nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Exponentialgleichungen (einfach)

Beispiel:

Löse die folgende Gleichung:

1 2 2 x = 1 2

Lösung einblenden
1 2 2 x = 1 2 |⋅2
2 x = 1 |lg(⋅)
lg( 2 x ) = 0
x · lg( 2 ) = 0 |: lg( 2 )
x = 0 lg( 2 )
x = 0

L={0}

Im Idealfall erkennt man bereits:

2 x = 1

2 x = 20

und kann so schneller und ohne WTR auf die Lösung x=0 kommen.

Exponentialgleichungen

Beispiel:

Löse die folgende Gleichung:

2 2 x = 2

Lösung einblenden
2 2 x = 2 |:2
2 x = 1 |lg(⋅)
lg( 2 x ) = 0
x · lg( 2 ) = 0 |: lg( 2 )
x = 0 lg( 2 )
x = 0

L={0}

Im Idealfall erkennt man bereits:

2 x = 1

2 x = 20

und kann so schneller und ohne WTR auf die Lösung x=0 kommen.

log berechnen (einfach)

Beispiel:

Berechne den Logarithmus log 2 (128) .

Lösung einblenden

Wir suchen den Logarithmus von 128 zur Basis 2, also die Hochzahl mit der man 2 potenzieren muss, um auf 128 zu kommen.

Also was muss in das Kästchen, damit 2 = 128 gilt.

Aus der Erinnerung an die Potenzrechnung oder durch systematisches Probieren kommt man auf die Lösung:

log 2 (128) = 7, eben weil 27 = 128 gilt .

log berechnen

Beispiel:

Berechne den Logarithmus log 10 ( 1 1.000.000 ) .

Lösung einblenden

Wir suchen den Logarithmus von 1 1.000.000 zur Basis 10, also die Hochzahl mit der man 10 potenzieren muss, um auf 1 1.000.000 zu kommen.

Also was muss in das Kästchen, damit 10 = 1 1.000.000 gilt.

An dem Bruch mit der 1 im Zähler kann man schnell erkennen, dass die Hochzahl negativ sein muss. Um auf den Betrag des gesuchten Exponenten zu kommen, können wir auch zuerst mal nur den Nenner als 10-Potenz zu schreiben versuchen, also 10 = 1 1.000.000

Aus der Erinnerung an die Potenzrechnung oder durch systematisches Probieren kommt man auf die Lösung:

log 10 ( 1 1.000.000 ) = -6, eben weil 10-6 = 1 1.000.000 gilt .