nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Nullstellen mit Nullprodukt

Beispiel:

Bestimme die Nullstellen der quadratischen Funktion f mit
y= x 2 +6x

Lösung einblenden

Um die Nullstellen zu berechnen, setzen wir einfach y = 0.

Hier kann man x ausklammern und den Satz vom Nullprodukt anwenden

x 2 +6x = 0
x ( x +6 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x +6 = 0 | -6
x2 = -6

L={ -6 ; 0}

Nullstellen und Scheitel (Nullprodukt)

Beispiel:

Bestimme die Nullstellen und dann den Scheitel der quadratischen Funktion f mit
y= x 2 +8x

Lösung einblenden

Um die Nullstellen zu berechnen, setzen wir einfach y = 0.

Hier kann man x ausklammern und den Satz vom Nullprodukt anwenden

x 2 +8x = 0
x ( x +8 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x +8 = 0 | -8
x2 = -8

L={ -8 ; 0}

Wegen der Symmetrie von Parabeln wissen wir, dass der Scheitel genau in der Mitte zwischen den Nullstellen liegen muss. Wir berechen also den Mittelwert der beiden Nullstellen -8+0 2 = -4 und erhalten so den x-Wert des Scheitels.

Der Scheitel hat also die Koordinaten S(-4|y) mit y = ( -4 ) 2 +8( -4 ) = 16 -32 = -16.

Als Ergebnisse erhalten wir also: Nullstellen: x1=-8 und x2=0 , Scheitel: S(-4|-16).

Nullstellen mit Mitternachtsformel

Beispiel:

Berechne die Schnittpunkte mit der x-Achse (Nullstellen) des Graphen der Funktion f mit f(x)= - x 2 +4x -4 .

Lösung einblenden

Um die Schnittpunkte mit der x-Achse (Nullstellen) zu berechnen muss man einfach die Funktion gleich Null setzen, also

f(x)=0

- x 2 +4x -4 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -4 ± 4 2 -4 · ( -1 ) · ( -4 ) 2( -1 )

x1,2 = -4 ± 16 -16 -2

x1,2 = -4 ± 0 -2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = -4 -2 = 2

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- x 2 +4x -4 = 0 |: -1

x 2 -4x +4 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -2 ) 2 - 4 = 4 - 4 = 0

Da die Diskriminante D = 0 ist, hat die quadratische Gleichung nur eine Lösunng.

x = 2 ± 0 = 2

L={ 2 }

2 ist 2-fache Lösung!

Gesucht sind ja die Schnittpunkte mit der x-Achse (Nullstellen), d.h. die gesuchten y-Werte sind immer jeweils 0.

Der einzige Schnittpunkt mit der x-Achse ist also N( 2 |0).

Schnittpunkte berechnen

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= ( x -5 ) 2
und
g(x)= 25 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

( x -5 ) 2 = 25 | 2

1. Fall

x -5 = - 25 = -5
x -5 = -5 | +5
x1 = 0

2. Fall

x -5 = 25 = 5
x -5 = 5 | +5
x2 = 10

L={0; 10 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g(0) = 25

g( 10 ) = 25

Die Schnittpunkte sind also S1(0| 25 ) und S2( 10 | 25 ).

Schnittpunkte mit MNF

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= 2 x 2 -3x -19
und
g(x)= x 2 - x -4 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

2 x 2 -3x -19 = x 2 - x -4 | - x 2 + x +4

x 2 -2x -15 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +2 ± ( -2 ) 2 -4 · 1 · ( -15 ) 21

x1,2 = +2 ± 4 +60 2

x1,2 = +2 ± 64 2

x1 = 2 + 64 2 = 2 +8 2 = 10 2 = 5

x2 = 2 - 64 2 = 2 -8 2 = -6 2 = -3

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -1 ) 2 - ( -15 ) = 1+ 15 = 16

x1,2 = 1 ± 16

x1 = 1 - 4 = -3

x2 = 1 + 4 = 5

L={ -3 ; 5 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -3 ) = ( -3 ) 2 - ( -3 ) -4 = 9 +3 -4 = 8

g( 5 ) = 5 2 - 5 -4 = 25 -5 -4 = 16

Die Schnittpunkte sind also S1( -3 | 8 ) und S2( 5 | 16 ).

Schnittpunkte mit MNF (Graph)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gezeichnet ist die Gerade der Funktion f.

Nicht abgebildet ist der Graph von g mit g(x)= - x 2 - 19 2 x -17 .

Bestimme die Schnittpunkte der Graphen von f und g.

Lösung einblenden

Als erstes müssen wir den Funktionsterm des eingezeichneten Graphen von f bestimmen:

Man erkennt sofort, dass es sich um eine Gerade handelt, also gilt y = m⋅x + c .

Den y-Achsenabschnitt c = -2 kann man dem Schaubild leicht entnehmen.

Etwas schwieriger ist das Ablesen der Steigung m. Wenn man sich jedoch ein Steigungsdreick eingezeichnet denkt und 2 Einheit(en) nach rechts geht, so muss man 3 nach oben gehen. Die Steigung ist also m= - 3 2 .

Der Term der abgebildeten Geraden ist also y= - 3 2 x -2 oder f(x)= - 3 2 x -2 .

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

- 3 2 x -2 = - x 2 - 19 2 x -17 |⋅ 2
2( - 3 2 x -2 ) = 2( - x 2 - 19 2 x -17 )
-3x -4 = -2 x 2 -19x -34 | +2 x 2 +19x +34
2 x 2 +16x +30 = 0 |:2

x 2 +8x +15 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -8 ± 8 2 -4 · 1 · 15 21

x1,2 = -8 ± 64 -60 2

x1,2 = -8 ± 4 2

x1 = -8 + 4 2 = -8 +2 2 = -6 2 = -3

x2 = -8 - 4 2 = -8 -2 2 = -10 2 = -5

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 4 2 - 15 = 16 - 15 = 1

x1,2 = -4 ± 1

x1 = -4 - 1 = -5

x2 = -4 + 1 = -3

L={ -5 ; -3 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -5 ) = - ( -5 ) 2 - 19 2 ( -5 ) -17 = -25 + 95 2 -17 = 11 2

g( -3 ) = - ( -3 ) 2 - 19 2 ( -3 ) -17 = -9 + 57 2 -17 = 5 2

Die Schnittpunkte sind also S1( -5 | 11 2 ) und S2( -3 | 5 2 ).

Linearfaktordarst. aus Term (a=1)

Beispiel:

Gegeben ist die Funktion f mit y= x 2 +6x +8 .
Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Für die faktorisierte Darstellung brauchen wir die Nullstellen. Also berechnen wir diese als erstes.

x 2 +6x +8 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -6 ± 6 2 -4 · 1 · 8 21

x1,2 = -6 ± 36 -32 2

x1,2 = -6 ± 4 2

x1 = -6 + 4 2 = -6 +2 2 = -4 2 = -2

x2 = -6 - 4 2 = -6 -2 2 = -8 2 = -4

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 3 2 - 8 = 9 - 8 = 1

x1,2 = -3 ± 1

x1 = -3 - 1 = -4

x2 = -3 + 1 = -2

Der Funktionterm ( x +4 ) ( x +2 ) hat nun also genau die gleichen Nullstellen wie y= x 2 +6x +8 und beide Terme haben a=1 als Koeffizient vor dem x² (Normalparabeln).

Also ist y= ( x +4 ) ( x +2 ) bereits der gesuchte Term.

Linearfaktordarst. am Graph (a=1)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist eine verschobene Normalparabel. Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Wir lesen einfach die beiden Schnittpunkte mit der x-Achse ab: N1(-1|0) und N2(3|0).

Also muss der Funktionsterm y= a · ( x +1 ) · ( x -3 ) sein.

Weil es sich ja aber um eine Normalparabel handelt, kann dieses a nur 1 oder -1 sein.

Die Parabel ist nach unten geöffnet, also muss a = -1 sein.

Der gesuchte faktorisierte Funktionsterm ist somit y= - ( x +1 ) ( x -3 ) .