nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Zweisatz (antiproportional)

Beispiel:

Karls hat für seine Geburtstagsparty 60 Flaschen Spezi bekommen.

Wie viele Flaschen würde jeder bekommen, wenn insgesamt 10 Personen auf der Party wären?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:

1 Gast60 Spezi-Flaschen
10 Gäste?

Um von 1 Gäste in der ersten Zeile auf 10 Gäste in der zweiten Zeile zu kommen, müssen wir mit 10 multiplizieren. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 60 Spezi-Flaschen durch 10 teilen, um auf den Wert zu kommen, der den 10 Gäste entspricht:

⋅ 10
1 Gast60 Spezi-Flaschen
10 Gäste?
: 10
⋅ 10
1 Gast60 Spezi-Flaschen
10 Gäste6 Spezi-Flaschen
: 10

Damit haben wir nun den gesuchten Wert, der den 10 Gäste entspricht: 6 Spezi-Flaschen

Dreisatz (antiproportional)

Beispiel:

Um den noch fehlenden Betrag für eine Klassenfahrt zu bekommen, veranstaltet eine Schulkasse ein Lotterie. Wenn sie 9€ für ein Los verlangen, müssten sie 50 Lose verkaufen um genügend Geld zusammen zu bekommen.

Wie viele Lose müssten sie bei einem Lospreis von 15 € verkaufen?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:


9 € Lospreis50 Lose
??
15 € Lospreis?

Wir suchen einen möglichst großen Zwischenwert für die € Lospreis in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 9 € Lospreis teilen müssen.) Diese Zahl sollte eine Teiler von 9 und von 15 sein, also der ggT(9,15) = 3.

Wir suchen deswegen erst den entsprechenden Wert für 3 € Lospreis:


9 € Lospreis50 Lose
3 € Lospreis?
15 € Lospreis?

Um von 9 € Lospreis in der ersten Zeile auf 3 € Lospreis in der zweiten Zeile zu kommen, müssen wir durch 3 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 50 Lose nicht durch 3 teilen, sondern mit 3 multiplizieren um auf den Wert zu kommen, der den 3 € Lospreis links entspricht:

: 3

9 € Lospreis50 Lose
3 € Lospreis?
15 € Lospreis?

⋅ 3
: 3

9 € Lospreis50 Lose
3 € Lospreis150 Lose
15 € Lospreis?

⋅ 3

Jetzt müssen wir ja wieder die 3 € Lospreis in der mittleren Zeile mit 5 multiplizieren, um auf die 15 € Lospreis in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 3
⋅ 5

9 € Lospreis50 Lose
3 € Lospreis150 Lose
15 € Lospreis?

⋅ 3
: 5

Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 150 Lose in der mittleren Zeile durch 5 dividieren:

: 3
⋅ 5

9 € Lospreis50 Lose
3 € Lospreis150 Lose
15 € Lospreis30 Lose

⋅ 3
: 5

Damit haben wir nun den gesuchten Wert, der den 15 € Lospreis entspricht: 30 Lose

Tabelle (antiproportional)

Beispiel:

Die Tabelle zeigt Werte von zwei Größen mit einem antiproportionalen Zusammenhang. Übertrage die Tabelle in dein Heft und berechne mit dem Dreisatz die fehlende Größen.

7 Lastwagen8 Fuhren
??
4 Lastwagen?

Lösung einblenden

Wir suchen einen möglichst großen Zwischenwert für die Lastwagen in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 7 Lastwagen teilen müssen.) Diese Zahl sollte eine Teiler von 7 und von 4 sein, also der ggT(7,4) = 1.

Wir suchen deswegen erst den entsprechenden Wert für 1 Lastwagen:


7 Lastwagen8 Fuhren
1 Lastwagen?
4 Lastwagen?

Um von 7 Lastwagen in der ersten Zeile auf 1 Lastwagen in der zweiten Zeile zu kommen, müssen wir durch 7 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 8 Fuhren nicht durch 7 teilen, sondern mit 7 multiplizieren um auf den Wert zu kommen, der den 1 Lastwagen links entspricht:

: 7

7 Lastwagen8 Fuhren
1 Lastwagen?
4 Lastwagen?

⋅ 7
: 7

7 Lastwagen8 Fuhren
1 Lastwagen56 Fuhren
4 Lastwagen?

⋅ 7

Jetzt müssen wir ja wieder die 1 Lastwagen in der mittleren Zeile mit 4 multiplizieren, um auf die 4 Lastwagen in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 7
⋅ 4

7 Lastwagen8 Fuhren
1 Lastwagen56 Fuhren
4 Lastwagen?

⋅ 7
: 4

Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 56 Fuhren in der mittleren Zeile durch 4 dividieren:

: 7
⋅ 4

7 Lastwagen8 Fuhren
1 Lastwagen56 Fuhren
4 Lastwagen14 Fuhren

⋅ 7
: 4

Damit haben wir nun den gesuchten Wert, der den 4 Lastwagen entspricht: 14 Fuhren

Antiproportionalität überprüfen

Beispiel:

Prüfe, ob es sich um einen antiproportionalen Zusammenhang handelt; falls nicht, korrigiere die Werte so, dass der Zusammenhang antiproportional wird.

Lösung einblenden

Wir überprüfen zuerst, ob die 2 Spezi-Flaschen den 15 Gäste entsprechen.

: 2
⋅ 3

10 Gäste3 Spezi-Flaschen
5 Gäste6 Spezi-Flaschen
15 Gäste2 Spezi-Flaschen

⋅ 2
: 3

Der urpsrünglich vorgegebene Wert 2 Spezi-Flaschen(für 15 Gäste) war also korrekt.


Jetzt überprüfen wir, ob die 8 Spezi-Flaschen den 5 Gäste entsprechen.

: 2
⋅ 1

10 Gäste3 Spezi-Flaschen
5 Gäste6 Spezi-Flaschen
5 Gäste6 Spezi-Flaschen

⋅ 2
: 1

Der urpsrünglich vorgegebene Wert 8 Spezi-Flaschen (für 5 Gäste) war also falsch, richtig wäre 6 Spezi-Flaschen gewesen.

Dreisatz (antiprop.) beide Richtungen

Beispiel:

Wenn Frau Baumann so Auto fährt, dass sie 5 Liter pro 100km verbraucht, kommt sie mit einer Tankfüllung 900 km weit.

Wie weit würde sie mit einer Tankfüllung kommen, wenn sie mit einem "3 Liter/100km "-Schnitt fahren würde?
Mit welchem "Liter pro 100km"-Schnitt muss sie fahren, dass sie mit einer Tankfüllung 500 km weit kommt?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:


5 Liter pro 100km900 km
??
3 Liter pro 100km?

Wir suchen einen möglichst großen Zwischenwert für die Liter pro 100km in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 5 Liter pro 100km teilen müssen.) Diese Zahl sollte eine Teiler von 5 und von 3 sein, also der ggT(5,3) = 1.

Wir suchen deswegen erst den entsprechenden Wert für 1 Liter pro 100km:


5 Liter pro 100km900 km
1 Liter pro 100km?
3 Liter pro 100km?

Um von 5 Liter pro 100km in der ersten Zeile auf 1 Liter pro 100km in der zweiten Zeile zu kommen, müssen wir durch 5 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 900 km nicht durch 5 teilen, sondern mit 5 multiplizieren um auf den Wert zu kommen, der den 1 Liter pro 100km links entspricht:

: 5

5 Liter pro 100km900 km
1 Liter pro 100km4500 km
3 Liter pro 100km?

⋅ 5

Jetzt müssen wir ja wieder die 1 Liter pro 100km in der mittleren Zeile mit 3 multiplizieren, um auf die 3 Liter pro 100km in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 5
⋅ 3

5 Liter pro 100km900 km
1 Liter pro 100km4500 km
3 Liter pro 100km1500 km

⋅ 5
: 3

Damit haben wir nun den gesuchten Wert, der den 3 Liter pro 100km entspricht: 1500 km



Für die andere Frage (Mit welchem "Liter pro 100km"-Schnitt muss sie fahren, dass sie mit einer Tankfüllung 500 km weit kommt?) vertauschen wir die linke mit der rechten Spalte in der Tabelle, weil wir jetzt ja zwei "km"-Werte haben und nach einem "Liter pro 100km"-Wert gesucht wird:


900 km5 Liter pro 100km
??
500 km?

Wir suchen einen möglichst großen Zwischenwert für die km in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 900 km teilen müssen.) Diese Zahl sollte eine Teiler von 900 und von 500 sein, also der ggT(900,500) = 100.

Wir suchen deswegen erst den entsprechenden Wert für 100 km:


900 km5 Liter pro 100km
100 km?
500 km?

Um von 900 km in der ersten Zeile auf 100 km in der zweiten Zeile zu kommen, müssen wir durch 9 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 5 Liter pro 100km nicht durch 9 teilen, sondern mit 9 multiplizieren um auf den Wert zu kommen, der den 100 km links entspricht:

: 9

900 km5 Liter pro 100km
100 km45 Liter pro 100km
500 km?

⋅ 9

Jetzt müssen wir ja wieder die 100 km in der mittleren Zeile mit 5 multiplizieren, um auf die 500 km in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 9
⋅ 5

900 km5 Liter pro 100km
100 km45 Liter pro 100km
500 km9 Liter pro 100km

⋅ 9
: 5

Damit haben wir nun den gesuchten Wert, der den 500 km entspricht: 9 Liter pro 100km

Wert bei Anti-Proport. (Anwendungen)

Beispiel:

Ein Raum wird mit 35 LED-Leuchten á 110 Lumen ausgeleuchtet. Aus ästhetischen Gründen sollen nur noch 13 Leuchten im Raum installiert sein, diese sollen aber die gleiche Helligkeit erzeugen. Wie viel Lumen brauchen dann diese neuen LED-Leuchten?

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Da die Zuordnung der beiden Größen antiproportional ist, schreiben wir die Werte am besten mal in eine Tabelle:

Anzahl LED-LeuchtenHelligkeit
35 110 Lumen
( : 35 )( ⋅ 35 )
1 3850 Lumen
( ⋅ 13 )( : 13 )
13 3850 13 Lumen

Die gesuchte Helligkeit ist also 3850 13 = 296 2 13 ≈ 296.154 Lumen