Klasse 5
Klasse 6
Klasse 7
Klasse 8
Klasse 9
Klasse 10
Fit für die Oberstufe
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Zweisatz (antiproportional)
Beispiel:
Zur Berechnung einer komplizierten Verschlüsselung muss ein Computer mit einem CPU-Kern 36 ms rechnen.
Wie lange bräuchte ein Computer mit 9 solchen CPU-Kernen?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Um von 1 CPU-Kerne in der ersten Zeile auf 9 CPU-Kerne in der zweiten Zeile zu kommen, müssen wir mit 9 multiplizieren. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 36 ms durch 9 teilen, um auf den Wert zu kommen, der den 9 CPU-Kerne entspricht:
|
⋅ 9
|
![]() |
|
![]() |
: 9
|
|
⋅ 9
|
![]() |
|
![]() |
: 9
|
Damit haben wir nun den gesuchten Wert, der den 9 CPU-Kerne entspricht: 4 ms
Dreisatz (antiproportional)
Beispiel:
Karls hat für seine Geburtstagsparty Spezi bekommen. Dabei reicht es für jeden genau 5 Flaschen, wenn insgesamt 8 Personen auf seiner Party sind.
Wie viele Flaschen würde jeder bekommen, wenn insgesamt 10 Personen auf der Party wären?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Wir suchen einen möglichst großen Zwischenwert für die Gäste in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 8 Gäste teilen müssen.) Diese Zahl sollte eine Teiler von 8 und von 10 sein, also der ggT(8,10) = 2.
Wir suchen deswegen erst den entsprechenden Wert für 2 Gäste:
|
Um von 8 Gäste in der ersten Zeile auf 2 Gäste in der zweiten Zeile zu kommen, müssen wir durch 4 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 5 Spezi-Flaschen nicht durch 4 teilen, sondern mit 4 multiplizieren um auf den Wert zu kommen, der den 2 Gäste links entspricht:
|
: 4
|
![]() |
|
![]() |
⋅ 4
|
|
: 4
|
![]() |
|
![]() |
⋅ 4
|
Jetzt müssen wir ja wieder die 2 Gäste in der mittleren Zeile mit 5 multiplizieren, um auf die 10 Gäste in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 4
⋅ 5
|
![]() ![]() |
|
![]() ![]() |
⋅ 4
: 5
|
Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 20 Spezi-Flaschen in der mittleren Zeile durch 5 dividieren:
|
: 4
⋅ 5
|
![]() ![]() |
|
![]() ![]() |
⋅ 4
: 5
|
Damit haben wir nun den gesuchten Wert, der den 10 Gäste entspricht: 4 Spezi-Flaschen
Tabelle (antiproportional)
Beispiel:
Die Tabelle zeigt Werte von zwei Größen mit einem antiproportionalen Zusammenhang. Übertrage die Tabelle in dein Heft und berechne mit dem Dreisatz die fehlende Größen.
| 8 € Lospreis | 60 Lose |
| ? | ? |
| 12 € Lospreis | ? |
Wir suchen einen möglichst großen Zwischenwert für die € Lospreis in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 8 € Lospreis teilen müssen.) Diese Zahl sollte eine Teiler von 8 und von 12 sein, also der ggT(8,12) = 4.
Wir suchen deswegen erst den entsprechenden Wert für 4 € Lospreis:
|
Um von 8 € Lospreis in der ersten Zeile auf 4 € Lospreis in der zweiten Zeile zu kommen, müssen wir durch 2 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 60 Lose nicht durch 2 teilen, sondern mit 2 multiplizieren um auf den Wert zu kommen, der den 4 € Lospreis links entspricht:
|
: 2
|
![]() |
|
![]() |
⋅ 2
|
|
: 2
|
![]() |
|
![]() |
⋅ 2
|
Jetzt müssen wir ja wieder die 4 € Lospreis in der mittleren Zeile mit 3 multiplizieren, um auf die 12 € Lospreis in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 2
⋅ 3
|
![]() ![]() |
|
![]() ![]() |
⋅ 2
: 3
|
Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 120 Lose in der mittleren Zeile durch 3 dividieren:
|
: 2
⋅ 3
|
![]() ![]() |
|
![]() ![]() |
⋅ 2
: 3
|
Damit haben wir nun den gesuchten Wert, der den 12 € Lospreis entspricht: 40 Lose
Antiproportionalität überprüfen
Beispiel:
Prüfe, ob es sich um einen antiproportionalen Zusammenhang handelt; falls nicht, korrigiere die Werte so, dass der Zusammenhang antiproportional wird.
Wir überprüfen zuerst, ob die 100 Lose den 4 € Lospreis entsprechen.
|
: 5
⋅ 4
|
![]() ![]() |
|
![]() ![]() |
⋅ 5
: 4
|
Der urpsrünglich vorgegebene Wert 100 Lose(für 4 € Lospreis) war also korrekt.
Jetzt überprüfen wir, ob die 9 Lose den 50 € Lospreis entsprechen.
|
: 1
⋅ 10
|
![]() ![]() |
|
![]() ![]() |
⋅ 1
: 10
|
Der urpsrünglich vorgegebene Wert 9 Lose (für 50 € Lospreis) war also falsch, richtig wäre 8 Lose gewesen.
Dreisatz (antiprop.) beide Richtungen
Beispiel:
Bei einer großen Baustelle muss das Erdreich der Baugrube abtransportiert werden. 9 Lastwagen müssten dafür 5 mal fahren.
Wie oft müssten 15 LKWs fahren?
Wie viele LKWs bräuchte man, damit es mit 9 Fuhren für jeden reicht?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Wir suchen einen möglichst großen Zwischenwert für die Lastwagen in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 9 Lastwagen teilen müssen.) Diese Zahl sollte eine Teiler von 9 und von 15 sein, also der ggT(9,15) = 3.
Wir suchen deswegen erst den entsprechenden Wert für 3 Lastwagen:
|
Um von 9 Lastwagen in der ersten Zeile auf 3 Lastwagen in der zweiten Zeile zu kommen, müssen wir durch 3 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 5 Fuhren nicht durch 3 teilen, sondern mit 3 multiplizieren um auf den Wert zu kommen, der den 3 Lastwagen links entspricht:
|
: 3
|
![]() |
|
![]() |
⋅ 3
|
Jetzt müssen wir ja wieder die 3 Lastwagen in der mittleren Zeile mit 5 multiplizieren, um auf die 15 Lastwagen in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 3
⋅ 5
|
![]() ![]() |
|
![]() ![]() |
⋅ 3
: 5
|
Damit haben wir nun den gesuchten Wert, der den 15 Lastwagen entspricht: 3 Fuhren
Für die andere Frage (Wie viele LKWs bräuchte man, damit es mit 9 Fuhren für jeden reicht?) vertauschen wir die linke mit der rechten Spalte in der Tabelle, weil wir jetzt ja zwei "Fuhren"-Werte haben und nach einem "Lastwagen"-Wert gesucht wird:
|
Wir suchen einen möglichst großen Zwischenwert für die Fuhren in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 5 Fuhren teilen müssen.) Diese Zahl sollte eine Teiler von 5 und von 9 sein, also der ggT(5,9) = 1.
Wir suchen deswegen erst den entsprechenden Wert für 1 Fuhren:
|
Um von 5 Fuhren in der ersten Zeile auf 1 Fuhren in der zweiten Zeile zu kommen, müssen wir durch 5 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 9 Lastwagen nicht durch 5 teilen, sondern mit 5 multiplizieren um auf den Wert zu kommen, der den 1 Fuhren links entspricht:
|
: 5
|
![]() |
|
![]() |
⋅ 5
|
Jetzt müssen wir ja wieder die 1 Fuhren in der mittleren Zeile mit 9 multiplizieren, um auf die 9 Fuhren in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 5
⋅ 9
|
![]() ![]() |
|
![]() ![]() |
⋅ 5
: 9
|
Damit haben wir nun den gesuchten Wert, der den 9 Fuhren entspricht: 5 Lastwagen
Wert bei Anti-Proport. (Anwendungen)
Beispiel:
Ein Raum wird mit 55 LED-Leuchten á 150 Lumen ausgeleuchtet. Aus ästhetischen Gründen sollen nur noch 10 Leuchten im Raum installiert sein, diese sollen aber die gleiche Helligkeit erzeugen. Wie viel Lumen brauchen dann diese neuen LED-Leuchten?
Da die Zuordnung der beiden Größen antiproportional ist, schreiben wir die Werte am besten mal in eine Tabelle:
| Anzahl LED-Leuchten | Helligkeit |
|---|---|
| 55 | 150 Lumen |
| ( : 55 ) | ( ⋅ 55 ) |
| 1 | Lumen |
| ( ⋅ 10 ) | ( : 10 ) |
| 10 | Lumen |
Die gesuchte Helligkeit ist also = Lumen


