nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

mit Zurücklegen (einfach)

Beispiel:

Ein Würfel wird 2 mal geworfen. Wie groß ist die Wahrscheinlichkeit, höchstens 1 mal eine durch 3 teilbare Zahl zu würfeln?

Lösung einblenden

Da ja ausschließlich nach '3er-Zahl' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '3er-Zahl' und 'nicht 3er-Zahl'

Einzel-Wahrscheinlichkeiten :"3er-Zahl": 1 3 ; "nicht 3er-Zahl": 2 3 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal 3er-Zahl' alle Möglichkeiten enthalten, außer eben 2 mal '3er-Zahl'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(2 mal '3er-Zahl')=1- 1 9 = 8 9

EreignisP
3er-Zahl -> 3er-Zahl 1 9
3er-Zahl -> nicht 3er-Zahl 2 9
nicht 3er-Zahl -> 3er-Zahl 2 9
nicht 3er-Zahl -> nicht 3er-Zahl 4 9

Einzel-Wahrscheinlichkeiten: P("3er-Zahl")= 1 3 ; P("nicht 3er-Zahl")= 2 3 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '3er-Zahl'-'nicht 3er-Zahl' (P= 2 9 )
  • 'nicht 3er-Zahl'-'3er-Zahl' (P= 2 9 )
  • 'nicht 3er-Zahl'-'nicht 3er-Zahl' (P= 4 9 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

2 9 + 2 9 + 4 9 = 8 9


Ziehen mit Zurücklegen

Beispiel:

In einer Urne sind verschiedene Kugeln, 4 vom Typ rot und 6 vom Typ blau. Es wird 3 mal mit Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit, 3 Kugeln gleicher Farbe zu ziehen?

Lösung einblenden
EreignisP
rot -> rot -> rot 8 125
rot -> rot -> blau 12 125
rot -> blau -> rot 12 125
rot -> blau -> blau 18 125
blau -> rot -> rot 12 125
blau -> rot -> blau 18 125
blau -> blau -> rot 18 125
blau -> blau -> blau 27 125

Einzel-Wahrscheinlichkeiten: P("rot")= 2 5 ; P("blau")= 3 5 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'rot'-'rot'-'rot' (P= 8 125 )
  • 'blau'-'blau'-'blau' (P= 27 125 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

8 125 + 27 125 = 7 25