsbeginn umfasste die Kultur 29 Milionen Bakterien.a) Wie viel Millionen Bakterien hat die Bakterienkultur nach 13 Stunden? b) Wann umfasst die Kultur 39 Millionen Bakterien?
Da es sich hier um exponentielles Wachstum handelt, muss der Funktionsterm von der Form sein.
Den Anfangswert f(0)=c=29 kann man direkt aus der Aufgabe heraus lesen.
Die prozentuale Zunahme um 2% bedeutet ja, dass mit jedem Zeitschritt zum alten Bestand noch 2% dazukommen,
also Bneu
= B + ⋅B = (1 + ) ⋅ B = 1,02 ⋅ B. Somit ist das a=1,02.
Damit ergibt sich der Funktionsterm .
zu a)
Gesucht ist der Bestand zum Zeitpunkt t=13 Stunden, also f(13):
f(13) = ≈ 37,515.
zu b)
Hier wird gefragt, wann der Bestand = 39 Millionen Bakterien ist, also f(t) = 39:
| = | |: | ||
| = | |lg(⋅) | ||
| = | |||
| = | |: | ||
| = |
| = |
Nach ca. 14,961 Stunden ist also der Bestand = 39 Millionen Bakterien.
c und ein Funktionswert gegeben
Beispiel:
Ein Konto wird mit 8000€ eröffnet und wird mit einem festen Zinssatz verzinst. Nach 4 Jahren beträgt der Kontostand bereits 8659,46€. a) Wie hoch ist der Kontostand 9 Jahre nach der Kontoeröffnung? b) Wann ist der Kontostand auf 10000€ angewachsen?
Da es sich hier um exponentielles Wachstum handelt, muss der Funktionsterm von der Form sein.
Den Anfangswert f(0)=c=8000 kann man direkt aus der Aufgabe heraus lesen.
Somit wissen wir bereits, dass der Funktionsterm mit einem Wachstumsfaktor a sein muss.
Der Wachstumsfaktor a ist zwar nicht gegeben, wir wissen aber, dass nach 4 Jahre der Bestand 8659.46 € ist, also f(4) = 8659.46. Dies setzen wir in unsern bisherigen Funktionterm ein:
| = | |: | ||
| = | | | ||
| a1 | = |
|
=
|
| a2 | = |
|
=
|
Da der Wachstumsfaktor a immer positiv sein muss, ist a=
Damit ergibt sich der Funktionsterm
zu a)
Gesucht ist der Kontostand zum Zeitpunkt t=9 Jahre, also f(9):
f(9) =
zu b)
Hier wird gefragt, wann der Kontostand = 10000 € ist, also f(t) = 10000:
|
|
= | |: |
|
|
|
= | |lg(⋅) | |
|
|
= |
|
|
|
|
= |
|
|:
|
|
|
= |
|
|
|
= |
|
Nach ca. 11,268 Jahre ist also der Kontostand = 10000 €.
a und ein Funktionswert gegeben
Beispiel:
Eine Bakterienkultur vermehrt sich stündlich um 2%. 3 Stunden nach Beobachtungsbeginn sind es bereits 11,67Millionen Bakterien.a) Wie viel Millionen Bakterien hat die Bakterienkultur nach 8 Stunden? b) Wann umfasst die Kultur 14,5 Millionen Bakterien?
Da es sich hier um exponentielles Wachstum handelt, muss der Funktionsterm von der Form
Die prozentuale Zunahme um 2% bedeutet ja, dass mit jedem Zeitschritt zum alten Bestand noch 2% dazukommen,
also Bneu
= B +
Somit wissen wir bereits, dass der Funktionsterm
Wir kennen zwar den Anfangswert f(0)=c nicht, wissen aber, dass nach 3 Stunden der Bestand 11.67 Millionen Bakterien ist,
also f(3) = 11.67. Dies setzen wir in unsern bisherigen Funktionterm
c ⋅ 1.023 = 11.67
c ⋅ 1.06121 = 11.67 | : 1.06121
c = 11
Damit ergibt sich der Funktionsterm
zu a)
Gesucht ist der Bestand zum Zeitpunkt t=8 Stunden, also f(8):
f(8) =
zu b)
Hier wird gefragt, wann der Bestand = 14.5 Millionen Bakterien ist, also f(t) = 14.5:
|
|
= | |: |
|
|
|
= | |lg(⋅) | |
|
|
= |
|
|
|
|
= |
|
|:
|
|
|
= |
|
|
|
= |
|
Nach ca. 13,951 Stunden ist also der Bestand = 14.5 Millionen Bakterien.
Halbwerts-/Verdoppl.-Zeit bestimmen
Beispiel:
Gegeben ist der Exponentialfunktion f mit
Bestimme die Halbwertszeit.
Den Wachstumsfaktor a kann direkt aus dem Funktionterm
Mit der Formel für die Halbwertszeit gilt: TH = loga(
Also TH = log0.936(
Halbwerts-/Verdoppl.-Zeit (Anwendung)
Beispiel:
In einem Land hat man festgestellt, dass die Anzahl einer bestimmten Insektenart jedes Jahr um 13% abnimmt. Wann hat sich die Anzahl dieser Insektenart halbiert?
Die prozentuale Abnahme um 13% bedeutet ja, dass mit jedem Zeitschritt vom alten Bestand noch 13% weggehen,
also Bneu
= B -
Somit gilt für den Wachstumsfaktor a (in
Mit der Formel für die Halbwertszeit gilt: TH = loga(
Also TH = log0.87(
Exponentialterm mit Halbwertszeit best.
Beispiel:
In einem Land halbiert sich die Anzahl einer bestimmten Insektenart alle 7,3 Jahre. Zu Beginn der Beobachtung wurden 11 Millionen dieser Insekten geschätzt.Bestimme den Funktionsterm der Exponentialfunktion, die die Anzahl in Milionen der Insekten in Millionen nach t Jahren angibt.
Von der allgemeinen Exponentialfunktion
Um nun noch den Wachstumsfaktor a zu bestimmen, nutzen wir die Formel für die Halbwertszeit: TH = loga(
Also 7.3 = loga(
|
|
= | |
|
|
|
|
= |
|
Das gesuchte a ist somit
