nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Exponentialgleichungen (einfach)

Beispiel:

Löse die folgende Gleichung:

5 x = 5

Lösung einblenden
5 x = 5 |lg(⋅)
lg( 5 x ) = lg( 5 )
x · lg( 5 ) = lg( 5 ) |: lg( 5 )
x = lg( 5 ) lg( 5 )
x = 1

L={ 1 }

Man erkennt bereits bei 5 x = 5 die Lösung x = 1.

Exponentialgleichungen

Beispiel:

Löse die folgende Gleichung:

1 2 2 x -6 = 2

Lösung einblenden
1 2 2 x -6 = 2 | +6
1 2 2 x = 8 |⋅2
2 x = 16 |lg(⋅)
lg( 2 x ) = lg( 16 )
x · lg( 2 ) = lg( 16 ) |: lg( 2 )
x = lg( 16 ) lg( 2 )
x = 4

L={ 4 }

Im Idealfall erkennt man bereits:

2 x = 16

2 x = 2 4

und kann so schneller und ohne WTR auf die Lösung x=4 kommen.

log berechnen (einfach)

Beispiel:

Berechne den Logarithmus log 17 (289) .

Lösung einblenden

Wir suchen den Logarithmus von 289 zur Basis 17, also die Hochzahl mit der man 17 potenzieren muss, um auf 289 zu kommen.

Also was muss in das Kästchen, damit 17 = 289 gilt.

Aus der Erinnerung an die Potenzrechnung oder durch systematisches Probieren kommt man auf die Lösung:

log 17 (289) = 2, eben weil 172 = 289 gilt .

log berechnen

Beispiel:

Berechne den Logarithmus log 3 ( 1 27 ) .

Lösung einblenden

Wir suchen den Logarithmus von 1 27 zur Basis 3, also die Hochzahl mit der man 3 potenzieren muss, um auf 1 27 zu kommen.

Also was muss in das Kästchen, damit 3 = 1 27 gilt.

An dem Bruch mit der 1 im Zähler kann man schnell erkennen, dass die Hochzahl negativ sein muss. Um auf den Betrag des gesuchten Exponenten zu kommen, können wir auch zuerst mal nur den Nenner als 3-Potenz zu schreiben versuchen, also 3 = 1 27

Aus der Erinnerung an die Potenzrechnung oder durch systematisches Probieren kommt man auf die Lösung:

log 3 ( 1 27 ) = -3, eben weil 3-3 = 1 27 gilt .