nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

mit Zurücklegen (einfach)

Beispiel:

Ein Würfel wird 3 mal geworfen. Wie groß ist die Wahrscheinlichkeit, genau 1 mal eine Primzahl zu würfeln?

Lösung einblenden
EreignisP
prim -> prim -> prim 1 8
prim -> prim -> nicht prim 1 8
prim -> nicht prim -> prim 1 8
prim -> nicht prim -> nicht prim 1 8
nicht prim -> prim -> prim 1 8
nicht prim -> prim -> nicht prim 1 8
nicht prim -> nicht prim -> prim 1 8
nicht prim -> nicht prim -> nicht prim 1 8

Einzel-Wahrscheinlichkeiten: P("prim")= 1 2 ; P("nicht prim")= 1 2 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'prim'-'nicht prim'-'nicht prim' (P= 1 8 )
  • 'nicht prim'-'prim'-'nicht prim' (P= 1 8 )
  • 'nicht prim'-'nicht prim'-'prim' (P= 1 8 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 8 + 1 8 + 1 8 = 3 8


Ziehen mit Zurücklegen

Beispiel:

Beim Roulette kann man auch auf Zahlenbereiche setzen. Z.B. auf die Zahlenbereiche 1-12, 13-24 und 25-36, wobei die grüne 0 zu keinem der Bereiche gehört. Es wird zwei mal eine Kugel im Roulette gespielt. Wie groß ist die Wahrscheinlichkeit für "genau 1 mal 25-36"?

Lösung einblenden

Da ja ausschließlich nach '25-36' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '25-36' und 'nicht 25-36'

Einzel-Wahrscheinlichkeiten :"25-36": 12 37 ; "nicht 25-36": 25 37 ;

EreignisP
25-36 -> 25-36 144 1369
25-36 -> nicht 25-36 300 1369
nicht 25-36 -> 25-36 300 1369
nicht 25-36 -> nicht 25-36 625 1369

Einzel-Wahrscheinlichkeiten: P("25-36")= 12 37 ; P("nicht 25-36")= 25 37 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '25-36'-'nicht 25-36' (P= 300 1369 )
  • 'nicht 25-36'-'25-36' (P= 300 1369 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

300 1369 + 300 1369 = 600 1369