nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Exponentialgleichungen (einfach)

Beispiel:

Löse die folgende Gleichung:

2 x = 1

Lösung einblenden
2 x = 1 |lg(⋅)
lg( 2 x ) = 0
x · lg( 2 ) = 0 |: lg( 2 )
x = 0 lg( 2 )
x = 0

L={0}

Im Idealfall erkennt man bereits:

2 x = 1

2 x = 20

und kann so schneller und ohne WTR auf die Lösung x=0 kommen.

Exponentialgleichungen

Beispiel:

Löse die folgende Gleichung:

1 2 3 x -3 = 1,5

Lösung einblenden
1 2 3 x -3 = 1,5 | +3
1 2 3 x = 4,5 |⋅2
3 x = 9 |lg(⋅)
lg( 3 x ) = lg( 9 )
x · lg( 3 ) = lg( 9 ) |: lg( 3 )
x = lg( 9 ) lg( 3 )
x = 2

L={ 2 }

Im Idealfall erkennt man bereits:

3 x = 9

3 x = 3 2

und kann so schneller und ohne WTR auf die Lösung x=2 kommen.

log berechnen (einfach)

Beispiel:

Berechne den Logarithmus log 2 (16) .

Lösung einblenden

Wir suchen den Logarithmus von 16 zur Basis 2, also die Hochzahl mit der man 2 potenzieren muss, um auf 16 zu kommen.

Also was muss in das Kästchen, damit 2 = 16 gilt.

Aus der Erinnerung an die Potenzrechnung oder durch systematisches Probieren kommt man auf die Lösung:

log 2 (16) = 4, eben weil 24 = 16 gilt .

log berechnen

Beispiel:

Berechne den Logarithmus log 2 ( 1 32 ) .

Lösung einblenden

Wir suchen den Logarithmus von 1 32 zur Basis 2, also die Hochzahl mit der man 2 potenzieren muss, um auf 1 32 zu kommen.

Also was muss in das Kästchen, damit 2 = 1 32 gilt.

An dem Bruch mit der 1 im Zähler kann man schnell erkennen, dass die Hochzahl negativ sein muss. Um auf den Betrag des gesuchten Exponenten zu kommen, können wir auch zuerst mal nur den Nenner als 2-Potenz zu schreiben versuchen, also 2 = 1 32

Aus der Erinnerung an die Potenzrechnung oder durch systematisches Probieren kommt man auf die Lösung:

log 2 ( 1 32 ) = -5, eben weil 2-5 = 1 32 gilt .