nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Zweisatz (antiproportional)

Beispiel:

Karls hat für seine Geburtstagsparty 56 Flaschen Spezi bekommen.

Wie viele Flaschen würde jeder bekommen, wenn insgesamt 7 Personen auf der Party wären?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:

1 Gast56 Spezi-Flaschen
7 Gäste?

Um von 1 Gäste in der ersten Zeile auf 7 Gäste in der zweiten Zeile zu kommen, müssen wir mit 7 multiplizieren. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 56 Spezi-Flaschen durch 7 teilen, um auf den Wert zu kommen, der den 7 Gäste entspricht:

⋅ 7
1 Gast56 Spezi-Flaschen
7 Gäste?
: 7
⋅ 7
1 Gast56 Spezi-Flaschen
7 Gäste8 Spezi-Flaschen
: 7

Damit haben wir nun den gesuchten Wert, der den 7 Gäste entspricht: 8 Spezi-Flaschen

Dreisatz (antiproportional)

Beispiel:

Bei einer großen Baustelle muss das Erdreich der Baugrube abtransportiert werden. 5 Lastwagen müssten dafür 8 mal fahren.

Wie oft müssten 4 LKWs fahren?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:


5 Lastwagen8 Fuhren
??
4 Lastwagen?

Wir suchen einen möglichst großen Zwischenwert für die Lastwagen in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 5 Lastwagen teilen müssen.) Diese Zahl sollte eine Teiler von 5 und von 4 sein, also der ggT(5,4) = 1.

Wir suchen deswegen erst den entsprechenden Wert für 1 Lastwagen:


5 Lastwagen8 Fuhren
1 Lastwagen?
4 Lastwagen?

Um von 5 Lastwagen in der ersten Zeile auf 1 Lastwagen in der zweiten Zeile zu kommen, müssen wir durch 5 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 8 Fuhren nicht durch 5 teilen, sondern mit 5 multiplizieren um auf den Wert zu kommen, der den 1 Lastwagen links entspricht:

: 5

5 Lastwagen8 Fuhren
1 Lastwagen?
4 Lastwagen?

⋅ 5
: 5

5 Lastwagen8 Fuhren
1 Lastwagen40 Fuhren
4 Lastwagen?

⋅ 5

Jetzt müssen wir ja wieder die 1 Lastwagen in der mittleren Zeile mit 4 multiplizieren, um auf die 4 Lastwagen in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 5
⋅ 4

5 Lastwagen8 Fuhren
1 Lastwagen40 Fuhren
4 Lastwagen?

⋅ 5
: 4

Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 40 Fuhren in der mittleren Zeile durch 4 dividieren:

: 5
⋅ 4

5 Lastwagen8 Fuhren
1 Lastwagen40 Fuhren
4 Lastwagen10 Fuhren

⋅ 5
: 4

Damit haben wir nun den gesuchten Wert, der den 4 Lastwagen entspricht: 10 Fuhren

Tabelle (antiproportional)

Beispiel:

Die Tabelle zeigt Werte von zwei Größen mit einem antiproportionalen Zusammenhang. Übertrage die Tabelle in dein Heft und berechne mit dem Dreisatz die fehlende Größen.

8 Gäste7 Spezi-Flaschen
??
14 Gäste?

Lösung einblenden

Wir suchen einen möglichst großen Zwischenwert für die Gäste in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 8 Gäste teilen müssen.) Diese Zahl sollte eine Teiler von 8 und von 14 sein, also der ggT(8,14) = 2.

Wir suchen deswegen erst den entsprechenden Wert für 2 Gäste:


8 Gäste7 Spezi-Flaschen
2 Gäste?
14 Gäste?

Um von 8 Gäste in der ersten Zeile auf 2 Gäste in der zweiten Zeile zu kommen, müssen wir durch 4 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 7 Spezi-Flaschen nicht durch 4 teilen, sondern mit 4 multiplizieren um auf den Wert zu kommen, der den 2 Gäste links entspricht:

: 4

8 Gäste7 Spezi-Flaschen
2 Gäste?
14 Gäste?

⋅ 4
: 4

8 Gäste7 Spezi-Flaschen
2 Gäste28 Spezi-Flaschen
14 Gäste?

⋅ 4

Jetzt müssen wir ja wieder die 2 Gäste in der mittleren Zeile mit 7 multiplizieren, um auf die 14 Gäste in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 4
⋅ 7

8 Gäste7 Spezi-Flaschen
2 Gäste28 Spezi-Flaschen
14 Gäste?

⋅ 4
: 7

Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 28 Spezi-Flaschen in der mittleren Zeile durch 7 dividieren:

: 4
⋅ 7

8 Gäste7 Spezi-Flaschen
2 Gäste28 Spezi-Flaschen
14 Gäste4 Spezi-Flaschen

⋅ 4
: 7

Damit haben wir nun den gesuchten Wert, der den 14 Gäste entspricht: 4 Spezi-Flaschen

Antiproportionalität überprüfen

Beispiel:

Prüfe, ob es sich um einen antiproportionalen Zusammenhang handelt; falls nicht, korrigiere die Werte so, dass der Zusammenhang antiproportional wird.

Lösung einblenden

Wir überprüfen zuerst, ob die 0 ms den 14 CPU-Kerne entsprechen.

: 4
⋅ 7

8 CPU-Kerne7 ms
2 CPU-Kerne28 ms
14 CPU-Kerne4 ms

⋅ 4
: 7

Der urpsrünglich vorgegebene Wert 0 ms (für 14 CPU-Kerne) war also falsch, richtig wäre 4 ms gewesen.


Jetzt überprüfen wir, ob die 10 ms den 7 CPU-Kerne entsprechen.

: 8
⋅ 7

8 CPU-Kerne7 ms
1 CPU-Kerne56 ms
7 CPU-Kerne8 ms

⋅ 8
: 7

Der urpsrünglich vorgegebene Wert 10 ms (für 7 CPU-Kerne) war also falsch, richtig wäre 8 ms gewesen.

Dreisatz (antiprop.) beide Richtungen

Beispiel:

Ein Hausmeister hat ein extra Budget für die Schulreinigung in den Ferien, das er unter helfenden Schüler:innen aufteilen kann (er selbst bekommt nichts von dem Geld). Wenn er 10 Helfer:innen einstellt, reicht es für jeden 30 € Lohn.

Welchen Lohn könnte er jeder Helfer:in bezahlen, wenn er 15 Helfer:innen hätte?
Wie viele Helfer:innen könnte man mit einem Lohn von 10 € bezahlen?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:


10 Helfer:innen30 € Lohn
??
15 Helfer:innen?

Wir suchen einen möglichst großen Zwischenwert für die Helfer:innen in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 10 Helfer:innen teilen müssen.) Diese Zahl sollte eine Teiler von 10 und von 15 sein, also der ggT(10,15) = 5.

Wir suchen deswegen erst den entsprechenden Wert für 5 Helfer:innen:


10 Helfer:innen30 € Lohn
5 Helfer:innen?
15 Helfer:innen?

Um von 10 Helfer:innen in der ersten Zeile auf 5 Helfer:innen in der zweiten Zeile zu kommen, müssen wir durch 2 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 30 € Lohn nicht durch 2 teilen, sondern mit 2 multiplizieren um auf den Wert zu kommen, der den 5 Helfer:innen links entspricht:

: 2

10 Helfer:innen30 € Lohn
5 Helfer:innen60 € Lohn
15 Helfer:innen?

⋅ 2

Jetzt müssen wir ja wieder die 5 Helfer:innen in der mittleren Zeile mit 3 multiplizieren, um auf die 15 Helfer:innen in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 2
⋅ 3

10 Helfer:innen30 € Lohn
5 Helfer:innen60 € Lohn
15 Helfer:innen20 € Lohn

⋅ 2
: 3

Damit haben wir nun den gesuchten Wert, der den 15 Helfer:innen entspricht: 20 € Lohn



Um von 30 € Lohn in der ersten Zeile auf 10 € Lohn in der zweiten Zeile zu kommen, müssen wir durch 3 teilen. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 10 Helfer:innen mit 3 multiplizieren, um auf den Wert zu kommen, der den 10 € Lohn entspricht:

: 3
30 € Lohn10 Helfer:innen
10 € Lohn?
⋅ 3
: 3
30 € Lohn10 Helfer:innen
10 € Lohn30 Helfer:innen
⋅ 3

Damit haben wir nun den gesuchten Wert, der den 10 € Lohn entspricht: 30 Helfer:innen

Wert bei Anti-Proport. (Anwendungen)

Beispiel:

Ein Raum wird mit 50 LED-Leuchten á 140 Lumen ausgeleuchtet. Aus ästhetischen Gründen sollen nur noch 23 Leuchten im Raum installiert sein, diese sollen aber die gleiche Helligkeit erzeugen. Wie viel Lumen brauchen dann diese neuen LED-Leuchten?

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Da die Zuordnung der beiden Größen antiproportional ist, schreiben wir die Werte am besten mal in eine Tabelle:

Anzahl LED-LeuchtenHelligkeit
50 140 Lumen
( : 50 )( ⋅ 50 )
1 7000 Lumen
( ⋅ 23 )( : 23 )
23 7000 23 Lumen

Die gesuchte Helligkeit ist also 7000 23 = 304 8 23 ≈ 304.348 Lumen