nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

mit Zurücklegen (einfach)

Beispiel:

Ein Würfel wird 2 mal geworfen. Wie groß ist die Wahrscheinlichkeit, genau 2 mal eine durch 3 teilbare Zahl zu würfeln?

Lösung einblenden
EreignisP
3er-Zahl -> 3er-Zahl 1 9
3er-Zahl -> nicht 3er 2 9
nicht 3er -> 3er-Zahl 2 9
nicht 3er -> nicht 3er 4 9

Einzel-Wahrscheinlichkeiten: P("3er-Zahl")= 1 3 ; P("nicht 3er")= 2 3 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '3er-Zahl'-'3er-Zahl' (P= 1 9 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 9 = 1 9


Ziehen mit Zurücklegen

Beispiel:

Beim Roulette kann man auch auf Zahlenbereiche setzen. Z.B. auf die Zahlenbereiche 1-12, 13-24 und 25-36, wobei die grüne 0 zu keinem der Bereiche gehört. Es wird zwei mal eine Kugel im Roulette gespielt. Wie groß ist die Wahrscheinlichkeit für "mindestens 1 mal 13-24"?

Lösung einblenden

Da ja ausschließlich nach '13-24' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '13-24' und 'nicht 13-24'

Einzel-Wahrscheinlichkeiten :"13-24": 12 37 ; "nicht 13-24": 25 37 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal 13-24' alle Möglichkeiten enthalten, außer eben kein '13-24' bzw. 0 mal '13-24'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(0 mal '13-24')=1- 625 1369 = 744 1369

EreignisP
13-24 -> 13-24 144 1369
13-24 -> nicht 13-24 300 1369
nicht 13-24 -> 13-24 300 1369
nicht 13-24 -> nicht 13-24 625 1369

Einzel-Wahrscheinlichkeiten: P("13-24")= 12 37 ; P("nicht 13-24")= 25 37 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '13-24'-'nicht 13-24' (P= 300 1369 )
  • 'nicht 13-24'-'13-24' (P= 300 1369 )
  • '13-24'-'13-24' (P= 144 1369 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

300 1369 + 300 1369 + 144 1369 = 744 1369