nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Pythagoras am Einheitskreis

Beispiel:

Für ein α zwischen 0° und 90° gilt: sin(α) = 51 10 . Berechne cos(α).

Lösung einblenden

Nach dem Satz des Pythagoras im Einheitskreis gilt immer:

(sin(α))2 + (cos(α))2 = 1

Umgestellt nach cos(α):

(cos(α))2 = 1 - (sin(α))2

= 1 - ( 51 10 ) 2

= 1 - 51 100

= 49 100

Damit glit für cos(α):

cos(α) = 7 10 = 0.7

sin und cos am Einheitskreis

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Bestimme näherungsweise cos(41°).

Auf dem Einheitskreis rechts kann man mit der Maus (Finger) Winkel einzeichen

Lösung einblenden

Am Einheitskreis kann man die Werte für sin(41°) und cos(41°) ablesen:

cos(41°) ist der x-Wert des Schnittpunktes der roten Geraden mit dem (blauen) Einheitskreis, also die Länge der orangen Strecke.
Am besten ablesen kann man diesen Wert, wenn man die (grüne) senkrechte Linie zur x-Aches verfolgt:

cos(41°) ≈ 0.75

arcsin und arccos am Einheitskreis

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Bestimme näherungsweise den Winkel α zwischen 0° und 90° mit sin(α) = 0.85.

Auf dem Einheitskreis rechts kann man mit der Maus (Finger) Winkel einzeichen

Lösung einblenden

Am Einheitskreis kann man den Wert für α ablesen:

sin(α) = 0.85 bedeutet, dass der y-Wert des Schnittpunktes der roten Geraden mit dem (blauen) Einheitskreis 0.85 sein muss. Wenn man den den Winkel auf 58.2° setzt, so sieht man, dass der sin(58.2)°, also die Länge der grünen Strecke eben ≈ 0.85 ist.

sin(58.2°) ≈ 0.85

sin und cos am Einheitskreis (360°)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Bestimme näherungsweise cos(278°).

Auf dem Einheitskreis rechts kann man mit der Maus (Finger) Winkel einzeichen

Lösung einblenden

Am Einheitskreis kann man die Werte für sin(278°) und cos(278°) ablesen:

cos(278°) ist der x-Wert des Schnittpunktes der roten Geraden mit dem (blauen) Einheitskreis, also die (vorzeichenbehaftete) Länge der orangen Strecke.
Am besten ablesen kann man diesen Wert, wenn man die (grüne) senkrechte Linie zur x-Aches verfolgt:

cos(278°) ≈ 0.14

arcsin und arccos am Einheitskreis (360°)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Bestimme näherungsweise alle Winkel α mit 0° ≤ α < 360° mit cos(α) = -0.25.

Auf dem Einheitskreis rechts kann man mit der Maus (Finger) Winkel einzeichen

Lösung einblenden

Am Einheitskreis kann man die beiden Werte für α ablesen:

cos(α) = -0.25 bedeutet, dass der x-Wert des Schnittpunktes der roten Geraden mit dem (blauen) Einheitskreis, -0.25 sein muss. In der Skizze sieht man, dass dies sowohl für α1 = 104.5° als auch für α2 = 360° - α1 = 255.5° der Fall ist, weil in beiden Fällen die Länge der orangen Strecke eben ≈ -0.25 ist.

cos(104.5°) ≈ -0.25 und cos(255.5°) ≈ -0.25

Sinus-Funktion

Beispiel:

Ein Generator erzeugt Wechselstrom in Form einer Sinus-Kurve. Dabei schwankt die Spannung zwischen - 220 Volt und +220 Volt. Die Periodenlänge (also die Zeit, bis alles wieder von vorne losgeht) beträgt 40 ms (Millisekunden). Zu Beobachtungsbeginn beträgt die Spannung 0 Volt. Danach steigt sie an.Wie hoch ist die Spannung 28 ms nach Beobachtungsbeginn? Berechne einen Zeitpunkt, an dem die Spannung 187 Volt beträgt?

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

So erhalten wir die Funktion f(α) = 220 ⋅ sin(α).

1. Gesuchte Höhe zur Zeit t = 28 ms

Um nun die gesuchte Höhe zur gegebenen Zeit zu berechnen, müssen wir zuerst den Winkel bestimmen, der nach 28 ms erreicht wurde. Weil ja immer gleich viel Winkel pro Zeit 'zurückgelegt' wird, genügt hierfür ein Dreisatz :

40 ms ≙ 360°
1 ms ≙ 360 40 ° = 9°
28 ms ≙ 9 ⋅ 28° ≈ 252°

sin(252°) ≈ -0.95, entsprechend ist 220 ⋅ sin(252°) ≈ -209.23

Also ist nach 28 ms der y-Wert -209,23 V.

2. Gesuchte Zeit zur gegebenen Höhe h = 187 V

Wir können nun nach dem Winkel suchen, bei dem f(α) = 220 ⋅ sin(α) = 187 gilt.

220 ⋅ sin(α) = 187 |: 220

sin(α) = 0.85 | arcsin(⋅) (WTR: sin-1)

α ≈ 58.2°

Jetzt müssen wir den Dreisatz eben anders rum wie oben machen:

360° ≙ 40 ms
1 ° ≙ 40 360 ms = 1 9 ms
58.2° ≙ 1 9 ⋅ 58.2 ms ≈ 6.467 ms

Somit ist nach 6,467 ms die Höhe h = 187 V erreicht.

Am Schaubild sehen wir, dass es aber auch noch einen zweiten Winkel β mit 220 ⋅ sin(α) = 187 bzw. sin(β) = 0.85. Durch die Symmetrie erkennen wir, dass dieser weitere Winkel β gleich weit von 180° entfernt ist wie α, es gilt also β = 180°-α = 180°-58.2 = 121.8°.

Auch hier müssen wir wieder mit dem Dreisatz die zugehörige Zeit ermitteln:

360° ≙ 40 ms
1 ° ≙ 40 360 ms = 1 9 ms
121.8° ≙ 1 9 ⋅ 121.8 ms ≈ 13.533 ms

Somit ist nach auch 13,533 ms die Höhe h = 187 V erreicht.