nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

mit Zurücklegen (einfach)

Beispiel:

Ein Würfel wird 2 mal geworfen. Wie groß ist die Wahrscheinlichkeit, genau 2 mal eine durch 3 teilbare Zahl zu würfeln?

Lösung einblenden
EreignisP
3er-Zahl -> 3er-Zahl 1 9
3er-Zahl -> nicht 3er 2 9
nicht 3er -> 3er-Zahl 2 9
nicht 3er -> nicht 3er 4 9

Einzel-Wahrscheinlichkeiten: P("3er-Zahl")= 1 3 ; P("nicht 3er")= 2 3 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '3er-Zahl'-'3er-Zahl' (P= 1 9 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 9 = 1 9


Ziehen mit Zurücklegen

Beispiel:

In einer Urne sind 7 rote, 7 gelbe, 8 blaue und 3 schwarze Kugeln. Es wird zwei mal mit Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "höchstens 1 mal rot"?

Lösung einblenden

Da ja ausschließlich nach 'rot' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'rot' und 'nicht rot'

Einzel-Wahrscheinlichkeiten :"rot": 7 25 ; "nicht rot": 18 25 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal rot' alle Möglichkeiten enthalten, außer eben 2 mal 'rot'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(2 mal 'rot')=1- 49 625 = 576 625

EreignisP
rot -> rot 49 625
rot -> nicht rot 126 625
nicht rot -> rot 126 625
nicht rot -> nicht rot 324 625

Einzel-Wahrscheinlichkeiten: P("rot")= 7 25 ; P("nicht rot")= 18 25 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'rot'-'nicht rot' (P= 126 625 )
  • 'nicht rot'-'rot' (P= 126 625 )
  • 'nicht rot'-'nicht rot' (P= 324 625 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

126 625 + 126 625 + 324 625 = 576 625