nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

mit Zurücklegen (einfach)

Beispiel:

Eine faire Münze (d.h. die Wahrscheinlichkeit für Zahl und Wappen ist gleich groß) wird drei mal geworfen. Wie groß ist die Wahrscheinlichkeit für "mindestens 2 mal Wappen"?

Lösung einblenden

Da ja ausschließlich nach 'Wappen' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Wappen' und 'nicht Wappen'

Einzel-Wahrscheinlichkeiten :"Wappen": 1 2 ; "nicht Wappen": 1 2 ;

EreignisP
Wappen -> Wappen -> Wappen 1 8
Wappen -> Wappen -> nicht Wappen 1 8
Wappen -> nicht Wappen -> Wappen 1 8
Wappen -> nicht Wappen -> nicht Wappen 1 8
nicht Wappen -> Wappen -> Wappen 1 8
nicht Wappen -> Wappen -> nicht Wappen 1 8
nicht Wappen -> nicht Wappen -> Wappen 1 8
nicht Wappen -> nicht Wappen -> nicht Wappen 1 8

Einzel-Wahrscheinlichkeiten: P("Wappen")= 1 2 ; P("nicht Wappen")= 1 2 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'Wappen'-'Wappen'-'nicht Wappen' (P= 1 8 )
  • 'Wappen'-'nicht Wappen'-'Wappen' (P= 1 8 )
  • 'nicht Wappen'-'Wappen'-'Wappen' (P= 1 8 )
  • 'Wappen'-'Wappen'-'Wappen' (P= 1 8 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 8 + 1 8 + 1 8 + 1 8 = 1 2


Ziehen mit Zurücklegen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Ein Glücksrad wird zwei mal gedreht. Wie hoch ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen 4 ist?

Lösung einblenden
EreignisP
1 -> 1 1 4
1 -> 2 1 8
1 -> 3 1 16
1 -> 4 1 16
2 -> 1 1 8
2 -> 2 1 16
2 -> 3 1 32
2 -> 4 1 32
3 -> 1 1 16
3 -> 2 1 32
3 -> 3 1 64
3 -> 4 1 64
4 -> 1 1 16
4 -> 2 1 32
4 -> 3 1 64
4 -> 4 1 64

Einzel-Wahrscheinlichkeiten: P("1")= 1 2 ; P("2")= 1 4 ; P("3")= 1 8 ; P("4")= 1 8 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '1'-'3' (P= 1 16 )
  • '3'-'1' (P= 1 16 )
  • '2'-'2' (P= 1 16 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 16 + 1 16 + 1 16 = 3 16