nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Würfel V+O rückwärts

Beispiel:

Ein Würfel hat die Oberfläche O = 24 mm². Berechne die Kantenlänge.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Ein Würfel hat ja sechs gleich große Seitenflächen. Jede davon ist ein Quadrat mit der Kantenlänge a.
Also gilt für die Oberfläche eines Würfel mit Kantenlänge a:
O = 6 ⋅ a ⋅ a = 6a2

Es gilt somit:

24 mm² = 6 ⋅ ⬜2

Wenn 6 ⬜2 das Gleiche wie 24 ist, dann muss doch ein ⬜2 ein Sechstel von 24, also 4 ergeben.

4 mm² = ⬜2

Mit gezieltem Probieren findet man, dass dies mit a = 2 mm funktioniert.

Volumen eines Prisma

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Berechne das Volumen V des dargestellten, senkrechten Prismas.

Lösung einblenden

Das Volumen eines senkrechten Prismas berechnet man mit V = G ⋅ h,
also die Fläche der Grundseite multipliziert mit der Höhe des Prismas, wobei die Höhe hier die 6.5 cm nach schräg hinten ist.
Die Fläche der Grundseite berechnet man mit:
A = 1 2 ⋅ Grundseite ⋅ Höhe (wofür beim rechtwinkligen Dreieck die Katheten benutzt werden können)
also hier:

A = 1 2 ⋅ 8 cm ⋅ 7 cm = 28 cm²

Das wird dann mit der Höhe multipliziert: V = 28 cm² ⋅ 6.5 cm = 182 cm³

Volumen eines Prisma 2

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Ein Prisma hat die abgebildete Figur als Grundfläche und
die Höhe h = 40 cm. Berechne das Volumen des Prismas.

Lösung einblenden

Wir berechnen natürlich zuerst den Flächeninhalt der abgebildeten Grundfläche und nutzen hierfür die Flächeninhaltsformel des Dreiecks:

G = 1 2 c ⋅ hc

Dazu müssen wir zuerst noch die Höhe hc mit dem Satz des Pythagoras (im rechtwinkligen halben Dreieck) berechnen:

hc2 + ( 5 2 )2 = 82 |-( 5 2 )2

hc2 = 82 - ( 5 2 )2 = 82 - 2.52 = 64 - 6.25= 57.75

Daraus ergibt sich:

hc = 57,75 ≈ 7.599

Und daraus ergibt sich wiederum für die Grundfläche G:

G = 1 2 c ⋅ hc = 1 2 ⋅ 5 ⋅ 7.599 ≈ 19

Um nun das gesuchte Volumen des Prismas zu berechnen, müssen wir nur noch die Grundfläche G mit der Höhe h=40 cm multiplizieren:

V = G ⋅ h ≈ 19 cm² ⋅ 40 cm ≈ 759.9 cm³

Prismavolumen rückwärts (Skizze Grundfläche)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Ein Prisma hat das Volumen V = 31436.7 mm³, die Höhe h = 100 mm und als Grundfläche das abgebildete regelmäßige Sechseck.
Berechne die rote Strecke x.

Lösung einblenden

Da ja für das Volumen eines Prismas V = G ⋅ h gilt, können wir umgekehrt sofort die Grundfläche berechnen als :
G = V h 31436.7 100 ≈ 314.37

Die Grundfläche dieses regelmäßigen Sechseck besteht aus 6 kleinen gleichseitigen Dreiecken. Deswegen muss der Flächeninhalt eines dieser 6 kleinen gleichseitigen Dreiecke eben gerade A = 1 6 G ≈ 314.37 6 ≈ 52.39 sein

Jetzt müssen wir uns eine Formel für das gleichseitige Dreieck mit Basisseitenlänge x herleiten (oder in der Formelsammlung suchen ;-):

Nach dem Satz des Pythagoras gilt:

hc2 + ( x 2 )2 = x2 |-( x 2 )2

hc2 = x2 - ( x 2 )2 = x2 - 1 4 x2 = 3 4 x2

Daraus ergibt sich:

hc = 3 2 x

Und daraus ergibt sich wiederum für die Grundfläche ADreieck:

ADreieck = 1 2 x ⋅ hc = 1 2 ⋅ x ⋅ 3 2 x ≈ 3 4 x2

Hier können wir jetzt die bereits ermittelte Grundfläche ADreieck = 52.39 einsetzen:

52.39 ≈ 3 4 x2 | ⋅4: 3

121 ≈ x2

x ≈ 121 ≈ 11

Für x = 11 mm ist somit die Grundfläche ADreieck ≈ 52.4 mm² und das Volumen des Prismas V ≈ 31436.7 mm³