Klasse 5
Klasse 6
Klasse 7
Klasse 8
Klasse 9
Klasse 10
Fit für die Oberstufe
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
mit Zurücklegen (einfach)
Beispiel:
Ein Würfel wird 2 mal geworfen. Wie groß ist die Wahrscheinlichkeit, mindestens 1 mal eine 6 zu würfeln?
Da ja ausschließlich nach '6er' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '6er' und 'nicht 6er'
Einzel-Wahrscheinlichkeiten :"6er": ; "nicht 6er": ;
Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal 6er' alle Möglichkeiten enthalten, außer eben kein '6er' bzw. 0 mal '6er'
Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:
P=1-P(0 mal '6er')=1- =
| Ereignis | P |
|---|---|
| 6er -> 6er | |
| 6er -> nicht 6er | |
| nicht 6er -> 6er | |
| nicht 6er -> nicht 6er |
Einzel-Wahrscheinlichkeiten: P("6er")=; P("nicht 6er")=;
Die relevanten Pfade sind:- '6er'-'nicht 6er' (P=)
- 'nicht 6er'-'6er' (P=)
- '6er'-'6er' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + =
Ziehen mit Zurücklegen
Beispiel:
(Alle Sektoren sind Vielfache
von Achtels-Kreisen)
Da ja ausschließlich nach 'D' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'D' und 'nicht D'
Einzel-Wahrscheinlichkeiten :"D": ; "nicht D": ;
Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal D' alle Möglichkeiten enthalten, außer eben kein 'D' bzw. 0 mal 'D'
Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:
P=1-P(0 mal 'D')=1- =
| Ereignis | P |
|---|---|
| D -> D | |
| D -> nicht D | |
| nicht D -> D | |
| nicht D -> nicht D |
Einzel-Wahrscheinlichkeiten: P("D")=; P("nicht D")=;
Die relevanten Pfade sind:- 'D'-'nicht D' (P=)
- 'nicht D'-'D' (P=)
- 'D'-'D' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + =
