Klasse 5
Klasse 6
Klasse 7
Klasse 8
Klasse 9
Klasse 10
Fit für die Oberstufe
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Zweisatz (antiproportional)
Beispiel:
Bei einer großen Baustelle muss das Erdreich der Baugrube abtransportiert werden. 1 Lastwagen müsste dafür 56 mal fahren.
Wie oft müssten 7 LKWs fahren?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Um von 1 Lastwagen in der ersten Zeile auf 7 Lastwagen in der zweiten Zeile zu kommen, müssen wir mit 7 multiplizieren. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 56 Fuhren durch 7 teilen, um auf den Wert zu kommen, der den 7 Lastwagen entspricht:
|
⋅ 7
|
![]() |
|
![]() |
: 7
|
|
⋅ 7
|
![]() |
|
![]() |
: 7
|
Damit haben wir nun den gesuchten Wert, der den 7 Lastwagen entspricht: 8 Fuhren
Dreisatz (antiproportional)
Beispiel:
Wenn Karla mit ihrem Handy jeden Tag immer 3 Minuten telefonieren würde, würden ihre Freiminuten noch genau 12 Tage halten.
Wann wären ihre Freiminuten aufgebraucht, wenn sie täglich 2 min telefonieren würde?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Wir suchen einen möglichst großen Zwischenwert für die Minuten pro Tag in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 3 Minuten pro Tag teilen müssen.) Diese Zahl sollte eine Teiler von 3 und von 2 sein, also der ggT(3,2) = 1.
Wir suchen deswegen erst den entsprechenden Wert für 1 Minuten pro Tag:
|
Um von 3 Minuten pro Tag in der ersten Zeile auf 1 Minuten pro Tag in der zweiten Zeile zu kommen, müssen wir durch 3 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 12 Tage nicht durch 3 teilen, sondern mit 3 multiplizieren um auf den Wert zu kommen, der den 1 Minuten pro Tag links entspricht:
|
: 3
|
![]() |
|
![]() |
⋅ 3
|
|
: 3
|
![]() |
|
![]() |
⋅ 3
|
Jetzt müssen wir ja wieder die 1 Minuten pro Tag in der mittleren Zeile mit 2 multiplizieren, um auf die 2 Minuten pro Tag in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 3
⋅ 2
|
![]() ![]() |
|
![]() ![]() |
⋅ 3
: 2
|
Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 36 Tage in der mittleren Zeile durch 2 dividieren:
|
: 3
⋅ 2
|
![]() ![]() |
|
![]() ![]() |
⋅ 3
: 2
|
Damit haben wir nun den gesuchten Wert, der den 2 Minuten pro Tag entspricht: 18 Tage
Tabelle (antiproportional)
Beispiel:
Die Tabelle zeigt Werte von zwei Größen mit einem antiproportionalen Zusammenhang. Übertrage die Tabelle in dein Heft und berechne mit dem Dreisatz die fehlende Größen.
| 3 Liter pro 100km | 1200 km |
| ? | ? |
| 2 Liter pro 100km | ? |
Wir suchen einen möglichst großen Zwischenwert für die Liter pro 100km in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 3 Liter pro 100km teilen müssen.) Diese Zahl sollte eine Teiler von 3 und von 2 sein, also der ggT(3,2) = 1.
Wir suchen deswegen erst den entsprechenden Wert für 1 Liter pro 100km:
|
Um von 3 Liter pro 100km in der ersten Zeile auf 1 Liter pro 100km in der zweiten Zeile zu kommen, müssen wir durch 3 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 1200 km nicht durch 3 teilen, sondern mit 3 multiplizieren um auf den Wert zu kommen, der den 1 Liter pro 100km links entspricht:
|
: 3
|
![]() |
|
![]() |
⋅ 3
|
|
: 3
|
![]() |
|
![]() |
⋅ 3
|
Jetzt müssen wir ja wieder die 1 Liter pro 100km in der mittleren Zeile mit 2 multiplizieren, um auf die 2 Liter pro 100km in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 3
⋅ 2
|
![]() ![]() |
|
![]() ![]() |
⋅ 3
: 2
|
Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 3600 km in der mittleren Zeile durch 2 dividieren:
|
: 3
⋅ 2
|
![]() ![]() |
|
![]() ![]() |
⋅ 3
: 2
|
Damit haben wir nun den gesuchten Wert, der den 2 Liter pro 100km entspricht: 1800 km
Antiproportionalität überprüfen
Beispiel:
Prüfe, ob es sich um einen antiproportionalen Zusammenhang handelt; falls nicht, korrigiere die Werte so, dass der Zusammenhang antiproportional wird.
Wir überprüfen zuerst, ob die 10 Tage den 3 Minuten pro Tag entsprechen.
|
: 5
⋅ 3
|
![]() ![]() |
|
![]() ![]() |
⋅ 5
: 3
|
Der urpsrünglich vorgegebene Wert 10 Tage (für 3 Minuten pro Tag) war also falsch, richtig wäre 15 Tage gewesen.
Jetzt überprüfen wir, ob die 4 Tage den 9 Minuten pro Tag entsprechen.
|
: 5
⋅ 9
|
![]() ![]() |
|
![]() ![]() |
⋅ 5
: 9
|
Der urpsrünglich vorgegebene Wert 4 Tage (für 9 Minuten pro Tag) war also falsch, richtig wäre 5 Tage gewesen.
Dreisatz (antiprop.) beide Richtungen
Beispiel:
Wenn Frau Baumann so Auto fährt, dass sie 7 Liter pro 100km verbraucht, kommt sie mit einer Tankfüllung 800 km weit.
Wie weit würde sie mit einer Tankfüllung kommen, wenn sie mit einem "4 Liter/100km "-Schnitt fahren würde?
Mit welchem "Liter pro 100km"-Schnitt muss sie fahren, dass sie mit einer Tankfüllung 700 km weit kommt?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Wir suchen einen möglichst großen Zwischenwert für die Liter pro 100km in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 7 Liter pro 100km teilen müssen.) Diese Zahl sollte eine Teiler von 7 und von 4 sein, also der ggT(7,4) = 1.
Wir suchen deswegen erst den entsprechenden Wert für 1 Liter pro 100km:
|
Um von 7 Liter pro 100km in der ersten Zeile auf 1 Liter pro 100km in der zweiten Zeile zu kommen, müssen wir durch 7 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 800 km nicht durch 7 teilen, sondern mit 7 multiplizieren um auf den Wert zu kommen, der den 1 Liter pro 100km links entspricht:
|
: 7
|
![]() |
|
![]() |
⋅ 7
|
Jetzt müssen wir ja wieder die 1 Liter pro 100km in der mittleren Zeile mit 4 multiplizieren, um auf die 4 Liter pro 100km in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 7
⋅ 4
|
![]() ![]() |
|
![]() ![]() |
⋅ 7
: 4
|
Damit haben wir nun den gesuchten Wert, der den 4 Liter pro 100km entspricht: 1400 km
Für die andere Frage (Mit welchem "Liter pro 100km"-Schnitt muss sie fahren, dass sie mit einer Tankfüllung 700 km weit kommt?) vertauschen wir die linke mit der rechten Spalte in der Tabelle, weil wir jetzt ja zwei "km"-Werte haben und nach einem "Liter pro 100km"-Wert gesucht wird:
|
Wir suchen einen möglichst großen Zwischenwert für die km in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 800 km teilen müssen.) Diese Zahl sollte eine Teiler von 800 und von 700 sein, also der ggT(800,700) = 100.
Wir suchen deswegen erst den entsprechenden Wert für 100 km:
|
Um von 800 km in der ersten Zeile auf 100 km in der zweiten Zeile zu kommen, müssen wir durch 8 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 7 Liter pro 100km nicht durch 8 teilen, sondern mit 8 multiplizieren um auf den Wert zu kommen, der den 100 km links entspricht:
|
: 8
|
![]() |
|
![]() |
⋅ 8
|
Jetzt müssen wir ja wieder die 100 km in der mittleren Zeile mit 7 multiplizieren, um auf die 700 km in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 8
⋅ 7
|
![]() ![]() |
|
![]() ![]() |
⋅ 8
: 7
|
Damit haben wir nun den gesuchten Wert, der den 700 km entspricht: 8 Liter pro 100km
Wert bei Anti-Proport. (Anwendungen)
Beispiel:
Auf einer Großbaustelle müssen unglaubliche Mengen an Aushub abtransportiert werden. Dabei brauchen 3 LKWs genau 10 Fahrten. Wieviele Fahrten bräuchten 9 LKWs durchschnittlich?(Bitte auf eine Stelle hinterm Komma runden, auch wenn es inhaltlich keinen Sinn macht.)
Da die Zuordnung der beiden Größen antiproportional ist, schreiben wir die Werte am besten mal in eine Tabelle:
| LKW-Anzahl | Fahrten-Anzahl |
|---|---|
| 3 LKWs | 10 Fahrten |
| ( : 3 ) | ( ⋅ 3 ) |
| 1 LKWs | Fahrten |
| ( ⋅ 9 ) | ( : 9 ) |
| 9 LKWs | Fahrten |
Die gesuchte Fahrten-Anzahl ist also = = 3 ≈ 3.333 Fahrten


