Klasse 5
Klasse 6
Klasse 7
Klasse 8
Klasse 9
Klasse 10
Fit für die Oberstufe
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
mit Zurücklegen (einfach)
Beispiel:
In einer Urne sind 2 rote, 6 gelbe, 3 blaue und 4 schwarze Kugeln. Es wird zwei mal mit Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "mindestens 1 mal schwarz"?
Da ja ausschließlich nach 'schwarz' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'schwarz' und 'nicht schwarz'
Einzel-Wahrscheinlichkeiten :"schwarz": ; "nicht schwarz": ;
Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal schwarz' alle Möglichkeiten enthalten, außer eben kein 'schwarz' bzw. 0 mal 'schwarz'
Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:
P=1-P(0 mal 'schwarz')=1- =
| Ereignis | P |
|---|---|
| schwarz -> schwarz | |
| schwarz -> nicht schwarz | |
| nicht schwarz -> schwarz | |
| nicht schwarz -> nicht schwarz |
Einzel-Wahrscheinlichkeiten: P("schwarz")=; P("nicht schwarz")=;
Die relevanten Pfade sind:- 'schwarz'-'nicht schwarz' (P=)
- 'nicht schwarz'-'schwarz' (P=)
- 'schwarz'-'schwarz' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + =
Ziehen mit Zurücklegen
Beispiel:
Ein Würfel wird 2 mal geworfen. Wie groß ist die Wahrscheinlichkeit, genau 0 mal eine 6 zu würfeln?
| Ereignis | P |
|---|---|
| 6er -> 6er | |
| 6er -> keine_6 | |
| keine_6 -> 6er | |
| keine_6 -> keine_6 |
Einzel-Wahrscheinlichkeiten: P("6er")=; P("keine_6")=;
Die relevanten Pfade sind:- 'keine_6'-'keine_6' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
=
