Klasse 5
Klasse 6
Klasse 7
Klasse 8
Klasse 9
Klasse 10
Fit für die Oberstufe
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Verschiedene Vierecke
Beispiel:
Bei dieser Figur handelt es sich um ein/e (besondere(s)):
Weil das Viereck keine Besonderheiten aufweist kann man erkennen, dass es sich bei diesem Viereck um ein Viereck handelt.
- Weil das abgebildete Viereck keine 2 gegenüber liegende Seiten hat, die parallel sind, ist dieses Viereck aber kein Trapez.
- Weil beim abgebildeten Viereck nicht auf beiden Seiten die benachbarten Seiten gleich lang sind, ist dieses Viereck aber kein Drachen.
- Weil beim abgebildeten Viereck nicht alle gegenüber liegenden Seiten immer jeweils parallel und gleich lang sind, ist dieses Viereck aber kein Parallelogramm.
- Weil das abgebildete Viereck keine 4 gleich lange Seiten hat, ist dieses Viereck aber keine Raute.
- Weil das abgebildete Viereck keine 4 rechte Winkel hat, ist dieses Viereck aber kein Rechteck.
- Weil das abgebildete Viereck keine 4 rechte Winkel und 4 gleich lange Seiten hat, ist dieses Viereck aber kein Quadrat.
Das Viereck ist also: Viereck
Im Koordinatensystem ergänzen
Beispiel:
Gegeben sind die Punkte A(3|2), B(6|4) und C(3|6). Zeichne die drei Punkte in ein Koordinatensystem und ergänze sie um einen Punkt D, so dass eine Raute ABCD entsteht.
Wenn ABCD ein Raute - also ein spezielles Parallelogramm - sein soll, muss ja die Seite AD parallel zu BC sein. Deswegen zeichnen wir eine Parallele zu BC durch A ein (blau), auf der D somit liegen muss. Aus dem selben Grund zeichnen wir eine Parallele zu AB durch C ein. Der einzige gemeinsame Punkt dieser beiden (blauen) Parallelen, ihr Schnittpunkt, muss somit D sein, weil dieser ja auf beiden Parallelen liegen musss.
Jetzt können wir dessen Koordinaten ablesen: D(0|4)