nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

mit Zurücklegen (einfach)

Beispiel:

Eine faire Münze (d.h. die Wahrscheinlichkeit für Zahl und Wappen ist gleich groß) wird drei mal geworfen. Wie groß ist die Wahrscheinlichkeit für "mindestens 1 mal Zahl"?

Lösung einblenden

Da ja ausschließlich nach 'Zahl' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Zahl' und 'nicht Zahl'

Einzel-Wahrscheinlichkeiten :"Zahl": 1 2 ; "nicht Zahl": 1 2 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal Zahl' alle Möglichkeiten enthalten, außer eben kein 'Zahl' bzw. 0 mal 'Zahl'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(0 mal 'Zahl')=1- 1 8 = 7 8

EreignisP
Zahl -> Zahl -> Zahl 1 8
Zahl -> Zahl -> nicht Zahl 1 8
Zahl -> nicht Zahl -> Zahl 1 8
Zahl -> nicht Zahl -> nicht Zahl 1 8
nicht Zahl -> Zahl -> Zahl 1 8
nicht Zahl -> Zahl -> nicht Zahl 1 8
nicht Zahl -> nicht Zahl -> Zahl 1 8
nicht Zahl -> nicht Zahl -> nicht Zahl 1 8

Einzel-Wahrscheinlichkeiten: P("Zahl")= 1 2 ; P("nicht Zahl")= 1 2 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'Zahl'-'nicht Zahl'-'nicht Zahl' (P= 1 8 )
  • 'nicht Zahl'-'Zahl'-'nicht Zahl' (P= 1 8 )
  • 'nicht Zahl'-'nicht Zahl'-'Zahl' (P= 1 8 )
  • 'Zahl'-'Zahl'-'nicht Zahl' (P= 1 8 )
  • 'Zahl'-'nicht Zahl'-'Zahl' (P= 1 8 )
  • 'nicht Zahl'-'Zahl'-'Zahl' (P= 1 8 )
  • 'Zahl'-'Zahl'-'Zahl' (P= 1 8 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 8 + 1 8 + 1 8 + 1 8 + 1 8 + 1 8 + 1 8 = 7 8


Ziehen mit Zurücklegen

Beispiel:

Ein Würfel wird 3 mal geworfen. Wie groß ist die Wahrscheinlichkeit, genau 1 mal eine Primzahl zu würfeln?

Lösung einblenden
EreignisP
prim -> prim -> prim 1 8
prim -> prim -> nicht prim 1 8
prim -> nicht prim -> prim 1 8
prim -> nicht prim -> nicht prim 1 8
nicht prim -> prim -> prim 1 8
nicht prim -> prim -> nicht prim 1 8
nicht prim -> nicht prim -> prim 1 8
nicht prim -> nicht prim -> nicht prim 1 8

Einzel-Wahrscheinlichkeiten: P("prim")= 1 2 ; P("nicht prim")= 1 2 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'prim'-'nicht prim'-'nicht prim' (P= 1 8 )
  • 'nicht prim'-'prim'-'nicht prim' (P= 1 8 )
  • 'nicht prim'-'nicht prim'-'prim' (P= 1 8 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 8 + 1 8 + 1 8 = 3 8