Klasse 5
Klasse 6
Klasse 7
Klasse 8
Klasse 9
Klasse 10
Fit für die Oberstufe
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Zweisatz (antiproportional)
Beispiel:
Ein Hausmeister hat ein extra Budget von 500 € für die Schulreinigung in den Ferien, das er unter helfenden Schüler:innen aufteilen kann (er selbst bekommt nichts von dem Geld).
Welchen Lohn könnte er jeder Helfer:in bezahlen, wenn er 10 Helfer:innen hätte?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Um von 1 Helfer:innen in der ersten Zeile auf 10 Helfer:innen in der zweiten Zeile zu kommen, müssen wir mit 10 multiplizieren. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 500 € Lohn durch 10 teilen, um auf den Wert zu kommen, der den 10 Helfer:innen entspricht:
⋅ 10
|
![]() |
|
![]() |
: 10
|
⋅ 10
|
![]() |
|
![]() |
: 10
|
Damit haben wir nun den gesuchten Wert, der den 10 Helfer:innen entspricht: 50 € Lohn
Dreisatz (antiproportional)
Beispiel:
Um den noch fehlenden Betrag für eine Klassenfahrt zu bekommen, veranstaltet eine Schulkasse ein Lotterie. Wenn sie 6€ für ein Los verlangen, müssten sie 40 Lose verkaufen um genügend Geld zusammen zu bekommen.
Wie viele Lose müssten sie bei einem Lospreis von 8 € verkaufen?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Wir suchen einen möglichst großen Zwischenwert für die € Lospreis in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 6 € Lospreis teilen müssen.) Diese Zahl sollte eine Teiler von 6 und von 8 sein, also der ggT(6,8) = 2.
Wir suchen deswegen erst den entsprechenden Wert für 2 € Lospreis:
|
Um von 6 € Lospreis in der ersten Zeile auf 2 € Lospreis in der zweiten Zeile zu kommen, müssen wir durch 3 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 40 Lose nicht durch 3 teilen, sondern mit 3 multiplizieren um auf den Wert zu kommen, der den 2 € Lospreis links entspricht:
: 3
|
![]() |
|
![]() |
⋅ 3
|
: 3
|
![]() |
|
![]() |
⋅ 3
|
Jetzt müssen wir ja wieder die 2 € Lospreis in der mittleren Zeile mit 4 multiplizieren, um auf die 8 € Lospreis in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
: 3
⋅ 4
|
![]() ![]() |
|
![]() ![]() |
⋅ 3
: 4
|
Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 120 Lose in der mittleren Zeile durch 4 dividieren:
: 3
⋅ 4
|
![]() ![]() |
|
![]() ![]() |
⋅ 3
: 4
|
Damit haben wir nun den gesuchten Wert, der den 8 € Lospreis entspricht: 30 Lose
Tabelle (antiproportional)
Beispiel:
Die Tabelle zeigt Werte von zwei Größen mit einem antiproportionalen Zusammenhang. Übertrage die Tabelle in dein Heft und berechne mit dem Dreisatz die fehlende Größen.
6 Helfer:innen | 100 € Lohn |
? | ? |
5 Helfer:innen | ? |
Wir suchen einen möglichst großen Zwischenwert für die Helfer:innen in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 6 Helfer:innen teilen müssen.) Diese Zahl sollte eine Teiler von 6 und von 5 sein, also der ggT(6,5) = 1.
Wir suchen deswegen erst den entsprechenden Wert für 1 Helfer:innen:
|
Um von 6 Helfer:innen in der ersten Zeile auf 1 Helfer:innen in der zweiten Zeile zu kommen, müssen wir durch 6 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 100 € Lohn nicht durch 6 teilen, sondern mit 6 multiplizieren um auf den Wert zu kommen, der den 1 Helfer:innen links entspricht:
: 6
|
![]() |
|
![]() |
⋅ 6
|
: 6
|
![]() |
|
![]() |
⋅ 6
|
Jetzt müssen wir ja wieder die 1 Helfer:innen in der mittleren Zeile mit 5 multiplizieren, um auf die 5 Helfer:innen in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
: 6
⋅ 5
|
![]() ![]() |
|
![]() ![]() |
⋅ 6
: 5
|
Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 600 € Lohn in der mittleren Zeile durch 5 dividieren:
: 6
⋅ 5
|
![]() ![]() |
|
![]() ![]() |
⋅ 6
: 5
|
Damit haben wir nun den gesuchten Wert, der den 5 Helfer:innen entspricht: 120 € Lohn
Antiproportionalität überprüfen
Beispiel:
Prüfe, ob es sich um einen antiproportionalen Zusammenhang handelt; falls nicht, korrigiere die Werte.
Wir überprüfen zuerst, ob die 2 ms den 15 CPU-Kerne entsprechen.
: 2
⋅ 3
|
![]() ![]() |
|
![]() ![]() |
⋅ 2
: 3
|
Der urpsrünglich vorgegebene Wert 2 ms(für 15 CPU-Kerne) war also korrekt.
Jetzt überprüfen wir, ob die 5 ms den 6 CPU-Kerne entsprechen.
: 5
⋅ 3
|
![]() ![]() |
|
![]() ![]() |
⋅ 5
: 3
|
Der urpsrünglich vorgegebene Wert 5 ms (für 6 CPU-Kerne) war also korrekt.
Dreisatz (antiprop.) beide Richtungen
Beispiel:
Zur Berechnung einer komplizierten Verschlüsselung muss ein Computer mit 8 CPU-Kernen 6 ms rechnen.
Wie lange bräuchte ein Computer mit 12 solchen CPU-Kernen?
Wie viele CPU-Kerne bräuchte der Computer, wenn er es in 12 ms rechnen könnte?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Wir suchen einen möglichst großen Zwischenwert für die CPU-Kerne in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 8 CPU-Kerne teilen müssen.) Diese Zahl sollte eine Teiler von 8 und von 12 sein, also der ggT(8,12) = 4.
Wir suchen deswegen erst den entsprechenden Wert für 4 CPU-Kerne:
|
Um von 8 CPU-Kerne in der ersten Zeile auf 4 CPU-Kerne in der zweiten Zeile zu kommen, müssen wir durch 2 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 6 ms nicht durch 2 teilen, sondern mit 2 multiplizieren um auf den Wert zu kommen, der den 4 CPU-Kerne links entspricht:
: 2
|
![]() |
|
![]() |
⋅ 2
|
Jetzt müssen wir ja wieder die 4 CPU-Kerne in der mittleren Zeile mit 3 multiplizieren, um auf die 12 CPU-Kerne in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
: 2
⋅ 3
|
![]() ![]() |
|
![]() ![]() |
⋅ 2
: 3
|
Damit haben wir nun den gesuchten Wert, der den 12 CPU-Kerne entspricht: 4 ms
Um von 6 ms in der ersten Zeile auf 12 ms in der zweiten Zeile zu kommen, müssen wir mit 2 multiplizieren. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 8 CPU-Kerne durch 2 teilen, um auf den Wert zu kommen, der den 12 ms entspricht:
⋅ 2
|
![]() |
|
![]() |
: 2
|
⋅ 2
|
![]() |
|
![]() |
: 2
|
Damit haben wir nun den gesuchten Wert, der den 12 ms entspricht: 4 CPU-Kerne
Wert bei Anti-Proport. (Anwendungen)
Beispiel:
Ein Raum wird mit 30 LED-Leuchten á 160 Lumen ausgeleuchtet. Aus ästhetischen Gründen sollen nur noch 12 Leuchten im Raum installiert sein, diese sollen aber die gleiche Helligkeit erzeugen. Wie viel Lumen brauchen dann diese neuen LED-Leuchten?
Da die Zuordnung der beiden Größen antiproportional ist, schreiben wir die Werte am besten mal in eine Tabelle:
Anzahl LED-Leuchten | Helligkeit |
---|---|
30 | 160 Lumen |
( : 30 ) | ( ⋅ 30 ) |
1 | Lumen |
( ⋅ 12 ) | ( : 12 ) |
12 | Lumen |
Die gesuchte Helligkeit ist also = Lumen