nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Exponentialgleichungen (einfach)

Beispiel:

Löse die folgende Gleichung:

2 4 x = 8

Lösung einblenden
2 4 x = 8 |:2
4 x = 4 |lg(⋅)
lg( 4 x ) = lg( 4 )
x · lg( 4 ) = lg( 4 ) |: lg( 4 )
x = lg( 4 ) lg( 4 )
x = 1

L={ 1 }

Man erkennt bereits bei 4 x = 4 die Lösung x = 1.

Exponentialgleichungen

Beispiel:

Löse die folgende Gleichung:

6 x +1 = 1 6

Lösung einblenden

Wir schreiben einfach um:

6 x +1 = 1 6

6 x +1 = 6 -1

Jetzt stehen links und rechts zwei Potenzen mit der gleichen Basis 6.

Um die Gleichung zu lösen, können wir also einfach die beiden Exponenten (links: x +1 und rechts: -1) gleichsetzen:

x +1 = -1 | -1
x = -2

L={ -2 }

log berechnen (einfach)

Beispiel:

Berechne den Logarithmus log 5 (1) .

Lösung einblenden

Wir suchen den Logarithmus von 1 zur Basis 5, also die Hochzahl mit der man 5 potenzieren muss, um auf 1 zu kommen.

Also was muss in das Kästchen, damit 5 = 1 gilt.

Aus der Erinnerung an die Potenzrechnung oder durch systematisches Probieren kommt man auf die Lösung:

log 5 (1) = 0, eben weil 50 = 1 gilt .

log berechnen

Beispiel:

Berechne den Logarithmus log 4 ( 4 ) .

Lösung einblenden

Wir suchen den Logarithmus von 4 zur Basis 4, also die Hochzahl mit der man 4 potenzieren muss, um auf 4 zu kommen.

Also was muss in das Kästchen, damit 4 = 4 gilt.

Wenn wir jetzt die 4 als 4 1 2 umschreiben, steht die Lösung praktisch schon da: 4 = 4 1 2

log 4 ( 4 ) = 1 2 , eben weil 4 1 2 = 4 gilt .