nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Sinus und Thaleskreis (leicht)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Das große Dreieck ist gleichschenklig.

Der blaue Halbkreis hat einen Durchmesser von u = 6.5 cm.

Die Länge der gemeinsamen Kante der beiden Dreiecke beträgt v = 5.6 cm.

Bestimme die fehlende Winkelweite α.

Lösung einblenden

Am blauen Thaleskreis erkennt man sofort, dass γ ein rechter Winkel sein muss.

Nach der Definition des Sinus gilt im rechtwinkligen Dreieck sin(β)= Gegenkathete Hypotenuse

Damit folgt sin(β)= 5.6cm 6.5cm =0.862 und somit β=59.5°

Wegen der Winkelsumme im Dreieck muss gelten: 90° + β + α = 180°.
Somit gilt α = 90° - β° = 30.5°.

Sinus und Thaleskreis (schwer)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Das große Dreieck ist gleichschenklig. Bestimme die Länge der Strecke PQ.

Lösung einblenden

Am blauen Thaleskreis über dem ersten Dreieck erkennt man sofort, dass γ ein rechter Winkel sein muss.

Aufgrund der Winkelsumme im ersten Dreieck folgt β + γ + 29° = 180°.

Daraus folgt β = 180° - 90° - 29° = 61°

Mit Hilfe des Sinus kann man nun die Länge der gemeinsamen Seite g der beiden Dreiecke berechnen:

Da g die Gegenkathete von β ist, gilt: sin(β)=sin(61°) = g 5cm

Damit folgt g = sin(61°) ⋅ 5cm ≈ 4.4cm

Als Nebenwinkel von γ muss natürlich auch δ ein rechter Winkel sein.

Aufgrund der Gleichschenkligkeit des großen Dreiecks muss β und (α+29°) gleich groß sein. Damit gilt 61° = α + 29°, woraus folgt: α = 32°

Mit der Winkelsumme im zweiten Dreieck folgt nun ε = 90° - α = 90° - 32° = 58°

Nun können wir in diesem Dreieck den Sinus anwenden und so die gesuchte Seite PQ herausfinden: sin(ε)= g PQ

Setzt man die bekannten Werte ein, so folgt sin(58°)= 4.4 PQ

Damit folgt: PQ = 4.4 sin(58°) ≈ 5.2cm

Trigonometrie Anwendungen

Beispiel:

Von einem Fenster in 13m Höhe kann man den entfernten Rand eines Kanals unter dem Winkel α=70° gegenüber der Senkrechten betrachten. Der vordere Rand des Kanals erscheinet unter dem Winkel β=35° gegenüber der Senkrechten. Wie breit ist der Kanal?

Lösung einblenden

In beiden Dreiecken gilt für den Tangens: tan(α)= Gegenkathete Ankathete .
Da nach der Gegenkathete gesucht wird, stellen wir um zu
Gegenkathete g1=Ankathete ⋅ tan(α)=13 ⋅ tan(70°) ≈35.7172

Genau gleich verfahren wir mit dem anderen Dreieck:
Gegenkathete g2=Ankathete ⋅ tan(β)=13 ⋅ tan(35°) ≈9.1027

Die gesuchte Strecke ist nun gerade die Differenz der beiden Gegenkatheten:
s=35.717 - 9.103 ≈ 26.615 m.

Winkel zw. Punkten im Koordinatensystem

Beispiel:

Berechne alle Längen und Winkel im Dreick ABC mit A(-4|1), B(-1|1) und C(-1|4).

Runde die Ergebnisse auf eine Nachkommastelle.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wenn man die drei Punkte in ein Koordinatensystem einträgt, erkennt man sofort, dass (zwischen B und C) a = 3 und (zwischen A und B) c = 3 sein müssen. Weil das Dreieck rechtwinklig ist, kann man b (zwischen A und C), also die Hypotenuse, mit dem Satz des Pythagoras berechnen:

Dreiecks mit Hilfe des Satzes des Pythagoras berechnen.

b2 = 32 + 32

b2 = 9 + 9

b2 = 18

b = 18 4.24

Da a (zwischen B und C) und c (zwischen A und B) parallel zu den Koordinatenachsen sind, muss der Winkel in B β = 90° sein.

Den Winkel α können wir mit dem Tangens berechnen:

tan(α) = Gegenkathete Ankathete = 3 3 = 1

Daraus folgt: α = arctan(1) ≈ 45°.

Wegen der Winkelsumme von 180° im Dreieck folgt: γ = 90°-45° = 45°