nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Nullstellen mit Nullprodukt

Beispiel:

Bestimme die Nullstellen der quadratischen Funktion f mit
y= 2 x 2 +4x

Lösung einblenden

Um die Nullstellen zu berechnen, setzen wir einfach y = 0.

Hier kann man x ausklammern und den Satz vom Nullprodukt anwenden

2 x 2 +4x = 0
2 x ( x +2 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x +2 = 0 | -2
x2 = -2

L={ -2 ; 0}

Nullstellen und Scheitel (Nullprodukt)

Beispiel:

Bestimme die Nullstellen und dann den Scheitel der quadratischen Funktion f mit
y= x 2 +2x

Lösung einblenden

Um die Nullstellen zu berechnen, setzen wir einfach y = 0.

Hier kann man x ausklammern und den Satz vom Nullprodukt anwenden

x 2 +2x = 0
x ( x +2 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x +2 = 0 | -2
x2 = -2

L={ -2 ; 0}

Wegen der Symmetrie von Parabeln wissen wir, dass der Scheitel genau in der Mitte zwischen den Nullstellen liegen muss. Wir berechen also den Mittelwert der beiden Nullstellen -2+0 2 = -1 und erhalten so den x-Wert des Scheitels.

Der Scheitel hat also die Koordinaten S(-1|y) mit y = ( -1 ) 2 +2( -1 ) = 1 -2 = -1.

Als Ergebnisse erhalten wir also: Nullstellen: x1=-2 und x2=0 , Scheitel: S(-1|-1).

Nullstellen mit Mitternachtsformel

Beispiel:

Berechne die Schnittpunkte mit der x-Achse (Nullstellen) des Graphen der Funktion f mit f(x)= x 2 +9x + 81 4 .

Lösung einblenden

Um die Schnittpunkte mit der x-Achse (Nullstellen) zu berechnen muss man einfach die Funktion gleich Null setzen, also

f(x)=0

x 2 +9x + 81 4 = 0 |⋅ 4
4( x 2 +9x + 81 4 ) = 0

4 x 2 +36x +81 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -36 ± 36 2 -4 · 4 · 81 24

x1,2 = -36 ± 1296 -1296 8

x1,2 = -36 ± 0 8

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = -36 8 = - 9 2

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "4 " teilen:

4 x 2 +36x +81 = 0 |: 4

x 2 +9x + 81 4 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 9 2 ) 2 - ( 81 4 ) = 81 4 - 81 4 = 0 4 = 0

Da die Diskriminante D = 0 ist, hat die quadratische Gleichung nur eine Lösunng.

x = - 9 2 ± 0 = - 9 2

L={ - 9 2 }

- 9 2 ist 2-fache Lösung!

Gesucht sind ja die Schnittpunkte mit der x-Achse (Nullstellen), d.h. die gesuchten y-Werte sind immer jeweils 0.

Der einzige Schnittpunkt mit der x-Achse ist also N( - 9 2 |0).

Schnittpunkte berechnen

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= ( x +4 ) 2 +7
und
g(x)= 32 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

( x +4 ) 2 +7 = 32 | -7
( x +4 ) 2 = 25 | 2

1. Fall

x +4 = - 25 = -5
x +4 = -5 | -4
x1 = -9

2. Fall

x +4 = 25 = 5
x +4 = 5 | -4
x2 = 1

L={ -9 ; 1 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -9 ) = 32

g( 1 ) = 32

Die Schnittpunkte sind also S1( -9 | 32 ) und S2( 1 | 32 ).

Schnittpunkte mit MNF

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= -2 x 2 + x -4
und
g(x)= -3 x 2 - x -5 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

-2 x 2 + x -4 = -3 x 2 - x -5 | +3 x 2 + x +5

x 2 +2x +1 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -2 ± 2 2 -4 · 1 · 1 21

x1,2 = -2 ± 4 -4 2

x1,2 = -2 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = -2 2 = -1

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 1 2 - 1 = 1 - 1 = 0

Da die Diskriminante D = 0 ist, hat die quadratische Gleichung nur eine Lösunng.

x = -1 ± 0 = -1

L={ -1 }

-1 ist 2-fache Lösung!

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -1 ) = -3 ( -1 ) 2 - ( -1 ) -5 = -31 +1 -5 = -3 +1 -5 = -7

Der einzige Schnittpunkt ist also S( -1 | -7 ).

Schnittpunkte mit MNF (Graph)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gezeichnet ist die Gerade der Funktion f.

Nicht abgebildet ist der Graph von g mit g(x)= - x 2 -3x -6 .

Bestimme die Schnittpunkte der Graphen von f und g.

Lösung einblenden

Als erstes müssen wir den Funktionsterm des eingezeichneten Graphen von f bestimmen:

Man erkennt sofort, dass es sich um eine Gerade handelt, also gilt y = m⋅x + c .

Den y-Achsenabschnitt c = -2 kann man dem Schaubild leicht entnehmen.

Etwas schwieriger ist das Ablesen der Steigung m. Wenn man sich jedoch ein Steigungsdreick eingezeichnet denkt und 1 Einheit(en) nach rechts geht, so muss man 1 nach oben gehen. Die Steigung ist also m=1.

Der Term der abgebildeten Geraden ist also y= x -2 oder f(x)= x -2 .

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

x -2 = - x 2 -3x -6 | + x 2 +3x +6

x 2 +4x +4 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -4 ± 4 2 -4 · 1 · 4 21

x1,2 = -4 ± 16 -16 2

x1,2 = -4 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = -4 2 = -2

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 2 2 - 4 = 4 - 4 = 0

Da die Diskriminante D = 0 ist, hat die quadratische Gleichung nur eine Lösunng.

x = -2 ± 0 = -2

L={ -2 }

-2 ist 2-fache Lösung!

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -2 ) = - ( -2 ) 2 -3( -2 ) -6 = -4 +6 -6 = -4

Der einzige Schnittpunkt ist also S( -2 | -4 ).

Linearfaktordarst. aus Term (a=1)

Beispiel:

Gegeben ist die Funktion f mit y= x 2 +4x +3 .
Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Für die faktorisierte Darstellung brauchen wir die Nullstellen. Also berechnen wir diese als erstes.

x 2 +4x +3 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -4 ± 4 2 -4 · 1 · 3 21

x1,2 = -4 ± 16 -12 2

x1,2 = -4 ± 4 2

x1 = -4 + 4 2 = -4 +2 2 = -2 2 = -1

x2 = -4 - 4 2 = -4 -2 2 = -6 2 = -3

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 2 2 - 3 = 4 - 3 = 1

x1,2 = -2 ± 1

x1 = -2 - 1 = -3

x2 = -2 + 1 = -1

Der Funktionterm ( x +3 ) ( x +1 ) hat nun also genau die gleichen Nullstellen wie y= x 2 +4x +3 und beide Terme haben a=1 als Koeffizient vor dem x² (Normalparabeln).

Also ist y= ( x +3 ) ( x +1 ) bereits der gesuchte Term.

Linearfaktordarst. am Graph (a=1)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist eine verschobene Normalparabel. Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Wir lesen einfach die beiden Schnittpunkte mit der x-Achse ab: N1(0|0) und N2(4|0).

Also muss der Funktionsterm y= a · x · ( x -4 ) sein.

Weil es sich ja aber um eine Normalparabel handelt, kann dieses a nur 1 oder -1 sein.

Die Parabel ist nach unten geöffnet, also muss a = -1 sein.

Der gesuchte faktorisierte Funktionsterm ist somit y= - x ( x -4 ) .