nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Nullstellen mit Nullprodukt

Beispiel:

Bestimme die Nullstellen der quadratischen Funktion f mit
y= x 2 +4x

Lösung einblenden

Um die Nullstellen zu berechnen, setzen wir einfach y = 0.

Hier kann man x ausklammern und den Satz vom Nullprodukt anwenden

x 2 +4x = 0
x ( x +4 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x +4 = 0 | -4
x2 = -4

L={ -4 ; 0}

Nullstellen und Scheitel (Nullprodukt)

Beispiel:

Bestimme die Nullstellen und dann den Scheitel der quadratischen Funktion f mit
y= x 2 +3x

Lösung einblenden

Um die Nullstellen zu berechnen, setzen wir einfach y = 0.

Hier kann man x ausklammern und den Satz vom Nullprodukt anwenden

x 2 +3x = 0
x ( x +3 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x +3 = 0 | -3
x2 = -3

L={ -3 ; 0}

Wegen der Symmetrie von Parabeln wissen wir, dass der Scheitel genau in der Mitte zwischen den Nullstellen liegen muss. Wir berechen also den Mittelwert der beiden Nullstellen -3+0 2 = -1.5 und erhalten so den x-Wert des Scheitels.

Der Scheitel hat also die Koordinaten S(-1.5|y) mit y = ( -1,5 ) 2 +3( -1,5 ) = 2,25 -4,5 = -2.25.

Als Ergebnisse erhalten wir also: Nullstellen: x1=-3 und x2=0 , Scheitel: S(-1.5|-2.25).

Nullstellen mit Mitternachtsformel

Beispiel:

Berechne die Schnittpunkte mit der x-Achse (Nullstellen) des Graphen der Funktion f mit f(x)= x 2 + 17 5 x - 12 5 .

Lösung einblenden

Um die Schnittpunkte mit der x-Achse (Nullstellen) zu berechnen muss man einfach die Funktion gleich Null setzen, also

f(x)=0

x 2 + 17 5 x - 12 5 = 0 |⋅ 5
5( x 2 + 17 5 x - 12 5 ) = 0

5 x 2 +17x -12 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -17 ± 17 2 -4 · 5 · ( -12 ) 25

x1,2 = -17 ± 289 +240 10

x1,2 = -17 ± 529 10

x1 = -17 + 529 10 = -17 +23 10 = 6 10 = 0,6

x2 = -17 - 529 10 = -17 -23 10 = -40 10 = -4

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "5 " teilen:

5 x 2 +17x -12 = 0 |: 5

x 2 + 17 5 x - 12 5 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 17 10 ) 2 - ( - 12 5 ) = 289 100 + 12 5 = 289 100 + 240 100 = 529 100

x1,2 = - 17 10 ± 529 100

x1 = - 17 10 - 23 10 = - 40 10 = -4

x2 = - 17 10 + 23 10 = 6 10 = 0.6

L={ -4 ; 0,6 }

Gesucht sind ja die Schnittpunkte mit der x-Achse (Nullstellen), d.h. die gesuchten y-Werte sind immer jeweils 0.

Die Schnittpunkte mit der x-Achse (Nullstellen) sind also N1( -4 |0) und N2( 0,6 |0).

Schnittpunkte berechnen

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= 2 ( x -5 ) 2
und
g(x)= 2 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

2 ( x -5 ) 2 = 2 |:2
( x -5 ) 2 = 1 | 2

1. Fall

x -5 = - 1 = -1
x -5 = -1 | +5
x1 = 4

2. Fall

x -5 = 1 = 1
x -5 = 1 | +5
x2 = 6

L={ 4 ; 6 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( 4 ) = 2

g( 6 ) = 2

Die Schnittpunkte sind also S1( 4 | 2 ) und S2( 6 | 2 ).

Schnittpunkte mit MNF

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= -4 x 2 -6x -18
und
g(x)= -5 x 2 -5x +2 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

-4 x 2 -6x -18 = -5 x 2 -5x +2 | +5 x 2 +5x -2

x 2 - x -20 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +1 ± ( -1 ) 2 -4 · 1 · ( -20 ) 21

x1,2 = +1 ± 1 +80 2

x1,2 = +1 ± 81 2

x1 = 1 + 81 2 = 1 +9 2 = 10 2 = 5

x2 = 1 - 81 2 = 1 -9 2 = -8 2 = -4

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 1 2 ) 2 - ( -20 ) = 1 4 + 20 = 1 4 + 80 4 = 81 4

x1,2 = 1 2 ± 81 4

x1 = 1 2 - 9 2 = - 8 2 = -4

x2 = 1 2 + 9 2 = 10 2 = 5

L={ -4 ; 5 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -4 ) = -5 ( -4 ) 2 -5( -4 ) +2 = -516 +20 +2 = -80 +20 +2 = -58

g( 5 ) = -5 5 2 -55 +2 = -525 -25 +2 = -125 -25 +2 = -148

Die Schnittpunkte sind also S1( -4 | -58 ) und S2( 5 | -148 ).

Schnittpunkte mit MNF (Graph)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gezeichnet ist die Gerade der Funktion f.

Nicht abgebildet ist der Graph von g mit g(x)= - x 2 + 9 2 x -1 .

Bestimme die Schnittpunkte der Graphen von f und g.

Lösung einblenden

Als erstes müssen wir den Funktionsterm des eingezeichneten Graphen von f bestimmen:

Man erkennt sofort, dass es sich um eine Gerade handelt, also gilt y = m⋅x + c .

Den y-Achsenabschnitt c = 2 kann man dem Schaubild leicht entnehmen.

Etwas schwieriger ist das Ablesen der Steigung m. Wenn man sich jedoch ein Steigungsdreick eingezeichnet denkt und 2 Einheit(en) nach rechts geht, so muss man 1 nach oben gehen. Die Steigung ist also m= 1 2 .

Der Term der abgebildeten Geraden ist also y= 1 2 x +2 oder f(x)= 1 2 x +2 .

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

1 2 x +2 = - x 2 + 9 2 x -1 |⋅ 2
2( 1 2 x +2 ) = 2( - x 2 + 9 2 x -1 )
x +4 = -2 x 2 +9x -2 | +2 x 2 -9x +2
2 x 2 -8x +6 = 0 |:2

x 2 -4x +3 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +4 ± ( -4 ) 2 -4 · 1 · 3 21

x1,2 = +4 ± 16 -12 2

x1,2 = +4 ± 4 2

x1 = 4 + 4 2 = 4 +2 2 = 6 2 = 3

x2 = 4 - 4 2 = 4 -2 2 = 2 2 = 1

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -2 ) 2 - 3 = 4 - 3 = 1

x1,2 = 2 ± 1

x1 = 2 - 1 = 1

x2 = 2 + 1 = 3

L={ 1 ; 3 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( 1 ) = - 1 2 + 9 2 1 -1 = -1 + 9 2 -1 = 5 2

g( 3 ) = - 3 2 + 9 2 3 -1 = -9 + 27 2 -1 = 7 2

Die Schnittpunkte sind also S1( 1 | 5 2 ) und S2( 3 | 7 2 ).

Linearfaktordarst. aus Term (a=1)

Beispiel:

Gegeben ist die Funktion f mit y= x 2 +3x .
Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Wir können einfach x ausklammern und erhalten so y= ( x +3 ) x .

Linearfaktordarst. am Graph (a=1)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist eine verschobene Normalparabel. Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Wir lesen einfach die beiden Schnittpunkte mit der x-Achse ab: N1(-1|0) und N2(2|0).

Also muss der Funktionsterm y= a · ( x +1 ) · ( x -2 ) sein.

Weil es sich ja aber um eine Normalparabel handelt, kann dieses a nur 1 oder -1 sein.

Die Parabel ist nach oben geöffnet, also muss a = 1 sein.

Der gesuchte faktorisierte Funktionsterm ist somit y= ( x +1 ) ( x -2 ) .