nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

mit Zurücklegen (einfach)

Beispiel:

Eine faire Münze (d.h. die Wahrscheinlichkeit für Zahl und Wappen ist gleich groß) wird drei mal geworfen. Wie groß ist die Wahrscheinlichkeit für "mindestens 1 mal Zahl"?

Lösung einblenden

Da ja ausschließlich nach 'Zahl' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Zahl' und 'nicht Zahl'

Einzel-Wahrscheinlichkeiten :"Zahl": 1 2 ; "nicht Zahl": 1 2 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal Zahl' alle Möglichkeiten enthalten, außer eben kein 'Zahl' bzw. 0 mal 'Zahl'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(0 mal 'Zahl')=1- 1 8 = 7 8

EreignisP
Zahl -> Zahl -> Zahl 1 8
Zahl -> Zahl -> nicht Zahl 1 8
Zahl -> nicht Zahl -> Zahl 1 8
Zahl -> nicht Zahl -> nicht Zahl 1 8
nicht Zahl -> Zahl -> Zahl 1 8
nicht Zahl -> Zahl -> nicht Zahl 1 8
nicht Zahl -> nicht Zahl -> Zahl 1 8
nicht Zahl -> nicht Zahl -> nicht Zahl 1 8

Einzel-Wahrscheinlichkeiten: P("Zahl")= 1 2 ; P("nicht Zahl")= 1 2 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'Zahl'-'nicht Zahl'-'nicht Zahl' (P= 1 8 )
  • 'nicht Zahl'-'Zahl'-'nicht Zahl' (P= 1 8 )
  • 'nicht Zahl'-'nicht Zahl'-'Zahl' (P= 1 8 )
  • 'Zahl'-'Zahl'-'nicht Zahl' (P= 1 8 )
  • 'Zahl'-'nicht Zahl'-'Zahl' (P= 1 8 )
  • 'nicht Zahl'-'Zahl'-'Zahl' (P= 1 8 )
  • 'Zahl'-'Zahl'-'Zahl' (P= 1 8 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 8 + 1 8 + 1 8 + 1 8 + 1 8 + 1 8 + 1 8 = 7 8


Ziehen mit Zurücklegen

Beispiel:

Ein Würfel wird 3 mal geworfen. Wie groß ist die Wahrscheinlichkeit, höchstens 2 mal eine durch 3 teilbare Zahl zu würfeln?

Lösung einblenden

Da ja ausschließlich nach 'Teiler' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Teiler' und 'nicht Teiler'

Einzel-Wahrscheinlichkeiten :"Teiler": 1 3 ; "nicht Teiler": 2 3 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal Teiler' alle Möglichkeiten enthalten, außer eben 3 mal 'Teiler'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(3 mal 'Teiler')=1- 1 27 = 26 27

EreignisP
Teiler -> Teiler -> Teiler 1 27
Teiler -> Teiler -> nicht Teiler 2 27
Teiler -> nicht Teiler -> Teiler 2 27
Teiler -> nicht Teiler -> nicht Teiler 4 27
nicht Teiler -> Teiler -> Teiler 2 27
nicht Teiler -> Teiler -> nicht Teiler 4 27
nicht Teiler -> nicht Teiler -> Teiler 4 27
nicht Teiler -> nicht Teiler -> nicht Teiler 8 27

Einzel-Wahrscheinlichkeiten: P("Teiler")= 1 3 ; P("nicht Teiler")= 2 3 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'Teiler'-'Teiler'-'nicht Teiler' (P= 2 27 )
  • 'Teiler'-'nicht Teiler'-'Teiler' (P= 2 27 )
  • 'nicht Teiler'-'Teiler'-'Teiler' (P= 2 27 )
  • 'Teiler'-'nicht Teiler'-'nicht Teiler' (P= 4 27 )
  • 'nicht Teiler'-'Teiler'-'nicht Teiler' (P= 4 27 )
  • 'nicht Teiler'-'nicht Teiler'-'Teiler' (P= 4 27 )
  • 'nicht Teiler'-'nicht Teiler'-'nicht Teiler' (P= 8 27 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

2 27 + 2 27 + 2 27 + 4 27 + 4 27 + 4 27 + 8 27 = 26 27