nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

mit Zurücklegen (einfach)

Beispiel:

In einer Urne sind 4 rote, 3 gelbe, 5 blaue und 3 schwarze Kugeln. Es wird zwei mal mit Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "mindestens 1 mal gelb"?

Lösung einblenden

Da ja ausschließlich nach 'gelb' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'gelb' und 'nicht gelb'

Einzel-Wahrscheinlichkeiten :"gelb": 1 5 ; "nicht gelb": 4 5 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal gelb' alle Möglichkeiten enthalten, außer eben kein 'gelb' bzw. 0 mal 'gelb'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(0 mal 'gelb')=1- 16 25 = 9 25

EreignisP
gelb -> gelb 1 25
gelb -> nicht gelb 4 25
nicht gelb -> gelb 4 25
nicht gelb -> nicht gelb 16 25

Einzel-Wahrscheinlichkeiten: P("gelb")= 1 5 ; P("nicht gelb")= 4 5 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'gelb'-'nicht gelb' (P= 4 25 )
  • 'nicht gelb'-'gelb' (P= 4 25 )
  • 'gelb'-'gelb' (P= 1 25 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

4 25 + 4 25 + 1 25 = 9 25


Ziehen mit Zurücklegen

Beispiel:

Beim Roulette kann man auch auf Zahlenbereiche setzen. Z.B. auf die Zahlenbereiche 1-12, 13-24 und 25-36, wobei die grüne 0 zu keinem der Bereiche gehört. Es wird zwei mal eine Kugel im Roulette gespielt. Wie groß ist die Wahrscheinlichkeit für "mindestens 1 mal grüne 0"?

Lösung einblenden

Da ja ausschließlich nach 'grüne 0' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'grüne 0' und 'nicht grüne 0'

Einzel-Wahrscheinlichkeiten :"grüne 0": 1 37 ; "nicht grüne 0": 36 37 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal grüne 0' alle Möglichkeiten enthalten, außer eben kein 'grüne 0' bzw. 0 mal 'grüne 0'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(0 mal 'grüne 0')=1- 1296 1369 = 73 1369

EreignisP
grüne 0 -> grüne 0 1 1369
grüne 0 -> nicht grüne 0 36 1369
nicht grüne 0 -> grüne 0 36 1369
nicht grüne 0 -> nicht grüne 0 1296 1369

Einzel-Wahrscheinlichkeiten: P("grüne 0")= 1 37 ; P("nicht grüne 0")= 36 37 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'grüne 0'-'nicht grüne 0' (P= 36 1369 )
  • 'nicht grüne 0'-'grüne 0' (P= 36 1369 )
  • 'grüne 0'-'grüne 0' (P= 1 1369 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

36 1369 + 36 1369 + 1 1369 = 73 1369