Klasse 5
Klasse 6
Klasse 7
Klasse 8
Klasse 9
Klasse 10
Fit für die Oberstufe
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Wahrscheinlichkeit eines Ergebnisses
Beispiel:
(Alle Sektoren sind gleich groß)
In einem großen Paket sind viele kleine Kisten drin - siehe Abbildung rechts. Es wird ein Kiste zufällig aus dem großen Paket gezogen. Bestimme die Wahrscheinlichkeit, dass dabei die (orange) eingefärbte Kiste gezogen wird.
Die Wahrscheinlichkeit dieses Ergebnisses lässt sich berechen als P(Ergebnis) =
Mit Abzählen erkennt man, dass es insgesamt 12 Möglichkeiten gibt.
Hieraus ergibt sich somit: P(eingefärbte Kiste) =
Als Dezimalzahl ergibt das: P(eingefärbte Kiste) = = 1 : 12 ≈ 0.083
Als Prozentzahl ergibt das: P(eingefärbte Kiste) ≈ 0.083 = 8.3%
Wahrscheinlichkeit eines Ereignisses
Beispiel:
In einem Behälter sind 21 Kugeln, die mit Zahlen 1 bis 21 beschriftet sind. Es wird eine Kugel zufällig ausgewählt. Bestimme die Wahrscheinlichkeit, dass diese Zahl kleiner als 13 ist.
Die Wahrscheinlichkeit dieses Ergebnisses lässt sich berechen als P(Ergebnis) =
Wenn wir nun alle Zahlen zwischen 1 und 21, die kleiner als 13 sind, suchern, finden wir eben die Zahlen von 1 bis
12,
also insgesamt 12 günstige Möglichkeiten.
Hieraus ergibt sich somit: P(kleiner als 13) = =
Als Dezimalzahl ergibt das: P(kleiner als 13) = = 4 : 7 ≈ 0.571
Als Prozentzahl ergibt das: P(kleiner als 13) ≈ 0.571 = 57.1%
Zufallsexperiment (einstufig)
Beispiel:
(Alle Sektoren sind Vielfache
von Achtels-Kreisen)
(Denk daran, den Bruch vollständig zu kürzen!)
Wir können am Glücksrad entweder die Winkelweite abschätzen und diese dann durch 360° teilen oder direkt den Winkel-Anteil (als Vielfache von Halb-, Viertel- oder Achtels-Kreisen) ablesen:
blau: Man erkennt einen Halbkreis => p=
grün: Man erkennt einen Kreisausschnitt, der so groß ist wie ein Viertelskreis zusammen mit einem Achtelskreis => p=
gelb: Man erkennt einen halben Viertelkreis, also einen Achtelskreis => p=