nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Exponentialgleichungen (einfach)

Beispiel:

Löse die folgende Gleichung:

1 2 4 x = 2

Lösung einblenden
1 2 4 x = 2 |⋅2
4 x = 4 |lg(⋅)
lg( 4 x ) = lg( 4 )
x · lg( 4 ) = lg( 4 ) |: lg( 4 )
x = lg( 4 ) lg( 4 )
x = 1

L={ 1 }

Man erkennt bereits bei 4 x = 4 die Lösung x = 1.

Exponentialgleichungen

Beispiel:

Löse die folgende Gleichung:

3 x = -81

Lösung einblenden
3 x = -81

Diese Gleichung hat keine Lösung!

L={}

3 x muss immer >0 sein und kann daher nicht = -81 sein.

log berechnen (einfach)

Beispiel:

Berechne den Logarithmus log 4 (1) .

Lösung einblenden

Wir suchen den Logarithmus von 1 zur Basis 4, also die Hochzahl mit der man 4 potenzieren muss, um auf 1 zu kommen.

Also was muss in das Kästchen, damit 4 = 1 gilt.

Aus der Erinnerung an die Potenzrechnung oder durch systematisches Probieren kommt man auf die Lösung:

log 4 (1) = 0, eben weil 40 = 1 gilt .

log berechnen

Beispiel:

Berechne den Logarithmus log 5 ( 1 25 ) .

Lösung einblenden

Wir suchen den Logarithmus von 1 25 zur Basis 5, also die Hochzahl mit der man 5 potenzieren muss, um auf 1 25 zu kommen.

Also was muss in das Kästchen, damit 5 = 1 25 gilt.

An dem Bruch mit der 1 im Zähler kann man schnell erkennen, dass die Hochzahl negativ sein muss. Um auf den Betrag des gesuchten Exponenten zu kommen, können wir auch zuerst mal nur den Nenner als 5-Potenz zu schreiben versuchen, also 5 = 1 25

Aus der Erinnerung an die Potenzrechnung oder durch systematisches Probieren kommt man auf die Lösung:

log 5 ( 1 25 ) = -2, eben weil 5-2 = 1 25 gilt .