nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

mit Zurücklegen (einfach)

Beispiel:

Eine faire Münze (d.h. die Wahrscheinlichkeit für Zahl und Wappen ist gleich groß) wird drei mal geworfen. Wie groß ist die Wahrscheinlichkeit für "1 mal Zahl und 2 mal Wappen"?

Lösung einblenden
EreignisP
Zahl -> Zahl -> Zahl 1 8
Zahl -> Zahl -> Wappen 1 8
Zahl -> Wappen -> Zahl 1 8
Zahl -> Wappen -> Wappen 1 8
Wappen -> Zahl -> Zahl 1 8
Wappen -> Zahl -> Wappen 1 8
Wappen -> Wappen -> Zahl 1 8
Wappen -> Wappen -> Wappen 1 8

Einzel-Wahrscheinlichkeiten: P("Zahl")= 1 2 ; P("Wappen")= 1 2 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'Zahl'-'Wappen'-'Wappen' (P= 1 8 )
  • 'Wappen'-'Zahl'-'Wappen' (P= 1 8 )
  • 'Wappen'-'Wappen'-'Zahl' (P= 1 8 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 8 + 1 8 + 1 8 = 3 8


Ziehen mit Zurücklegen

Beispiel:

In einer Urne sind 9 rote und 3 blaue Kugeln. Es wird 3 mal mit Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "mindestens 2 mal blau"?

Lösung einblenden

Da ja ausschließlich nach 'blau' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'blau' und 'nicht blau'

Einzel-Wahrscheinlichkeiten :"blau": 1 4 ; "nicht blau": 3 4 ;

EreignisP
blau -> blau -> blau 1 64
blau -> blau -> nicht blau 3 64
blau -> nicht blau -> blau 3 64
blau -> nicht blau -> nicht blau 9 64
nicht blau -> blau -> blau 3 64
nicht blau -> blau -> nicht blau 9 64
nicht blau -> nicht blau -> blau 9 64
nicht blau -> nicht blau -> nicht blau 27 64

Einzel-Wahrscheinlichkeiten: P("blau")= 1 4 ; P("nicht blau")= 3 4 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'blau'-'blau'-'nicht blau' (P= 3 64 )
  • 'blau'-'nicht blau'-'blau' (P= 3 64 )
  • 'nicht blau'-'blau'-'blau' (P= 3 64 )
  • 'blau'-'blau'-'blau' (P= 1 64 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

3 64 + 3 64 + 3 64 + 1 64 = 5 32