nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Zweisatz (antiproportional)

Beispiel:

Wenn Karla mit ihrem Handy jeden Tag immer 1 Minute telefonieren würde, würden ihre Freiminuten noch genau 45 Tage halten.

Wann wären ihre Freiminuten aufgebraucht, wenn sie täglich 5 min telefonieren würde?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:

1 Minute pro Tag45 Tage
5 Minuten pro Tag?

Um von 1 Minuten pro Tag in der ersten Zeile auf 5 Minuten pro Tag in der zweiten Zeile zu kommen, müssen wir mit 5 multiplizieren. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 45 Tage durch 5 teilen, um auf den Wert zu kommen, der den 5 Minuten pro Tag entspricht:

⋅ 5
1 Minute pro Tag45 Tage
5 Minuten pro Tag?
: 5
⋅ 5
1 Minute pro Tag45 Tage
5 Minuten pro Tag9 Tage
: 5

Damit haben wir nun den gesuchten Wert, der den 5 Minuten pro Tag entspricht: 9 Tage

Dreisatz (antiproportional)

Beispiel:

Wenn Frau Baumann so Auto fährt, dass sie 6 Liter pro 100km verbraucht, kommt sie mit einer Tankfüllung 800 km weit.

Wie weit würde sie mit einer Tankfüllung kommen, wenn sie mit einem "4 Liter/100km "-Schnitt fahren würde?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:


6 Liter pro 100km800 km
??
4 Liter pro 100km?

Wir suchen einen möglichst großen Zwischenwert für die Liter pro 100km in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 6 Liter pro 100km teilen müssen.) Diese Zahl sollte eine Teiler von 6 und von 4 sein, also der ggT(6,4) = 2.

Wir suchen deswegen erst den entsprechenden Wert für 2 Liter pro 100km:


6 Liter pro 100km800 km
2 Liter pro 100km?
4 Liter pro 100km?

Um von 6 Liter pro 100km in der ersten Zeile auf 2 Liter pro 100km in der zweiten Zeile zu kommen, müssen wir durch 3 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 800 km nicht durch 3 teilen, sondern mit 3 multiplizieren um auf den Wert zu kommen, der den 2 Liter pro 100km links entspricht:

: 3

6 Liter pro 100km800 km
2 Liter pro 100km?
4 Liter pro 100km?

⋅ 3
: 3

6 Liter pro 100km800 km
2 Liter pro 100km2400 km
4 Liter pro 100km?

⋅ 3

Jetzt müssen wir ja wieder die 2 Liter pro 100km in der mittleren Zeile mit 2 multiplizieren, um auf die 4 Liter pro 100km in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 3
⋅ 2

6 Liter pro 100km800 km
2 Liter pro 100km2400 km
4 Liter pro 100km?

⋅ 3
: 2

Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 2400 km in der mittleren Zeile durch 2 dividieren:

: 3
⋅ 2

6 Liter pro 100km800 km
2 Liter pro 100km2400 km
4 Liter pro 100km1200 km

⋅ 3
: 2

Damit haben wir nun den gesuchten Wert, der den 4 Liter pro 100km entspricht: 1200 km

Tabelle (antiproportional)

Beispiel:

Die Tabelle zeigt Werte von zwei Größen mit einem antiproportionalen Zusammenhang. Übertrage die Tabelle in dein Heft und berechne mit dem Dreisatz die fehlende Größen.

6 CPU-Kerne6 ms
??
4 CPU-Kerne?

Lösung einblenden

Wir suchen einen möglichst großen Zwischenwert für die CPU-Kerne in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 6 CPU-Kerne teilen müssen.) Diese Zahl sollte eine Teiler von 6 und von 4 sein, also der ggT(6,4) = 2.

Wir suchen deswegen erst den entsprechenden Wert für 2 CPU-Kerne:


6 CPU-Kerne6 ms
2 CPU-Kerne?
4 CPU-Kerne?

Um von 6 CPU-Kerne in der ersten Zeile auf 2 CPU-Kerne in der zweiten Zeile zu kommen, müssen wir durch 3 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 6 ms nicht durch 3 teilen, sondern mit 3 multiplizieren um auf den Wert zu kommen, der den 2 CPU-Kerne links entspricht:

: 3

6 CPU-Kerne6 ms
2 CPU-Kerne?
4 CPU-Kerne?

⋅ 3
: 3

6 CPU-Kerne6 ms
2 CPU-Kerne18 ms
4 CPU-Kerne?

⋅ 3

Jetzt müssen wir ja wieder die 2 CPU-Kerne in der mittleren Zeile mit 2 multiplizieren, um auf die 4 CPU-Kerne in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 3
⋅ 2

6 CPU-Kerne6 ms
2 CPU-Kerne18 ms
4 CPU-Kerne?

⋅ 3
: 2

Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 18 ms in der mittleren Zeile durch 2 dividieren:

: 3
⋅ 2

6 CPU-Kerne6 ms
2 CPU-Kerne18 ms
4 CPU-Kerne9 ms

⋅ 3
: 2

Damit haben wir nun den gesuchten Wert, der den 4 CPU-Kerne entspricht: 9 ms

Antiproportionalität überprüfen

Beispiel:

Prüfe, ob es sich um einen antiproportionalen Zusammenhang handelt; falls nicht, korrigiere die Werte.

Lösung einblenden

Wir überprüfen zuerst, ob die 4 ms den 12 CPU-Kerne entsprechen.

: 2
⋅ 3

8 CPU-Kerne6 ms
4 CPU-Kerne12 ms
12 CPU-Kerne4 ms

⋅ 2
: 3

Der urpsrünglich vorgegebene Wert 4 ms(für 12 CPU-Kerne) war also korrekt.


Jetzt überprüfen wir, ob die 9 ms den 4 CPU-Kerne entsprechen.

: 2
⋅ 1

8 CPU-Kerne6 ms
4 CPU-Kerne12 ms
4 CPU-Kerne12 ms

⋅ 2
: 1

Der urpsrünglich vorgegebene Wert 9 ms (für 4 CPU-Kerne) war also falsch, richtig wäre 12 ms gewesen.

Dreisatz (antiprop.) beide Richtungen

Beispiel:

Zur Berechnung einer komplizierten Verschlüsselung muss ein Computer mit 8 CPU-Kernen 7 ms rechnen.

Wie lange bräuchte ein Computer mit 14 solchen CPU-Kernen?
Wie viele CPU-Kerne bräuchte der Computer, wenn er es in 8 ms rechnen könnte?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:


8 CPU-Kerne7 ms
??
14 CPU-Kerne?

Wir suchen einen möglichst großen Zwischenwert für die CPU-Kerne in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 8 CPU-Kerne teilen müssen.) Diese Zahl sollte eine Teiler von 8 und von 14 sein, also der ggT(8,14) = 2.

Wir suchen deswegen erst den entsprechenden Wert für 2 CPU-Kerne:


8 CPU-Kerne7 ms
2 CPU-Kerne?
14 CPU-Kerne?

Um von 8 CPU-Kerne in der ersten Zeile auf 2 CPU-Kerne in der zweiten Zeile zu kommen, müssen wir durch 4 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 7 ms nicht durch 4 teilen, sondern mit 4 multiplizieren um auf den Wert zu kommen, der den 2 CPU-Kerne links entspricht:

: 4

8 CPU-Kerne7 ms
2 CPU-Kerne28 ms
14 CPU-Kerne?

⋅ 4

Jetzt müssen wir ja wieder die 2 CPU-Kerne in der mittleren Zeile mit 7 multiplizieren, um auf die 14 CPU-Kerne in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 4
⋅ 7

8 CPU-Kerne7 ms
2 CPU-Kerne28 ms
14 CPU-Kerne4 ms

⋅ 4
: 7

Damit haben wir nun den gesuchten Wert, der den 14 CPU-Kerne entspricht: 4 ms



Für die andere Frage (Wie viele CPU-Kerne bräuchte der Computer, wenn er es in 8 ms rechnen könnte?) vertauschen wir die linke mit der rechten Spalte in der Tabelle, weil wir jetzt ja zwei "ms"-Werte haben und nach einem "CPU-Kerne"-Wert gesucht wird:


7 ms8 CPU-Kerne
??
8 ms?

Wir suchen einen möglichst großen Zwischenwert für die ms in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 7 ms teilen müssen.) Diese Zahl sollte eine Teiler von 7 und von 8 sein, also der ggT(7,8) = 1.

Wir suchen deswegen erst den entsprechenden Wert für 1 ms:


7 ms8 CPU-Kerne
1 ms?
8 ms?

Um von 7 ms in der ersten Zeile auf 1 ms in der zweiten Zeile zu kommen, müssen wir durch 7 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 8 CPU-Kerne nicht durch 7 teilen, sondern mit 7 multiplizieren um auf den Wert zu kommen, der den 1 ms links entspricht:

: 7

7 ms8 CPU-Kerne
1 ms56 CPU-Kerne
8 ms?

⋅ 7

Jetzt müssen wir ja wieder die 1 ms in der mittleren Zeile mit 8 multiplizieren, um auf die 8 ms in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 7
⋅ 8

7 ms8 CPU-Kerne
1 ms56 CPU-Kerne
8 ms7 CPU-Kerne

⋅ 7
: 8

Damit haben wir nun den gesuchten Wert, der den 8 ms entspricht: 7 CPU-Kerne

Wert bei Anti-Proport. (Anwendungen)

Beispiel:

Eine Drohne muss eine bestimmte Strecke zurücklegen. Wenn sie dabei mit einer Geschwindigkeit von 30 km/h fliegt, braucht sie dafür 8 Minuten.Wie lange braucht sie bei einer Geschwindigkeit von 40 km/h?

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Da die Zuordnung der beiden Größen antiproportional ist, schreiben wir die Werte am besten mal in eine Tabelle:

GeschwindigkeitFlugzeit
30 km/h8 min
( : 30 )( ⋅ 30 )
1 km/h240 min
( ⋅ 40 )( : 40 )
40 km/h 240 40 min

Die gesuchte Flugzeit ist also 240 40 = 6 min