Klasse 5
Klasse 6
Klasse 7
Klasse 8
Klasse 9
Klasse 10
Fit für die Oberstufe
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Zweisatz (antiproportional)
Beispiel:
Ein Hausmeister hat ein extra Budget von 500 € für die Schulreinigung in den Ferien, das er unter helfenden Schüler:innen aufteilen kann (er selbst bekommt nichts von dem Geld).
Welchen Lohn könnte er jeder Helfer:in bezahlen, wenn er 10 Helfer:innen hätte?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Um von 1 Helfer:innen in der ersten Zeile auf 10 Helfer:innen in der zweiten Zeile zu kommen, müssen wir mit 10 multiplizieren. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 500 € Lohn durch 10 teilen, um auf den Wert zu kommen, der den 10 Helfer:innen entspricht:
|
⋅ 10
|
![]() |
|
![]() |
: 10
|
|
⋅ 10
|
![]() |
|
![]() |
: 10
|
Damit haben wir nun den gesuchten Wert, der den 10 Helfer:innen entspricht: 50 € Lohn
Dreisatz (antiproportional)
Beispiel:
Wenn 5 Personen das Schulhaus putzen, brauchen sie dafür 10 h.
Wie lange bräuchten 2 Personen hierfür?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Wir suchen einen möglichst großen Zwischenwert für die Personen in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 5 Personen teilen müssen.) Diese Zahl sollte eine Teiler von 5 und von 2 sein, also der ggT(5,2) = 1.
Wir suchen deswegen erst den entsprechenden Wert für 1 Personen:
|
Um von 5 Personen in der ersten Zeile auf 1 Personen in der zweiten Zeile zu kommen, müssen wir durch 5 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 10 h nicht durch 5 teilen, sondern mit 5 multiplizieren um auf den Wert zu kommen, der den 1 Personen links entspricht:
|
: 5
|
![]() |
|
![]() |
⋅ 5
|
|
: 5
|
![]() |
|
![]() |
⋅ 5
|
Jetzt müssen wir ja wieder die 1 Personen in der mittleren Zeile mit 2 multiplizieren, um auf die 2 Personen in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 5
⋅ 2
|
![]() ![]() |
|
![]() ![]() |
⋅ 5
: 2
|
Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 50 h in der mittleren Zeile durch 2 dividieren:
|
: 5
⋅ 2
|
![]() ![]() |
|
![]() ![]() |
⋅ 5
: 2
|
Damit haben wir nun den gesuchten Wert, der den 2 Personen entspricht: 25 h
Tabelle (antiproportional)
Beispiel:
Die Tabelle zeigt Werte von zwei Größen mit einem antiproportionalen Zusammenhang. Übertrage die Tabelle in dein Heft und berechne mit dem Dreisatz die fehlende Größen.
| 8 Gäste | 6 Spezi-Flaschen |
| ? | ? |
| 12 Gäste | ? |
Wir suchen einen möglichst großen Zwischenwert für die Gäste in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 8 Gäste teilen müssen.) Diese Zahl sollte eine Teiler von 8 und von 12 sein, also der ggT(8,12) = 4.
Wir suchen deswegen erst den entsprechenden Wert für 4 Gäste:
|
Um von 8 Gäste in der ersten Zeile auf 4 Gäste in der zweiten Zeile zu kommen, müssen wir durch 2 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 6 Spezi-Flaschen nicht durch 2 teilen, sondern mit 2 multiplizieren um auf den Wert zu kommen, der den 4 Gäste links entspricht:
|
: 2
|
![]() |
|
![]() |
⋅ 2
|
|
: 2
|
![]() |
|
![]() |
⋅ 2
|
Jetzt müssen wir ja wieder die 4 Gäste in der mittleren Zeile mit 3 multiplizieren, um auf die 12 Gäste in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 2
⋅ 3
|
![]() ![]() |
|
![]() ![]() |
⋅ 2
: 3
|
Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 12 Spezi-Flaschen in der mittleren Zeile durch 3 dividieren:
|
: 2
⋅ 3
|
![]() ![]() |
|
![]() ![]() |
⋅ 2
: 3
|
Damit haben wir nun den gesuchten Wert, der den 12 Gäste entspricht: 4 Spezi-Flaschen
Antiproportionalität überprüfen
Beispiel:
Prüfe, ob es sich um einen antiproportionalen Zusammenhang handelt; falls nicht, korrigiere die Werte so, dass der Zusammenhang antiproportional wird.
Wir überprüfen zuerst, ob die 14 ms den 4 CPU-Kerne entsprechen.
|
: 7
⋅ 4
|
![]() ![]() |
|
![]() ![]() |
⋅ 7
: 4
|
Der urpsrünglich vorgegebene Wert 14 ms(für 4 CPU-Kerne) war also korrekt.
Jetzt überprüfen wir, ob die 7 ms den 8 CPU-Kerne entsprechen.
|
: 7
⋅ 8
|
![]() ![]() |
|
![]() ![]() |
⋅ 7
: 8
|
Der urpsrünglich vorgegebene Wert 7 ms (für 8 CPU-Kerne) war also korrekt.
Dreisatz (antiprop.) beide Richtungen
Beispiel:
Bei einer großen Baustelle muss das Erdreich der Baugrube abtransportiert werden. 6 Lastwagen müssten dafür 5 mal fahren.
Wie oft müssten 10 LKWs fahren?
Wie viele LKWs bräuchte man, damit es mit 6 Fuhren für jeden reicht?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Wir suchen einen möglichst großen Zwischenwert für die Lastwagen in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 6 Lastwagen teilen müssen.) Diese Zahl sollte eine Teiler von 6 und von 10 sein, also der ggT(6,10) = 2.
Wir suchen deswegen erst den entsprechenden Wert für 2 Lastwagen:
|
Um von 6 Lastwagen in der ersten Zeile auf 2 Lastwagen in der zweiten Zeile zu kommen, müssen wir durch 3 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 5 Fuhren nicht durch 3 teilen, sondern mit 3 multiplizieren um auf den Wert zu kommen, der den 2 Lastwagen links entspricht:
|
: 3
|
![]() |
|
![]() |
⋅ 3
|
Jetzt müssen wir ja wieder die 2 Lastwagen in der mittleren Zeile mit 5 multiplizieren, um auf die 10 Lastwagen in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 3
⋅ 5
|
![]() ![]() |
|
![]() ![]() |
⋅ 3
: 5
|
Damit haben wir nun den gesuchten Wert, der den 10 Lastwagen entspricht: 3 Fuhren
Für die andere Frage (Wie viele LKWs bräuchte man, damit es mit 6 Fuhren für jeden reicht?) vertauschen wir die linke mit der rechten Spalte in der Tabelle, weil wir jetzt ja zwei "Fuhren"-Werte haben und nach einem "Lastwagen"-Wert gesucht wird:
|
Wir suchen einen möglichst großen Zwischenwert für die Fuhren in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 5 Fuhren teilen müssen.) Diese Zahl sollte eine Teiler von 5 und von 6 sein, also der ggT(5,6) = 1.
Wir suchen deswegen erst den entsprechenden Wert für 1 Fuhren:
|
Um von 5 Fuhren in der ersten Zeile auf 1 Fuhren in der zweiten Zeile zu kommen, müssen wir durch 5 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 6 Lastwagen nicht durch 5 teilen, sondern mit 5 multiplizieren um auf den Wert zu kommen, der den 1 Fuhren links entspricht:
|
: 5
|
![]() |
|
![]() |
⋅ 5
|
Jetzt müssen wir ja wieder die 1 Fuhren in der mittleren Zeile mit 6 multiplizieren, um auf die 6 Fuhren in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 5
⋅ 6
|
![]() ![]() |
|
![]() ![]() |
⋅ 5
: 6
|
Damit haben wir nun den gesuchten Wert, der den 6 Fuhren entspricht: 5 Lastwagen
Wert bei Anti-Proport. (Anwendungen)
Beispiel:
Ein Raum wird mit 50 LED-Leuchten á 190 Lumen ausgeleuchtet. Aus ästhetischen Gründen sollen nur noch 12 Leuchten im Raum installiert sein, diese sollen aber die gleiche Helligkeit erzeugen. Wie viel Lumen brauchen dann diese neuen LED-Leuchten?
Da die Zuordnung der beiden Größen antiproportional ist, schreiben wir die Werte am besten mal in eine Tabelle:
| Anzahl LED-Leuchten | Helligkeit |
|---|---|
| 50 | 190 Lumen |
| ( : 50 ) | ( ⋅ 50 ) |
| 1 | Lumen |
| ( ⋅ 12 ) | ( : 12 ) |
| 12 | Lumen |
Die gesuchte Helligkeit ist also = = 791 ≈ 791.667 Lumen


