nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Zweisatz (antiproportional)

Beispiel:

Ein Hausmeister hat ein extra Budget von 480 € für die Schulreinigung in den Ferien, das er unter helfenden Schüler:innen aufteilen kann (er selbst bekommt nichts von dem Geld).

Welchen Lohn könnte er jeder Helfer:in bezahlen, wenn er 4 Helfer:innen hätte?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:

1 Helfer:in480 € Lohn
4 Helfer:innen?

Um von 1 Helfer:innen in der ersten Zeile auf 4 Helfer:innen in der zweiten Zeile zu kommen, müssen wir mit 4 multiplizieren. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 480 € Lohn durch 4 teilen, um auf den Wert zu kommen, der den 4 Helfer:innen entspricht:

⋅ 4
1 Helfer:in480 € Lohn
4 Helfer:innen?
: 4
⋅ 4
1 Helfer:in480 € Lohn
4 Helfer:innen120 € Lohn
: 4

Damit haben wir nun den gesuchten Wert, der den 4 Helfer:innen entspricht: 120 € Lohn

Dreisatz (antiproportional)

Beispiel:

Wenn Karla mit ihrem Handy jeden Tag immer 4 Minuten telefonieren würde, würden ihre Freiminuten noch genau 6 Tage halten.

Wann wären ihre Freiminuten aufgebraucht, wenn sie täglich 3 min telefonieren würde?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:


4 Minuten pro Tag6 Tage
??
3 Minuten pro Tag?

Wir suchen einen möglichst großen Zwischenwert für die Minuten pro Tag in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 4 Minuten pro Tag teilen müssen.) Diese Zahl sollte eine Teiler von 4 und von 3 sein, also der ggT(4,3) = 1.

Wir suchen deswegen erst den entsprechenden Wert für 1 Minuten pro Tag:


4 Minuten pro Tag6 Tage
1 Minute pro Tag?
3 Minuten pro Tag?

Um von 4 Minuten pro Tag in der ersten Zeile auf 1 Minuten pro Tag in der zweiten Zeile zu kommen, müssen wir durch 4 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 6 Tage nicht durch 4 teilen, sondern mit 4 multiplizieren um auf den Wert zu kommen, der den 1 Minuten pro Tag links entspricht:

: 4

4 Minuten pro Tag6 Tage
1 Minute pro Tag?
3 Minuten pro Tag?

⋅ 4
: 4

4 Minuten pro Tag6 Tage
1 Minute pro Tag24 Tage
3 Minuten pro Tag?

⋅ 4

Jetzt müssen wir ja wieder die 1 Minuten pro Tag in der mittleren Zeile mit 3 multiplizieren, um auf die 3 Minuten pro Tag in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 4
⋅ 3

4 Minuten pro Tag6 Tage
1 Minute pro Tag24 Tage
3 Minuten pro Tag?

⋅ 4
: 3

Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 24 Tage in der mittleren Zeile durch 3 dividieren:

: 4
⋅ 3

4 Minuten pro Tag6 Tage
1 Minute pro Tag24 Tage
3 Minuten pro Tag8 Tage

⋅ 4
: 3

Damit haben wir nun den gesuchten Wert, der den 3 Minuten pro Tag entspricht: 8 Tage

Tabelle (antiproportional)

Beispiel:

Die Tabelle zeigt Werte von zwei Größen mit einem antiproportionalen Zusammenhang. Übertrage die Tabelle in dein Heft und berechne mit dem Dreisatz die fehlende Größen.

10 € Lospreis30 Lose
??
15 € Lospreis?

Lösung einblenden

Wir suchen einen möglichst großen Zwischenwert für die € Lospreis in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 10 € Lospreis teilen müssen.) Diese Zahl sollte eine Teiler von 10 und von 15 sein, also der ggT(10,15) = 5.

Wir suchen deswegen erst den entsprechenden Wert für 5 € Lospreis:


10 € Lospreis30 Lose
5 € Lospreis?
15 € Lospreis?

Um von 10 € Lospreis in der ersten Zeile auf 5 € Lospreis in der zweiten Zeile zu kommen, müssen wir durch 2 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 30 Lose nicht durch 2 teilen, sondern mit 2 multiplizieren um auf den Wert zu kommen, der den 5 € Lospreis links entspricht:

: 2

10 € Lospreis30 Lose
5 € Lospreis?
15 € Lospreis?

⋅ 2
: 2

10 € Lospreis30 Lose
5 € Lospreis60 Lose
15 € Lospreis?

⋅ 2

Jetzt müssen wir ja wieder die 5 € Lospreis in der mittleren Zeile mit 3 multiplizieren, um auf die 15 € Lospreis in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 2
⋅ 3

10 € Lospreis30 Lose
5 € Lospreis60 Lose
15 € Lospreis?

⋅ 2
: 3

Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 60 Lose in der mittleren Zeile durch 3 dividieren:

: 2
⋅ 3

10 € Lospreis30 Lose
5 € Lospreis60 Lose
15 € Lospreis20 Lose

⋅ 2
: 3

Damit haben wir nun den gesuchten Wert, der den 15 € Lospreis entspricht: 20 Lose

Antiproportionalität überprüfen

Beispiel:

Prüfe, ob es sich um einen antiproportionalen Zusammenhang handelt; falls nicht, korrigiere die Werte so, dass der Zusammenhang antiproportional wird.

Lösung einblenden

Wir überprüfen zuerst, ob die 8 Fuhren den 3 Lastwagen entsprechen.

: 4
⋅ 3

4 Lastwagen6 Fuhren
1 Lastwagen24 Fuhren
3 Lastwagen8 Fuhren

⋅ 4
: 3

Der urpsrünglich vorgegebene Wert 8 Fuhren(für 3 Lastwagen) war also korrekt.


Jetzt überprüfen wir, ob die 2 Fuhren den 6 Lastwagen entsprechen.

: 2
⋅ 3

4 Lastwagen6 Fuhren
2 Lastwagen12 Fuhren
6 Lastwagen4 Fuhren

⋅ 2
: 3

Der urpsrünglich vorgegebene Wert 2 Fuhren (für 6 Lastwagen) war also falsch, richtig wäre 4 Fuhren gewesen.

Dreisatz (antiprop.) beide Richtungen

Beispiel:

Zur Berechnung einer komplizierten Verschlüsselung muss ein Computer mit 8 CPU-Kernen 7 ms rechnen.

Wie lange bräuchte ein Computer mit 14 solchen CPU-Kernen?
Wie viele CPU-Kerne bräuchte der Computer, wenn er es in 8 ms rechnen könnte?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:


8 CPU-Kerne7 ms
??
14 CPU-Kerne?

Wir suchen einen möglichst großen Zwischenwert für die CPU-Kerne in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 8 CPU-Kerne teilen müssen.) Diese Zahl sollte eine Teiler von 8 und von 14 sein, also der ggT(8,14) = 2.

Wir suchen deswegen erst den entsprechenden Wert für 2 CPU-Kerne:


8 CPU-Kerne7 ms
2 CPU-Kerne?
14 CPU-Kerne?

Um von 8 CPU-Kerne in der ersten Zeile auf 2 CPU-Kerne in der zweiten Zeile zu kommen, müssen wir durch 4 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 7 ms nicht durch 4 teilen, sondern mit 4 multiplizieren um auf den Wert zu kommen, der den 2 CPU-Kerne links entspricht:

: 4

8 CPU-Kerne7 ms
2 CPU-Kerne28 ms
14 CPU-Kerne?

⋅ 4

Jetzt müssen wir ja wieder die 2 CPU-Kerne in der mittleren Zeile mit 7 multiplizieren, um auf die 14 CPU-Kerne in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 4
⋅ 7

8 CPU-Kerne7 ms
2 CPU-Kerne28 ms
14 CPU-Kerne4 ms

⋅ 4
: 7

Damit haben wir nun den gesuchten Wert, der den 14 CPU-Kerne entspricht: 4 ms



Für die andere Frage (Wie viele CPU-Kerne bräuchte der Computer, wenn er es in 8 ms rechnen könnte?) vertauschen wir die linke mit der rechten Spalte in der Tabelle, weil wir jetzt ja zwei "ms"-Werte haben und nach einem "CPU-Kerne"-Wert gesucht wird:


7 ms8 CPU-Kerne
??
8 ms?

Wir suchen einen möglichst großen Zwischenwert für die ms in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 7 ms teilen müssen.) Diese Zahl sollte eine Teiler von 7 und von 8 sein, also der ggT(7,8) = 1.

Wir suchen deswegen erst den entsprechenden Wert für 1 ms:


7 ms8 CPU-Kerne
1 ms?
8 ms?

Um von 7 ms in der ersten Zeile auf 1 ms in der zweiten Zeile zu kommen, müssen wir durch 7 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 8 CPU-Kerne nicht durch 7 teilen, sondern mit 7 multiplizieren um auf den Wert zu kommen, der den 1 ms links entspricht:

: 7

7 ms8 CPU-Kerne
1 ms56 CPU-Kerne
8 ms?

⋅ 7

Jetzt müssen wir ja wieder die 1 ms in der mittleren Zeile mit 8 multiplizieren, um auf die 8 ms in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 7
⋅ 8

7 ms8 CPU-Kerne
1 ms56 CPU-Kerne
8 ms7 CPU-Kerne

⋅ 7
: 8

Damit haben wir nun den gesuchten Wert, der den 8 ms entspricht: 7 CPU-Kerne

Wert bei Anti-Proport. (Anwendungen)

Beispiel:

Ein Raum wird mit 40 LED-Leuchten á 110 Lumen ausgeleuchtet. Aus ästhetischen Gründen sollen nur noch 25 Leuchten im Raum installiert sein, diese sollen aber die gleiche Helligkeit erzeugen. Wie viel Lumen brauchen dann diese neuen LED-Leuchten?

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Da die Zuordnung der beiden Größen antiproportional ist, schreiben wir die Werte am besten mal in eine Tabelle:

Anzahl LED-LeuchtenHelligkeit
40 110 Lumen
( : 40 )( ⋅ 40 )
1 4400 Lumen
( ⋅ 25 )( : 25 )
25 4400 25 Lumen

Die gesuchte Helligkeit ist also 4400 25 = 176 Lumen