nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

mit Zurücklegen (einfach)

Beispiel:

Ein Würfel wird 3 mal geworfen. Wie groß ist die Wahrscheinlichkeit, höchstens 2 mal eine Primzahl zu würfeln?

Lösung einblenden

Da ja ausschließlich nach 'prim' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'prim' und 'nicht prim'

Einzel-Wahrscheinlichkeiten :"prim": 1 2 ; "nicht prim": 1 2 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal prim' alle Möglichkeiten enthalten, außer eben 3 mal 'prim'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(3 mal 'prim')=1- 1 8 = 7 8

EreignisP
prim -> prim -> prim 1 8
prim -> prim -> nicht prim 1 8
prim -> nicht prim -> prim 1 8
prim -> nicht prim -> nicht prim 1 8
nicht prim -> prim -> prim 1 8
nicht prim -> prim -> nicht prim 1 8
nicht prim -> nicht prim -> prim 1 8
nicht prim -> nicht prim -> nicht prim 1 8

Einzel-Wahrscheinlichkeiten: P("prim")= 1 2 ; P("nicht prim")= 1 2 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'prim'-'prim'-'nicht prim' (P= 1 8 )
  • 'prim'-'nicht prim'-'prim' (P= 1 8 )
  • 'nicht prim'-'prim'-'prim' (P= 1 8 )
  • 'prim'-'nicht prim'-'nicht prim' (P= 1 8 )
  • 'nicht prim'-'prim'-'nicht prim' (P= 1 8 )
  • 'nicht prim'-'nicht prim'-'prim' (P= 1 8 )
  • 'nicht prim'-'nicht prim'-'nicht prim' (P= 1 8 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 8 + 1 8 + 1 8 + 1 8 + 1 8 + 1 8 + 1 8 = 7 8


Ziehen mit Zurücklegen

Beispiel:

In einer Urne sind 2 Kugeln, die mit einer 1 beschriftet sind, 10 2er und 3 Kugeln mit einer 3. Es wird zwei mal mit Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen gerade 5 ist?

Lösung einblenden
EreignisP
1 -> 1 4 225
1 -> 2 4 45
1 -> 3 2 75
2 -> 1 4 45
2 -> 2 4 9
2 -> 3 2 15
3 -> 1 2 75
3 -> 2 2 15
3 -> 3 1 25

Einzel-Wahrscheinlichkeiten: P("1")= 2 15 ; P("2")= 2 3 ; P("3")= 1 5 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '2'-'3' (P= 2 15 )
  • '3'-'2' (P= 2 15 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

2 15 + 2 15 = 4 15