- Klasse 5-6
- Klasse 7-8
- Klasse 9-10
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Zylinder V und O
Beispiel:
Ein Zylinder hat den Radius 21,5 m und die Höhe h = 6 m. Bestimme sein Volumen und seine Oberfläche.
Wir wenden die Kreisformel für die Bestimmung des Flächeninhalts der Grundfläche an:
G = π ⋅ r2
G = π ⋅ 21.52 m² ≈ 1452,2 m²
Für das Volumen müssen wir nun noch G = 1452.2 m² mit der Höhe h = 6 m multiplizieren:
V = G ⋅ h ≈ 1452.2 m² ⋅ 6 m ≈ 8713,21 m³
Für die Oberfläche brauchen wir zwei mal die Grundfläche G für die obere und untere Seite (wenn der Zylinder senkrecht steht) und den Mantel, der die Form eines Rechtecks hat, bei dem eine Seite die Höhe h = 6 m und die andere Seite der Umfang der kreisförmigen Grundfläche ist, also U = 2π⋅r = 2π⋅21.5 m ≈ 135.09 m
Somit gilt für die Oberfläche:
O = 2⋅G + M = 2⋅G + h⋅U
≈ 2⋅ 1452.2 m² + 6 m ⋅ 2π ⋅ 21.5 m
≈ 2904.4 m² + 6 m ⋅ 135.09 m
≈ 2904.4 m² + 810.53 m²
≈
3714,93 m²
Zylinder rückwärts (einfach)
Beispiel:
Ein Zylinder hat das Volumen V = 27488.9 m³ = und die Höhe h = 3.5 m. Bestimme den Oberflächeninhalt O dieses Zylinders.
Um den gesuchten Oberflächeninhalt O berechnen zu können, benötigen wir den Radius r und die Höhe h. Wir müssen also zuerst noch den Radius r bestimmen. Hierfür nutzen wir das gegebene Volumen V.
Wir schreiben also einfach die Formel für das gegebene Volumen V auf und setzen alle gegebenen Größen ein.
V = G ⋅ h = π ⋅ r2 ⋅ h, also
π ⋅ r2 ⋅ h = V
alle gegebenen Größen eingesetzt:
= 27488.9
Jetzt verrechnen wir die Werte und lösen nach r auf:
=
= | |: | ||
= | | | ||
r1 | = |
|
≈
|
r2 | = |
|
≈
|
Wir erhalten also r = 50 und können nun damit den gesuchten Oberflächeninhalt O berechnen.
Wir wenden die Kreisformel für die Bestimmung des Flächeninhalts der Grundfläche an:
G = π ⋅ r2
G = π ⋅ 502 m² ≈ 7853,98 m²
Für die Oberfläche brauchen wir zwei mal die Grundfläche G für die obere und untere Seite (wenn der Zylinder senkrecht steht) und den Mantel, der die Form eines Rechtecks hat, bei dem eine Seite die Höhe h = 3.5 m und die andere Seite der Umfang der kreisförmigen Grundfläche ist, also U = 2π⋅r = 2π⋅50 m ≈ 314.16 m
Somit gilt für die Oberfläche:
O = 2⋅G + M = 2⋅G + h⋅U
≈ 2⋅ 7853.98 m² + 3.5 m ⋅ 2π ⋅ 50 m
≈ 15707.96 m² + 3.5 m ⋅ 314.16 m
≈ 15707.96 m² + 1099.56 m²
≈
16807,52 m²
Zylinder rückw. (alle Möglichk.)
Beispiel:
Ein Zylinder hat den Oberflächeninhalt O = 103.7 cm² = und die Höhe h = 2.5 cm. Bestimme das Volumen V dieses Zylinders.
Um das gesuchte Volumen V berechnen zu können, benötigen wir den Radius r und die Höhe h. Wir müssen also zuerst noch den Radius r bestimmen. Hierfür nutzen wir den gegebenen Oberflächeninhalt O.
Wir schreiben also einfach die Formel für den gegebenen Oberflächeninhalt O auf und setzen alle gegebenen Größen ein.
O = 2G + M = 2π ⋅ r2 + 2π ⋅ r ⋅ h, also
2 ⋅ π ⋅ r2 + 2π ⋅ r ⋅ h = O
alle gegebenen Größen eingesetzt:
Wir teilen auf beiden Seiten durch 2π
Jetzt verrechnen wir die Werte und lösen nach r auf:
|
= |
|
|
|
eingesetzt in die Mitternachtsformel (a-b-c-Formel):
r1,2 =
r1,2 =
r1,2 =
r1 =
r2 =
Wir erhalten also r = 3 und können nun damit das gesuchte Volumen V berechnen.
Wir wenden die Kreisformel für die Bestimmung des Flächeninhalts der Grundfläche an:
G = π ⋅ r2
G = π ⋅ 32 cm² ≈ 28,27 cm²
Für das Volumen müssen wir nun noch G = 28.27 cm² mit der Höhe h = 2.5 cm multiplizieren:
V = G ⋅ h ≈ 28.27 cm² ⋅ 2.5 cm ≈ 70,69 cm³
Zylinder Anwendungen
Beispiel:
Eine Firma stellt Kanalelemente aus Beton her. Diese haben die Form eines hohlen Zylinders und sind immer 2m lang. Die Querschnittsfläche des Kanals beträgt 5,391m² und wird von einer 14 cm dicken Betonwand ummantelt. Wie schwer wird das Kanalelement, wenn 1m³ Beton 2400 kg wiegt?
Zuerst versuchen wir den Radius aus dem gegebenen Flächeninhalt der inneren Querschnittsfläche Ain = 5,391 zu berechen.
Ain = π rin2
5,391 m² = π rin2 | :π
1,716 m² = rin2
1,31 m ≈ rin
Der Radius des inneren Kreises ist also rin = 1,31 m.
Die Differenz der Radien (vom äußeren und inneren Kreis) beträgt 0,14 m, also beträgt der Radius des äußeren Kreises rout = 1,45 m.
Die gesamte Kreisfläche hat den Flächeninhalt Aout = π ⋅ r²
= π ⋅ 1,452 ≈ 6,605 m2
Da der innere Kreis ja den Flächeninhalt Ain = 5,391 m2 hat, gilt für den Flächeninhalt des (in der Skizze blau eingefärbten)
Kreisrings
G = Aout - Ain = 6,605 m2 - 5,391 m2 = 1,214 m2
Damit können wir das Volumen des Hohlzylinders berechnen. Dazu multiplizieren wir einfach den Flächeninhalt des Kreisrings mit der Höhe des Hohlzylinders h = 2 m:
V = 1,214 m2 ⋅ 2 m = 2,428 m3
Die gesuchte Masse erhalten wir nun noch durch Multiplizieren mit der Dichte 2400 kg/m3:
m = 2,428 m3 ⋅ 2400 kg/m3 = 5827,2 kg.