nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Exponentialgleichungen (einfach)

Beispiel:

Löse die folgende Gleichung:

2 x = 8

Lösung einblenden
2 x = 8 |lg(⋅)
lg( 2 x ) = lg( 8 )
x · lg( 2 ) = lg( 8 ) |: lg( 2 )
x = lg( 8 ) lg( 2 )
x = 3

L={ 3 }

Im Idealfall erkennt man bereits:

2 x = 8

2 x = 2 3

und kann so schneller und ohne WTR auf die Lösung x=3 kommen.

Exponentialgleichungen

Beispiel:

Löse die folgende Gleichung:

2 5 x = 2

Lösung einblenden
2 5 x = 2 |:2
5 x = 1 |lg(⋅)
lg( 5 x ) = 0
x · lg( 5 ) = 0 |: lg( 5 )
x = 0 lg( 5 )
x = 0

L={0}

Im Idealfall erkennt man bereits:

5 x = 1

5 x = 50

und kann so schneller und ohne WTR auf die Lösung x=0 kommen.

log berechnen (einfach)

Beispiel:

Berechne den Logarithmus log 5 (1) .

Lösung einblenden

Wir suchen den Logarithmus von 1 zur Basis 5, also die Hochzahl mit der man 5 potenzieren muss, um auf 1 zu kommen.

Also was muss in das Kästchen, damit 5 = 1 gilt.

Aus der Erinnerung an die Potenzrechnung oder durch systematisches Probieren kommt man auf die Lösung:

log 5 (1) = 0, eben weil 50 = 1 gilt .

log berechnen

Beispiel:

Berechne den Logarithmus log 3 ( 1 81 ) .

Lösung einblenden

Wir suchen den Logarithmus von 1 81 zur Basis 3, also die Hochzahl mit der man 3 potenzieren muss, um auf 1 81 zu kommen.

Also was muss in das Kästchen, damit 3 = 1 81 gilt.

An dem Bruch mit der 1 im Zähler kann man schnell erkennen, dass die Hochzahl negativ sein muss. Um auf den Betrag des gesuchten Exponenten zu kommen, können wir auch zuerst mal nur den Nenner als 3-Potenz zu schreiben versuchen, also 3 = 1 81

Aus der Erinnerung an die Potenzrechnung oder durch systematisches Probieren kommt man auf die Lösung:

log 3 ( 1 81 ) = -4, eben weil 3-4 = 1 81 gilt .