nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

mit Zurücklegen (einfach)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Das nebenstehende Glücksrad wird 2 mal gedreht. Wie groß ist die Wahrscheinlichkeit für "1 mal rot und 1 mal blau"?

Lösung einblenden
EreignisP
rot -> rot 1 4
rot -> blau 1 4
blau -> rot 1 4
blau -> blau 1 4

Einzel-Wahrscheinlichkeiten: P("rot")= 1 2 ; P("blau")= 1 2 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'rot'-'blau' (P= 1 4 )
  • 'blau'-'rot' (P= 1 4 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 4 + 1 4 = 1 2


Ziehen mit Zurücklegen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Ein Glücksrad wie in der Abbildung rechts wird zwei mal gedreht. Wie hoch ist die Wahrscheinlichkeit für "mindestens 1 mal B"?

Lösung einblenden

Da ja ausschließlich nach 'B' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'B' und 'nicht B'

Einzel-Wahrscheinlichkeiten :"B": 1 4 ; "nicht B": 3 4 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal B' alle Möglichkeiten enthalten, außer eben kein 'B' bzw. 0 mal 'B'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(0 mal 'B')=1- 9 16 = 7 16

EreignisP
B -> B 1 16
B -> nicht B 3 16
nicht B -> B 3 16
nicht B -> nicht B 9 16

Einzel-Wahrscheinlichkeiten: P("B")= 1 4 ; P("nicht B")= 3 4 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'B'-'nicht B' (P= 3 16 )
  • 'nicht B'-'B' (P= 3 16 )
  • 'B'-'B' (P= 1 16 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

3 16 + 3 16 + 1 16 = 7 16