Klasse 5
Klasse 6
Klasse 7
Klasse 8
Klasse 9
Klasse 10
Fit für die Oberstufe
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Zweisatz (antiproportional)
Beispiel:
Bei einer großen Baustelle muss das Erdreich der Baugrube abtransportiert werden. 1 Lastwagen müsste dafür 24 mal fahren.
Wie oft müssten 6 LKWs fahren?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Um von 1 Lastwagen in der ersten Zeile auf 6 Lastwagen in der zweiten Zeile zu kommen, müssen wir mit 6 multiplizieren. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 24 Fuhren durch 6 teilen, um auf den Wert zu kommen, der den 6 Lastwagen entspricht:
|
⋅ 6
|
![]() |
|
![]() |
: 6
|
|
⋅ 6
|
![]() |
|
![]() |
: 6
|
Damit haben wir nun den gesuchten Wert, der den 6 Lastwagen entspricht: 4 Fuhren
Dreisatz (antiproportional)
Beispiel:
Wenn Karla mit ihrem Handy jeden Tag immer 8 Minuten telefonieren würde, würden ihre Freiminuten noch genau 5 Tage halten.
Wann wären ihre Freiminuten aufgebraucht, wenn sie täglich 10 min telefonieren würde?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Wir suchen einen möglichst großen Zwischenwert für die Minuten pro Tag in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 8 Minuten pro Tag teilen müssen.) Diese Zahl sollte eine Teiler von 8 und von 10 sein, also der ggT(8,10) = 2.
Wir suchen deswegen erst den entsprechenden Wert für 2 Minuten pro Tag:
|
Um von 8 Minuten pro Tag in der ersten Zeile auf 2 Minuten pro Tag in der zweiten Zeile zu kommen, müssen wir durch 4 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 5 Tage nicht durch 4 teilen, sondern mit 4 multiplizieren um auf den Wert zu kommen, der den 2 Minuten pro Tag links entspricht:
|
: 4
|
![]() |
|
![]() |
⋅ 4
|
|
: 4
|
![]() |
|
![]() |
⋅ 4
|
Jetzt müssen wir ja wieder die 2 Minuten pro Tag in der mittleren Zeile mit 5 multiplizieren, um auf die 10 Minuten pro Tag in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 4
⋅ 5
|
![]() ![]() |
|
![]() ![]() |
⋅ 4
: 5
|
Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 20 Tage in der mittleren Zeile durch 5 dividieren:
|
: 4
⋅ 5
|
![]() ![]() |
|
![]() ![]() |
⋅ 4
: 5
|
Damit haben wir nun den gesuchten Wert, der den 10 Minuten pro Tag entspricht: 4 Tage
Tabelle (antiproportional)
Beispiel:
Die Tabelle zeigt Werte von zwei Größen mit einem antiproportionalen Zusammenhang. Übertrage die Tabelle in dein Heft und berechne mit dem Dreisatz die fehlende Größen.
| 9 Helfer:innen | 50 € Lohn |
| ? | ? |
| 15 Helfer:innen | ? |
Wir suchen einen möglichst großen Zwischenwert für die Helfer:innen in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 9 Helfer:innen teilen müssen.) Diese Zahl sollte eine Teiler von 9 und von 15 sein, also der ggT(9,15) = 3.
Wir suchen deswegen erst den entsprechenden Wert für 3 Helfer:innen:
|
Um von 9 Helfer:innen in der ersten Zeile auf 3 Helfer:innen in der zweiten Zeile zu kommen, müssen wir durch 3 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 50 € Lohn nicht durch 3 teilen, sondern mit 3 multiplizieren um auf den Wert zu kommen, der den 3 Helfer:innen links entspricht:
|
: 3
|
![]() |
|
![]() |
⋅ 3
|
|
: 3
|
![]() |
|
![]() |
⋅ 3
|
Jetzt müssen wir ja wieder die 3 Helfer:innen in der mittleren Zeile mit 5 multiplizieren, um auf die 15 Helfer:innen in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 3
⋅ 5
|
![]() ![]() |
|
![]() ![]() |
⋅ 3
: 5
|
Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 150 € Lohn in der mittleren Zeile durch 5 dividieren:
|
: 3
⋅ 5
|
![]() ![]() |
|
![]() ![]() |
⋅ 3
: 5
|
Damit haben wir nun den gesuchten Wert, der den 15 Helfer:innen entspricht: 30 € Lohn
Antiproportionalität überprüfen
Beispiel:
Prüfe, ob es sich um einen antiproportionalen Zusammenhang handelt; falls nicht, korrigiere die Werte so, dass der Zusammenhang antiproportional wird.
Wir überprüfen zuerst, ob die 5 Fuhren den 18 Lastwagen entsprechen.
|
: 2
⋅ 3
|
![]() ![]() |
|
![]() ![]() |
⋅ 2
: 3
|
Der urpsrünglich vorgegebene Wert 5 Fuhren (für 18 Lastwagen) war also falsch, richtig wäre 2 Fuhren gewesen.
Jetzt überprüfen wir, ob die 9 Fuhren den 3 Lastwagen entsprechen.
|
: 4
⋅ 1
|
![]() ![]() |
|
![]() ![]() |
⋅ 4
: 1
|
Der urpsrünglich vorgegebene Wert 9 Fuhren (für 3 Lastwagen) war also falsch, richtig wäre 12 Fuhren gewesen.
Dreisatz (antiprop.) beide Richtungen
Beispiel:
Karls hat für seine Geburtstagsparty Spezi bekommen. Dabei reicht es für jeden genau 8 Flaschen, wenn insgesamt 5 Personen auf seiner Party sind.
Wie viele Flaschen würde jeder bekommen, wenn insgesamt 4 Personen auf der Party wären?
Wie viele Personen können auf die Party, damit es für jeden zu 5 Flaschen reicht?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Wir suchen einen möglichst großen Zwischenwert für die Gäste in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 5 Gäste teilen müssen.) Diese Zahl sollte eine Teiler von 5 und von 4 sein, also der ggT(5,4) = 1.
Wir suchen deswegen erst den entsprechenden Wert für 1 Gäste:
|
Um von 5 Gäste in der ersten Zeile auf 1 Gäste in der zweiten Zeile zu kommen, müssen wir durch 5 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 8 Spezi-Flaschen nicht durch 5 teilen, sondern mit 5 multiplizieren um auf den Wert zu kommen, der den 1 Gäste links entspricht:
|
: 5
|
![]() |
|
![]() |
⋅ 5
|
Jetzt müssen wir ja wieder die 1 Gäste in der mittleren Zeile mit 4 multiplizieren, um auf die 4 Gäste in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 5
⋅ 4
|
![]() ![]() |
|
![]() ![]() |
⋅ 5
: 4
|
Damit haben wir nun den gesuchten Wert, der den 4 Gäste entspricht: 10 Spezi-Flaschen
Für die andere Frage (Wie viele Personen können auf die Party, damit es für jeden zu 5 Flaschen reicht?) vertauschen wir die linke mit der rechten Spalte in der Tabelle, weil wir jetzt ja zwei "Spezi-Flaschen"-Werte haben und nach einem "Gäste"-Wert gesucht wird:
|
Wir suchen einen möglichst großen Zwischenwert für die Spezi-Flaschen in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 8 Spezi-Flaschen teilen müssen.) Diese Zahl sollte eine Teiler von 8 und von 5 sein, also der ggT(8,5) = 1.
Wir suchen deswegen erst den entsprechenden Wert für 1 Spezi-Flaschen:
|
Um von 8 Spezi-Flaschen in der ersten Zeile auf 1 Spezi-Flaschen in der zweiten Zeile zu kommen, müssen wir durch 8 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 5 Gäste nicht durch 8 teilen, sondern mit 8 multiplizieren um auf den Wert zu kommen, der den 1 Spezi-Flaschen links entspricht:
|
: 8
|
![]() |
|
![]() |
⋅ 8
|
Jetzt müssen wir ja wieder die 1 Spezi-Flaschen in der mittleren Zeile mit 5 multiplizieren, um auf die 5 Spezi-Flaschen in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 8
⋅ 5
|
![]() ![]() |
|
![]() ![]() |
⋅ 8
: 5
|
Damit haben wir nun den gesuchten Wert, der den 5 Spezi-Flaschen entspricht: 8 Gäste
Wert bei Anti-Proport. (Anwendungen)
Beispiel:
Eine Drohne muss eine bestimmte Strecke zurücklegen. Wenn sie dabei mit einer Geschwindigkeit von 40 km/h fliegt, braucht sie dafür 12 Minuten.Wie lange braucht sie bei einer Geschwindigkeit von 20 km/h?
Da die Zuordnung der beiden Größen antiproportional ist, schreiben wir die Werte am besten mal in eine Tabelle:
| Geschwindigkeit | Flugzeit |
|---|---|
| 40 km/h | 12 min |
| ( : 40 ) | ( ⋅ 40 ) |
| 1 km/h | min |
| ( ⋅ 20 ) | ( : 20 ) |
| 20 km/h | min |
Die gesuchte Flugzeit ist also = min


