nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

mit Zurücklegen (einfach)

Beispiel:

In einer Urne sind 10 rote, 7 gelbe, 7 blaue und 6 schwarze Kugeln. Es wird zwei mal mit Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "genau 2 mal blau"?

Lösung einblenden

Da ja ausschließlich nach 'blau' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'blau' und 'nicht blau'

Einzel-Wahrscheinlichkeiten :"blau": 7 30 ; "nicht blau": 23 30 ;

EreignisP
blau -> blau 49 900
blau -> nicht blau 161 900
nicht blau -> blau 161 900
nicht blau -> nicht blau 529 900

Einzel-Wahrscheinlichkeiten: P("blau")= 7 30 ; P("nicht blau")= 23 30 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'blau'-'blau' (P= 49 900 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

49 900 = 49 900


Ziehen mit Zurücklegen

Beispiel:

Beim Roulette gibt es 18 rote, 18 scharze und ein grünes Feld (für die Null). Es wird zwei mal eine Kugel im Roulette gespielt. Wie groß ist die Wahrscheinlichkeit für "1 mal rot und 1 mal grün"?

Lösung einblenden
EreignisP
rot -> rot 324 1369
rot -> schwarz 324 1369
rot -> grün 18 1369
schwarz -> rot 324 1369
schwarz -> schwarz 324 1369
schwarz -> grün 18 1369
grün -> rot 18 1369
grün -> schwarz 18 1369
grün -> grün 1 1369

Einzel-Wahrscheinlichkeiten: P("rot")= 18 37 ; P("schwarz")= 18 37 ; P("grün")= 1 37 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'rot'-'grün' (P= 18 1369 )
  • 'grün'-'rot' (P= 18 1369 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

18 1369 + 18 1369 = 36 1369