Klasse 5
Klasse 6
Klasse 7
Klasse 8
Klasse 9
Klasse 10
Fit für die Oberstufe
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Sinus und Thaleskreis (leicht)
Beispiel:
Das große Dreieck ist gleichschenklig.
Der blaue Halbkreis hat einen Durchmesser von u = 7 cm.
Die Länge der gemeinsamen Kante der beiden Dreiecke beträgt v = 5.9 cm.
Bestimme die fehlende Winkelweite α.
Am blauen Thaleskreis erkennt man sofort, dass γ ein rechter Winkel sein muss.
Nach der Definition des Sinus gilt im rechtwinkligen Dreieck sin(β)=
Damit folgt sin(β)==0.843 und somit β=57.4°
Wegen der Winkelsumme im Dreieck muss gelten: 90° + β + α = 180°.
Somit gilt α = 90° - β° = 32.6°.
Sinus und Thaleskreis (schwer)
Beispiel:
Das große Dreieck ist gleichschenklig. Bestimme die Länge der Strecke PQ.
Am blauen Thaleskreis über dem ersten Dreieck erkennt man sofort, dass γ ein rechter Winkel sein muss.
Aufgrund der Winkelsumme im ersten Dreieck folgt β + γ + 29° = 180°.
Daraus folgt β = 180° - 90° - 29° = 61°
Mit Hilfe des Sinus kann man nun die Länge der gemeinsamen Seite g der beiden Dreiecke berechnen:
Da g die Gegenkathete von β ist, gilt: sin(β)=sin(61°) =
Damit folgt g = sin(61°) ⋅ 5cm ≈ 4.4cm
Als Nebenwinkel von γ muss natürlich auch δ ein rechter Winkel sein.
Aufgrund der Gleichschenkligkeit des großen Dreiecks muss β und (α+29°) gleich groß sein. Damit gilt 61° = α + 29°, woraus folgt: α = 32°
Mit der Winkelsumme im zweiten Dreieck folgt nun ε = 90° - α = 90° - 32° = 58°
Nun können wir in diesem Dreieck den Sinus anwenden und so die gesuchte Seite PQ herausfinden: sin(ε)=
Setzt man die bekannten Werte ein, so folgt sin(58°)=
Damit folgt: PQ = ≈ 5.2cm
Trigonometrie Anwendungen
Beispiel:
Von einem Fenster in 13m Höhe kann man den entfernten Rand eines Kanals unter dem Winkel α=80° gegenüber der Senkrechten betrachten. Der vordere Rand des Kanals erscheinet unter dem Winkel β=35° gegenüber der Senkrechten. Wie breit ist der Kanal?
In beiden Dreiecken gilt für den Tangens: tan(α)=.
Da nach der Gegenkathete gesucht wird, stellen wir um zu
Gegenkathete g1=Ankathete ⋅ tan(α)=13 ⋅ tan(80°)
≈73.7267
Genau gleich verfahren wir mit dem anderen Dreieck:
Gegenkathete g2=Ankathete ⋅ tan(β)=13 ⋅ tan(35°)
≈9.1027
Die gesuchte Strecke ist nun gerade die Differenz der beiden Gegenkatheten:
s=73.727 - 9.103 ≈ 64.624 m.
Winkel zw. Punkten im Koordinatensystem
Beispiel:
Berechne alle Längen und Winkel im Dreick ABC mit A(1|-2), B(5|-2) und C(5|5).
Runde die Ergebnisse auf eine Nachkommastelle.
Wenn man die drei Punkte in ein Koordinatensystem einträgt, erkennt man sofort, dass (zwischen B und C) a = 7 und (zwischen A und B) c = 4 sein müssen. Weil das Dreieck rechtwinklig ist, kann man b (zwischen A und C), also die Hypotenuse, mit dem Satz des Pythagoras berechnen:
Dreiecks mit Hilfe des Satzes des Pythagoras berechnen.b2 = 72 + 42
b2 = 49 + 16
b2 = 65
b = ≈ 8.06
Da a (zwischen B und C) und c (zwischen A und B) parallel zu den Koordinatenachsen sind, muss der Winkel in B β = 90° sein.
Den Winkel α können wir mit dem Tangens berechnen:
tan(α) = = = 1.75
Daraus folgt: α = arctan(1.75) ≈ 60.3°.
Wegen der Winkelsumme von 180° im Dreieck folgt: γ = 90°-60.3° = 29.7°