nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

mit Zurücklegen (einfach)

Beispiel:

In einer Urne sind 6 rote, 7 gelbe, 5 blaue und 6 schwarze Kugeln. Es wird zwei mal mit Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "1 mal blau und 1 mal gelb"?

Lösung einblenden
EreignisP
rot -> rot 1 16
rot -> blau 5 96
rot -> gelb 7 96
rot -> schwarz 1 16
blau -> rot 5 96
blau -> blau 25 576
blau -> gelb 35 576
blau -> schwarz 5 96
gelb -> rot 7 96
gelb -> blau 35 576
gelb -> gelb 49 576
gelb -> schwarz 7 96
schwarz -> rot 1 16
schwarz -> blau 5 96
schwarz -> gelb 7 96
schwarz -> schwarz 1 16

Einzel-Wahrscheinlichkeiten: P("rot")= 1 4 ; P("blau")= 5 24 ; P("gelb")= 7 24 ; P("schwarz")= 1 4 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'blau'-'gelb' (P= 35 576 )
  • 'gelb'-'blau' (P= 35 576 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

35 576 + 35 576 = 35 288


Ziehen mit Zurücklegen

Beispiel:

In einer Urne sind 8 rote und 4 blaue Kugeln. Es wird 3 mal mit Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "mindestens 2 mal rot"?

Lösung einblenden

Da ja ausschließlich nach 'rot' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'rot' und 'nicht rot'

Einzel-Wahrscheinlichkeiten :"rot": 2 3 ; "nicht rot": 1 3 ;

EreignisP
rot -> rot -> rot 8 27
rot -> rot -> nicht rot 4 27
rot -> nicht rot -> rot 4 27
rot -> nicht rot -> nicht rot 2 27
nicht rot -> rot -> rot 4 27
nicht rot -> rot -> nicht rot 2 27
nicht rot -> nicht rot -> rot 2 27
nicht rot -> nicht rot -> nicht rot 1 27

Einzel-Wahrscheinlichkeiten: P("rot")= 2 3 ; P("nicht rot")= 1 3 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'rot'-'rot'-'nicht rot' (P= 4 27 )
  • 'rot'-'nicht rot'-'rot' (P= 4 27 )
  • 'nicht rot'-'rot'-'rot' (P= 4 27 )
  • 'rot'-'rot'-'rot' (P= 8 27 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

4 27 + 4 27 + 4 27 + 8 27 = 20 27