Klasse 5
Klasse 6
Klasse 7
Klasse 8
Klasse 9
Klasse 10
Fit für die Oberstufe
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Zweisatz (antiproportional)
Beispiel:
Wenn Karla mit ihrem Handy jeden Tag immer 1 Minute telefonieren würde, würden ihre Freiminuten noch genau 60 Tage halten.
Wann wären ihre Freiminuten aufgebraucht, wenn sie täglich 4 min telefonieren würde?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Um von 1 Minuten pro Tag in der ersten Zeile auf 4 Minuten pro Tag in der zweiten Zeile zu kommen, müssen wir mit 4 multiplizieren. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 60 Tage durch 4 teilen, um auf den Wert zu kommen, der den 4 Minuten pro Tag entspricht:
|
⋅ 4
|
![]() |
|
![]() |
: 4
|
|
⋅ 4
|
![]() |
|
![]() |
: 4
|
Damit haben wir nun den gesuchten Wert, der den 4 Minuten pro Tag entspricht: 15 Tage
Dreisatz (antiproportional)
Beispiel:
Wenn Karla mit ihrem Handy jeden Tag immer 6 Minuten telefonieren würde, würden ihre Freiminuten noch genau 4 Tage halten.
Wann wären ihre Freiminuten aufgebraucht, wenn sie täglich 8 min telefonieren würde?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Wir suchen einen möglichst großen Zwischenwert für die Minuten pro Tag in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 6 Minuten pro Tag teilen müssen.) Diese Zahl sollte eine Teiler von 6 und von 8 sein, also der ggT(6,8) = 2.
Wir suchen deswegen erst den entsprechenden Wert für 2 Minuten pro Tag:
|
Um von 6 Minuten pro Tag in der ersten Zeile auf 2 Minuten pro Tag in der zweiten Zeile zu kommen, müssen wir durch 3 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 4 Tage nicht durch 3 teilen, sondern mit 3 multiplizieren um auf den Wert zu kommen, der den 2 Minuten pro Tag links entspricht:
|
: 3
|
![]() |
|
![]() |
⋅ 3
|
|
: 3
|
![]() |
|
![]() |
⋅ 3
|
Jetzt müssen wir ja wieder die 2 Minuten pro Tag in der mittleren Zeile mit 4 multiplizieren, um auf die 8 Minuten pro Tag in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 3
⋅ 4
|
![]() ![]() |
|
![]() ![]() |
⋅ 3
: 4
|
Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 12 Tage in der mittleren Zeile durch 4 dividieren:
|
: 3
⋅ 4
|
![]() ![]() |
|
![]() ![]() |
⋅ 3
: 4
|
Damit haben wir nun den gesuchten Wert, der den 8 Minuten pro Tag entspricht: 3 Tage
Tabelle (antiproportional)
Beispiel:
Die Tabelle zeigt Werte von zwei Größen mit einem antiproportionalen Zusammenhang. Übertrage die Tabelle in dein Heft und berechne mit dem Dreisatz die fehlende Größen.
| 6 € Lospreis | 40 Lose |
| ? | ? |
| 8 € Lospreis | ? |
Wir suchen einen möglichst großen Zwischenwert für die € Lospreis in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 6 € Lospreis teilen müssen.) Diese Zahl sollte eine Teiler von 6 und von 8 sein, also der ggT(6,8) = 2.
Wir suchen deswegen erst den entsprechenden Wert für 2 € Lospreis:
|
Um von 6 € Lospreis in der ersten Zeile auf 2 € Lospreis in der zweiten Zeile zu kommen, müssen wir durch 3 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 40 Lose nicht durch 3 teilen, sondern mit 3 multiplizieren um auf den Wert zu kommen, der den 2 € Lospreis links entspricht:
|
: 3
|
![]() |
|
![]() |
⋅ 3
|
|
: 3
|
![]() |
|
![]() |
⋅ 3
|
Jetzt müssen wir ja wieder die 2 € Lospreis in der mittleren Zeile mit 4 multiplizieren, um auf die 8 € Lospreis in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 3
⋅ 4
|
![]() ![]() |
|
![]() ![]() |
⋅ 3
: 4
|
Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 120 Lose in der mittleren Zeile durch 4 dividieren:
|
: 3
⋅ 4
|
![]() ![]() |
|
![]() ![]() |
⋅ 3
: 4
|
Damit haben wir nun den gesuchten Wert, der den 8 € Lospreis entspricht: 30 Lose
Antiproportionalität überprüfen
Beispiel:
Prüfe, ob es sich um einen antiproportionalen Zusammenhang handelt; falls nicht, korrigiere die Werte so, dass der Zusammenhang antiproportional wird.
Wir überprüfen zuerst, ob die 1500 km den 2 Liter pro 100km entsprechen.
|
: 3
⋅ 2
|
![]() ![]() |
|
![]() ![]() |
⋅ 3
: 2
|
Der urpsrünglich vorgegebene Wert 1500 km(für 2 Liter pro 100km) war also korrekt.
Jetzt überprüfen wir, ob die 299 km den 10 Liter pro 100km entsprechen.
|
: 3
⋅ 10
|
![]() ![]() |
|
![]() ![]() |
⋅ 3
: 10
|
Der urpsrünglich vorgegebene Wert 299 km (für 10 Liter pro 100km) war also falsch, richtig wäre 300 km gewesen.
Dreisatz (antiprop.) beide Richtungen
Beispiel:
Ein Hausmeister hat ein extra Budget für die Schulreinigung in den Ferien, das er unter helfenden Schüler:innen aufteilen kann (er selbst bekommt nichts von dem Geld). Wenn er 8 Helfer:innen einstellt, reicht es für jeden 50 € Lohn.
Welchen Lohn könnte er jeder Helfer:in bezahlen, wenn er 10 Helfer:innen hätte?
Wie viele Helfer:innen könnte man mit einem Lohn von 8 € bezahlen?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Wir suchen einen möglichst großen Zwischenwert für die Helfer:innen in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 8 Helfer:innen teilen müssen.) Diese Zahl sollte eine Teiler von 8 und von 10 sein, also der ggT(8,10) = 2.
Wir suchen deswegen erst den entsprechenden Wert für 2 Helfer:innen:
|
Um von 8 Helfer:innen in der ersten Zeile auf 2 Helfer:innen in der zweiten Zeile zu kommen, müssen wir durch 4 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 50 € Lohn nicht durch 4 teilen, sondern mit 4 multiplizieren um auf den Wert zu kommen, der den 2 Helfer:innen links entspricht:
|
: 4
|
![]() |
|
![]() |
⋅ 4
|
Jetzt müssen wir ja wieder die 2 Helfer:innen in der mittleren Zeile mit 5 multiplizieren, um auf die 10 Helfer:innen in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 4
⋅ 5
|
![]() ![]() |
|
![]() ![]() |
⋅ 4
: 5
|
Damit haben wir nun den gesuchten Wert, der den 10 Helfer:innen entspricht: 40 € Lohn
Für die andere Frage (Wie viele Helfer:innen könnte man mit einem Lohn von 8 € bezahlen?) vertauschen wir die linke mit der rechten Spalte in der Tabelle, weil wir jetzt ja zwei "€ Lohn"-Werte haben und nach einem "Helfer:innen"-Wert gesucht wird:
|
Wir suchen einen möglichst großen Zwischenwert für die € Lohn in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 50 € Lohn teilen müssen.) Diese Zahl sollte eine Teiler von 50 und von 8 sein, also der ggT(50,8) = 2.
Wir suchen deswegen erst den entsprechenden Wert für 2 € Lohn:
|
Um von 50 € Lohn in der ersten Zeile auf 2 € Lohn in der zweiten Zeile zu kommen, müssen wir durch 25 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 8 Helfer:innen nicht durch 25 teilen, sondern mit 25 multiplizieren um auf den Wert zu kommen, der den 2 € Lohn links entspricht:
|
: 25
|
![]() |
|
![]() |
⋅ 25
|
Jetzt müssen wir ja wieder die 2 € Lohn in der mittleren Zeile mit 4 multiplizieren, um auf die 8 € Lohn in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 25
⋅ 4
|
![]() ![]() |
|
![]() ![]() |
⋅ 25
: 4
|
Damit haben wir nun den gesuchten Wert, der den 8 € Lohn entspricht: 50 Helfer:innen
Wert bei Anti-Proport. (Anwendungen)
Beispiel:
Ein Raum wird mit 35 LED-Leuchten á 190 Lumen ausgeleuchtet. Aus ästhetischen Gründen sollen nur noch 21 Leuchten im Raum installiert sein, diese sollen aber die gleiche Helligkeit erzeugen. Wie viel Lumen brauchen dann diese neuen LED-Leuchten?
Da die Zuordnung der beiden Größen antiproportional ist, schreiben wir die Werte am besten mal in eine Tabelle:
| Anzahl LED-Leuchten | Helligkeit |
|---|---|
| 35 | 190 Lumen |
| ( : 35 ) | ( ⋅ 35 ) |
| 1 | Lumen |
| ( ⋅ 21 ) | ( : 21 ) |
| 21 | Lumen |
Die gesuchte Helligkeit ist also = = 316 ≈ 316.667 Lumen


