nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Zweisatz (antiproportional)

Beispiel:

Um den noch fehlenden Betrag für eine Klassenfahrt zu bekommen, veranstaltet eine Schulkasse ein Lotterie. Wenn sie 1€ für ein Los verlangen, müssten sie 360 Lose verkaufen um genügend Geld zusammen zu bekommen.

Wie viele Lose müssten sie bei einem Lospreis von 6 € verkaufen?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:

1 € Lospreis360 Lose
6 € Lospreis?

Um von 1 € Lospreis in der ersten Zeile auf 6 € Lospreis in der zweiten Zeile zu kommen, müssen wir mit 6 multiplizieren. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 360 Lose durch 6 teilen, um auf den Wert zu kommen, der den 6 € Lospreis entspricht:

⋅ 6
1 € Lospreis360 Lose
6 € Lospreis?
: 6
⋅ 6
1 € Lospreis360 Lose
6 € Lospreis60 Lose
: 6

Damit haben wir nun den gesuchten Wert, der den 6 € Lospreis entspricht: 60 Lose

Dreisatz (antiproportional)

Beispiel:

Wenn Karla mit ihrem Handy jeden Tag immer 4 Minuten telefonieren würde, würden ihre Freiminuten noch genau 6 Tage halten.

Wann wären ihre Freiminuten aufgebraucht, wenn sie täglich 3 min telefonieren würde?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:


4 Minuten pro Tag6 Tage
??
3 Minuten pro Tag?

Wir suchen einen möglichst großen Zwischenwert für die Minuten pro Tag in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 4 Minuten pro Tag teilen müssen.) Diese Zahl sollte eine Teiler von 4 und von 3 sein, also der ggT(4,3) = 1.

Wir suchen deswegen erst den entsprechenden Wert für 1 Minuten pro Tag:


4 Minuten pro Tag6 Tage
1 Minute pro Tag?
3 Minuten pro Tag?

Um von 4 Minuten pro Tag in der ersten Zeile auf 1 Minuten pro Tag in der zweiten Zeile zu kommen, müssen wir durch 4 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 6 Tage nicht durch 4 teilen, sondern mit 4 multiplizieren um auf den Wert zu kommen, der den 1 Minuten pro Tag links entspricht:

: 4

4 Minuten pro Tag6 Tage
1 Minute pro Tag?
3 Minuten pro Tag?

⋅ 4
: 4

4 Minuten pro Tag6 Tage
1 Minute pro Tag24 Tage
3 Minuten pro Tag?

⋅ 4

Jetzt müssen wir ja wieder die 1 Minuten pro Tag in der mittleren Zeile mit 3 multiplizieren, um auf die 3 Minuten pro Tag in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 4
⋅ 3

4 Minuten pro Tag6 Tage
1 Minute pro Tag24 Tage
3 Minuten pro Tag?

⋅ 4
: 3

Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 24 Tage in der mittleren Zeile durch 3 dividieren:

: 4
⋅ 3

4 Minuten pro Tag6 Tage
1 Minute pro Tag24 Tage
3 Minuten pro Tag8 Tage

⋅ 4
: 3

Damit haben wir nun den gesuchten Wert, der den 3 Minuten pro Tag entspricht: 8 Tage

Tabelle (antiproportional)

Beispiel:

Die Tabelle zeigt Werte von zwei Größen mit einem antiproportionalen Zusammenhang. Übertrage die Tabelle in dein Heft und berechne mit dem Dreisatz die fehlende Größen.

6 Minuten pro Tag5 Tage
??
10 Minuten pro Tag?

Lösung einblenden

Wir suchen einen möglichst großen Zwischenwert für die Minuten pro Tag in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 6 Minuten pro Tag teilen müssen.) Diese Zahl sollte eine Teiler von 6 und von 10 sein, also der ggT(6,10) = 2.

Wir suchen deswegen erst den entsprechenden Wert für 2 Minuten pro Tag:


6 Minuten pro Tag5 Tage
2 Minuten pro Tag?
10 Minuten pro Tag?

Um von 6 Minuten pro Tag in der ersten Zeile auf 2 Minuten pro Tag in der zweiten Zeile zu kommen, müssen wir durch 3 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 5 Tage nicht durch 3 teilen, sondern mit 3 multiplizieren um auf den Wert zu kommen, der den 2 Minuten pro Tag links entspricht:

: 3

6 Minuten pro Tag5 Tage
2 Minuten pro Tag?
10 Minuten pro Tag?

⋅ 3
: 3

6 Minuten pro Tag5 Tage
2 Minuten pro Tag15 Tage
10 Minuten pro Tag?

⋅ 3

Jetzt müssen wir ja wieder die 2 Minuten pro Tag in der mittleren Zeile mit 5 multiplizieren, um auf die 10 Minuten pro Tag in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 3
⋅ 5

6 Minuten pro Tag5 Tage
2 Minuten pro Tag15 Tage
10 Minuten pro Tag?

⋅ 3
: 5

Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 15 Tage in der mittleren Zeile durch 5 dividieren:

: 3
⋅ 5

6 Minuten pro Tag5 Tage
2 Minuten pro Tag15 Tage
10 Minuten pro Tag3 Tage

⋅ 3
: 5

Damit haben wir nun den gesuchten Wert, der den 10 Minuten pro Tag entspricht: 3 Tage

Antiproportionalität überprüfen

Beispiel:

Prüfe, ob es sich um einen antiproportionalen Zusammenhang handelt; falls nicht, korrigiere die Werte so, dass der Zusammenhang antiproportional wird.

Lösung einblenden

Wir überprüfen zuerst, ob die 10 ms den 4 CPU-Kerne entsprechen.

: 5
⋅ 4

5 CPU-Kerne8 ms
1 CPU-Kern40 ms
4 CPU-Kerne10 ms

⋅ 5
: 4

Der urpsrünglich vorgegebene Wert 10 ms(für 4 CPU-Kerne) war also korrekt.


Jetzt überprüfen wir, ob die 5 ms den 8 CPU-Kerne entsprechen.

: 5
⋅ 8

5 CPU-Kerne8 ms
1 CPU-Kerne40 ms
8 CPU-Kerne5 ms

⋅ 5
: 8

Der urpsrünglich vorgegebene Wert 5 ms (für 8 CPU-Kerne) war also korrekt.

Dreisatz (antiprop.) beide Richtungen

Beispiel:

Wenn Karla mit ihrem Handy jeden Tag immer 5 Minuten telefonieren würde, würden ihre Freiminuten noch genau 8 Tage halten.

Wann wären ihre Freiminuten aufgebraucht, wenn sie täglich 4 min telefonieren würde?
Wie lange kann sie täglich telefonieren, wenn die Freiminuten 5 Tage reichen sollen?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:


5 Minuten pro Tag8 Tage
??
4 Minuten pro Tag?

Wir suchen einen möglichst großen Zwischenwert für die Minuten pro Tag in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 5 Minuten pro Tag teilen müssen.) Diese Zahl sollte eine Teiler von 5 und von 4 sein, also der ggT(5,4) = 1.

Wir suchen deswegen erst den entsprechenden Wert für 1 Minuten pro Tag:


5 Minuten pro Tag8 Tage
1 Minute pro Tag?
4 Minuten pro Tag?

Um von 5 Minuten pro Tag in der ersten Zeile auf 1 Minuten pro Tag in der zweiten Zeile zu kommen, müssen wir durch 5 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 8 Tage nicht durch 5 teilen, sondern mit 5 multiplizieren um auf den Wert zu kommen, der den 1 Minuten pro Tag links entspricht:

: 5

5 Minuten pro Tag8 Tage
1 Minute pro Tag40 Tage
4 Minuten pro Tag?

⋅ 5

Jetzt müssen wir ja wieder die 1 Minuten pro Tag in der mittleren Zeile mit 4 multiplizieren, um auf die 4 Minuten pro Tag in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 5
⋅ 4

5 Minuten pro Tag8 Tage
1 Minute pro Tag40 Tage
4 Minuten pro Tag10 Tage

⋅ 5
: 4

Damit haben wir nun den gesuchten Wert, der den 4 Minuten pro Tag entspricht: 10 Tage



Für die andere Frage (Wie lange kann sie täglich telefonieren, wenn die Freiminuten 5 Tage reichen sollen?) vertauschen wir die linke mit der rechten Spalte in der Tabelle, weil wir jetzt ja zwei "Tage"-Werte haben und nach einem "Minuten pro Tag"-Wert gesucht wird:


8 Tage5 Minuten pro Tag
??
5 Tage?

Wir suchen einen möglichst großen Zwischenwert für die Tage in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 8 Tage teilen müssen.) Diese Zahl sollte eine Teiler von 8 und von 5 sein, also der ggT(8,5) = 1.

Wir suchen deswegen erst den entsprechenden Wert für 1 Tage:


8 Tage5 Minuten pro Tag
1 Tag?
5 Tage?

Um von 8 Tage in der ersten Zeile auf 1 Tage in der zweiten Zeile zu kommen, müssen wir durch 8 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 5 Minuten pro Tag nicht durch 8 teilen, sondern mit 8 multiplizieren um auf den Wert zu kommen, der den 1 Tage links entspricht:

: 8

8 Tage5 Minuten pro Tag
1 Tag40 Minuten pro Tag
5 Tage?

⋅ 8

Jetzt müssen wir ja wieder die 1 Tage in der mittleren Zeile mit 5 multiplizieren, um auf die 5 Tage in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 8
⋅ 5

8 Tage5 Minuten pro Tag
1 Tag40 Minuten pro Tag
5 Tage8 Minuten pro Tag

⋅ 8
: 5

Damit haben wir nun den gesuchten Wert, der den 5 Tage entspricht: 8 Minuten pro Tag

Wert bei Anti-Proport. (Anwendungen)

Beispiel:

Eine Drohne muss eine bestimmte Strecke zurücklegen. Wenn sie dabei mit einer Geschwindigkeit von 30 km/h fliegt, braucht sie dafür 8 Minuten.Wie lange braucht sie bei einer Geschwindigkeit von 46 km/h?

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Da die Zuordnung der beiden Größen antiproportional ist, schreiben wir die Werte am besten mal in eine Tabelle:

GeschwindigkeitFlugzeit
30 km/h8 min
( : 30 )( ⋅ 30 )
1 km/h240 min
( ⋅ 46 )( : 46 )
46 km/h 240 46 min

Die gesuchte Flugzeit ist also 240 46 = 120 23 = 5 5 23 ≈ 5.217 min