nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Verschiedene Vierecke

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Bei dieser Figur handelt es sich um ein/e (besondere(s)):

Lösung einblenden

Weil das Viereck keine Besonderheiten aufweist kann man erkennen, dass es sich bei diesem Viereck um ein Viereck handelt.

  • Weil das abgebildete Viereck keine 2 gegenüber liegende Seiten hat, die parallel sind, ist dieses Viereck aber kein Trapez.
  • Weil beim abgebildeten Viereck nicht auf beiden Seiten die benachbarten Seiten gleich lang sind, ist dieses Viereck aber kein Drachen.
  • Weil beim abgebildeten Viereck nicht alle gegenüber liegenden Seiten immer jeweils parallel und gleich lang sind, ist dieses Viereck aber kein Parallelogramm.
  • Weil das abgebildete Viereck keine 4 gleich lange Seiten hat, ist dieses Viereck aber keine Raute.
  • Weil das abgebildete Viereck keine 4 rechte Winkel hat, ist dieses Viereck aber kein Rechteck.
  • Weil das abgebildete Viereck keine 4 rechte Winkel und 4 gleich lange Seiten hat, ist dieses Viereck aber kein Quadrat.

Das Viereck ist also: Viereck

Im Koordinatensystem ergänzen

Beispiel:

Gegeben sind die Punkte A(3|2), B(6|4) und C(3|6). Zeichne die drei Punkte in ein Koordinatensystem und ergänze sie um einen Punkt D, so dass eine Raute ABCD entsteht.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wenn ABCD ein Raute - also ein spezielles Parallelogramm - sein soll, muss ja die Seite AD parallel zu BC sein. Deswegen zeichnen wir eine Parallele zu BC durch A ein (blau), auf der D somit liegen muss. Aus dem selben Grund zeichnen wir eine Parallele zu AB durch C ein. Der einzige gemeinsame Punkt dieser beiden (blauen) Parallelen, ihr Schnittpunkt, muss somit D sein, weil dieser ja auf beiden Parallelen liegen musss.

Jetzt können wir dessen Koordinaten ablesen: D(0|4)