nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Nullstellen mit Nullprodukt

Beispiel:

Bestimme die Nullstellen der quadratischen Funktion f mit
y= 2 x 2 +9x

Lösung einblenden

Um die Nullstellen zu berechnen, setzen wir einfach y = 0.

Hier kann man x ausklammern und den Satz vom Nullprodukt anwenden

2 x 2 +9x = 0
x ( 2x +9 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

2x +9 = 0 | -9
2x = -9 |:2
x2 = - 9 2 = -4.5

L={ - 9 2 ; 0}

Nullstellen und Scheitel (Nullprodukt)

Beispiel:

Bestimme die Nullstellen und dann den Scheitel der quadratischen Funktion f mit
y= x 2 -2x

Lösung einblenden

Um die Nullstellen zu berechnen, setzen wir einfach y = 0.

Hier kann man x ausklammern und den Satz vom Nullprodukt anwenden

x 2 -2x = 0
x ( x -2 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x -2 = 0 | +2
x2 = 2

L={0; 2 }

Wegen der Symmetrie von Parabeln wissen wir, dass der Scheitel genau in der Mitte zwischen den Nullstellen liegen muss. Wir berechen also den Mittelwert der beiden Nullstellen 0+2 2 = 1 und erhalten so den x-Wert des Scheitels.

Der Scheitel hat also die Koordinaten S(1|y) mit y = 1 2 -21 = 1 -2 = -1.

Als Ergebnisse erhalten wir also: Nullstellen: x1=0 und x2=2 , Scheitel: S(1|-1).

Nullstellen mit Mitternachtsformel

Beispiel:

Berechne die Schnittpunkte mit der x-Achse (Nullstellen) des Graphen der Funktion f mit f(x)= x 2 -5x + 25 4 .

Lösung einblenden

Um die Schnittpunkte mit der x-Achse (Nullstellen) zu berechnen muss man einfach die Funktion gleich Null setzen, also

f(x)=0

x 2 -5x + 25 4 = 0 |⋅ 4
4( x 2 -5x + 25 4 ) = 0

4 x 2 -20x +25 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +20 ± ( -20 ) 2 -4 · 4 · 25 24

x1,2 = +20 ± 400 -400 8

x1,2 = +20 ± 0 8

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = 20 8 = 5 2

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "4 " teilen:

4 x 2 -20x +25 = 0 |: 4

x 2 -5x + 25 4 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 5 2 ) 2 - ( 25 4 ) = 25 4 - 25 4 = 0 4 = 0

Da die Diskriminante D = 0 ist, hat die quadratische Gleichung nur eine Lösunng.

x = 5 2 ± 0 = 5 2

L={ 5 2 }

5 2 ist 2-fache Lösung!

Gesucht sind ja die Schnittpunkte mit der x-Achse (Nullstellen), d.h. die gesuchten y-Werte sind immer jeweils 0.

Der einzige Schnittpunkt mit der x-Achse ist also N( 5 2 |0).

Schnittpunkte berechnen

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= - ( x +2 ) 2 -24
und
g(x)= -28 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

- ( x +2 ) 2 -24 = -28 | +24
- ( x +2 ) 2 = -4 |: ( -1 )
( x +2 ) 2 = 4 | 2

1. Fall

x +2 = - 4 = -2
x +2 = -2 | -2
x1 = -4

2. Fall

x +2 = 4 = 2
x +2 = 2 | -2
x2 = 0

L={ -4 ; 0}

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -4 ) = -28

g(0) = -28

Die Schnittpunkte sind also S1( -4 | -28 ) und S2(0| -28 ).

Schnittpunkte mit MNF

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= 6 x 2 -7x -11
und
g(x)= 5 x 2 -5x -3 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

6 x 2 -7x -11 = 5 x 2 -5x -3 | -5 x 2 +5x +3

x 2 -2x -8 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +2 ± ( -2 ) 2 -4 · 1 · ( -8 ) 21

x1,2 = +2 ± 4 +32 2

x1,2 = +2 ± 36 2

x1 = 2 + 36 2 = 2 +6 2 = 8 2 = 4

x2 = 2 - 36 2 = 2 -6 2 = -4 2 = -2

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -1 ) 2 - ( -8 ) = 1+ 8 = 9

x1,2 = 1 ± 9

x1 = 1 - 3 = -2

x2 = 1 + 3 = 4

L={ -2 ; 4 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -2 ) = 5 ( -2 ) 2 -5( -2 ) -3 = 54 +10 -3 = 20 +10 -3 = 27

g( 4 ) = 5 4 2 -54 -3 = 516 -20 -3 = 80 -20 -3 = 57

Die Schnittpunkte sind also S1( -2 | 27 ) und S2( 4 | 57 ).

Schnittpunkte mit MNF (Graph)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gezeichnet ist die Gerade der Funktion f.

Nicht abgebildet ist der Graph von g mit g(x)= - x 2 + x +12 .

Bestimme die Schnittpunkte der Graphen von f und g.

Lösung einblenden

Als erstes müssen wir den Funktionsterm des eingezeichneten Graphen von f bestimmen:

Man erkennt sofort, dass es sich um eine Gerade handelt, also gilt y = m⋅x + c .

Den y-Achsenabschnitt c = 3 kann man dem Schaubild leicht entnehmen.

Etwas schwieriger ist das Ablesen der Steigung m. Wenn man sich jedoch ein Steigungsdreick eingezeichnet denkt und 1 Einheit(en) nach rechts geht, so muss man 1 nach oben gehen. Die Steigung ist also m=1.

Der Term der abgebildeten Geraden ist also y= x +3 oder f(x)= x +3 .

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

x +3 = - x 2 + x +12 | -3
x = - x 2 + x +9 | + x 2 - x
x 2 = 9 | 2
x1 = - 9 = -3
x2 = 9 = 3

L={ -3 ; 3 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -3 ) = - ( -3 ) 2 -3 +12 = -9 -3 +12 = 0

g( 3 ) = - 3 2 +3 +12 = -9 +3 +12 = 6

Die Schnittpunkte sind also S1( -3 |0) und S2( 3 | 6 ).

Linearfaktordarst. aus Term (a=1)

Beispiel:

Gegeben ist die Funktion f mit y= x 2 -2x .
Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Wir können einfach x ausklammern und erhalten so y= x ( x -2 ) .

Linearfaktordarst. am Graph (a=1)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist eine verschobene Normalparabel. Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Wir lesen einfach die beiden Schnittpunkte mit der x-Achse ab: N1(1|0) und N2(3|0).

Also muss der Funktionsterm y= a · ( x -1 ) · ( x -3 ) sein.

Weil es sich ja aber um eine Normalparabel handelt, kann dieses a nur 1 oder -1 sein.

Die Parabel ist nach oben geöffnet, also muss a = 1 sein.

Der gesuchte faktorisierte Funktionsterm ist somit y= ( x -1 ) ( x -3 ) .