nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Exponentialgleichungen (einfach)

Beispiel:

Löse die folgende Gleichung:

1 2 5 x = 125 2

Lösung einblenden
1 2 5 x = 125 2 |⋅2
5 x = 125 |lg(⋅)
lg( 5 x ) = lg( 125 )
x · lg( 5 ) = lg( 125 ) |: lg( 5 )
x = lg( 125 ) lg( 5 )
x = 3

L={ 3 }

Im Idealfall erkennt man bereits:

5 x = 125

5 x = 5 3

und kann so schneller und ohne WTR auf die Lösung x=3 kommen.

Exponentialgleichungen

Beispiel:

Löse die folgende Gleichung:

2 2x +1 = 1 2

Lösung einblenden

Wir schreiben einfach um:

2 2x +1 = 1 2

2 2x +1 = 2 -1

Jetzt stehen links und rechts zwei Potenzen mit der gleichen Basis 2.

Um die Gleichung zu lösen, können wir also einfach die beiden Exponenten (links: 2x +1 und rechts: -1) gleichsetzen:

2x +1 = -1 | -1
2x = -2 |:2
x = -1

L={ -1 }

log berechnen (einfach)

Beispiel:

Berechne den Logarithmus log 5 (25) .

Lösung einblenden

Wir suchen den Logarithmus von 25 zur Basis 5, also die Hochzahl mit der man 5 potenzieren muss, um auf 25 zu kommen.

Also was muss in das Kästchen, damit 5 = 25 gilt.

Aus der Erinnerung an die Potenzrechnung oder durch systematisches Probieren kommt man auf die Lösung:

log 5 (25) = 2, eben weil 52 = 25 gilt .

log berechnen

Beispiel:

Berechne den Logarithmus log 19 ( 1 361 ) .

Lösung einblenden

Wir suchen den Logarithmus von 1 361 zur Basis 19, also die Hochzahl mit der man 19 potenzieren muss, um auf 1 361 zu kommen.

Also was muss in das Kästchen, damit 19 = 1 361 gilt.

An dem Bruch mit der 1 im Zähler kann man schnell erkennen, dass die Hochzahl negativ sein muss. Um auf den Betrag des gesuchten Exponenten zu kommen, können wir auch zuerst mal nur den Nenner als 19-Potenz zu schreiben versuchen, also 19 = 1 361

Aus der Erinnerung an die Potenzrechnung oder durch systematisches Probieren kommt man auf die Lösung:

log 19 ( 1 361 ) = -2, eben weil 19-2 = 1 361 gilt .