Klasse 5
Klasse 6
Klasse 7
Klasse 8
Klasse 9
Klasse 10
Fit für die Oberstufe
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Zweisatz (antiproportional)
Beispiel:
Bei einer großen Baustelle muss das Erdreich der Baugrube abtransportiert werden. 1 Lastwagen müsste dafür 60 mal fahren.
Wie oft müssten 12 LKWs fahren?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Um von 1 Lastwagen in der ersten Zeile auf 12 Lastwagen in der zweiten Zeile zu kommen, müssen wir mit 12 multiplizieren. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 60 Fuhren durch 12 teilen, um auf den Wert zu kommen, der den 12 Lastwagen entspricht:
|
⋅ 12
|
![]() |
|
![]() |
: 12
|
|
⋅ 12
|
![]() |
|
![]() |
: 12
|
Damit haben wir nun den gesuchten Wert, der den 12 Lastwagen entspricht: 5 Fuhren
Dreisatz (antiproportional)
Beispiel:
Wenn Karla mit ihrem Handy jeden Tag immer 8 Minuten telefonieren würde, würden ihre Freiminuten noch genau 5 Tage halten.
Wann wären ihre Freiminuten aufgebraucht, wenn sie täglich 10 min telefonieren würde?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Wir suchen einen möglichst großen Zwischenwert für die Minuten pro Tag in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 8 Minuten pro Tag teilen müssen.) Diese Zahl sollte eine Teiler von 8 und von 10 sein, also der ggT(8,10) = 2.
Wir suchen deswegen erst den entsprechenden Wert für 2 Minuten pro Tag:
|
Um von 8 Minuten pro Tag in der ersten Zeile auf 2 Minuten pro Tag in der zweiten Zeile zu kommen, müssen wir durch 4 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 5 Tage nicht durch 4 teilen, sondern mit 4 multiplizieren um auf den Wert zu kommen, der den 2 Minuten pro Tag links entspricht:
|
: 4
|
![]() |
|
![]() |
⋅ 4
|
|
: 4
|
![]() |
|
![]() |
⋅ 4
|
Jetzt müssen wir ja wieder die 2 Minuten pro Tag in der mittleren Zeile mit 5 multiplizieren, um auf die 10 Minuten pro Tag in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 4
⋅ 5
|
![]() ![]() |
|
![]() ![]() |
⋅ 4
: 5
|
Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 20 Tage in der mittleren Zeile durch 5 dividieren:
|
: 4
⋅ 5
|
![]() ![]() |
|
![]() ![]() |
⋅ 4
: 5
|
Damit haben wir nun den gesuchten Wert, der den 10 Minuten pro Tag entspricht: 4 Tage
Tabelle (antiproportional)
Beispiel:
Die Tabelle zeigt Werte von zwei Größen mit einem antiproportionalen Zusammenhang. Übertrage die Tabelle in dein Heft und berechne mit dem Dreisatz die fehlende Größen.
| 20 Personen | 3 h |
| ? | ? |
| 30 Personen | ? |
Wir suchen einen möglichst großen Zwischenwert für die Personen in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 20 Personen teilen müssen.) Diese Zahl sollte eine Teiler von 20 und von 30 sein, also der ggT(20,30) = 10.
Wir suchen deswegen erst den entsprechenden Wert für 10 Personen:
|
Um von 20 Personen in der ersten Zeile auf 10 Personen in der zweiten Zeile zu kommen, müssen wir durch 2 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 3 h nicht durch 2 teilen, sondern mit 2 multiplizieren um auf den Wert zu kommen, der den 10 Personen links entspricht:
|
: 2
|
![]() |
|
![]() |
⋅ 2
|
|
: 2
|
![]() |
|
![]() |
⋅ 2
|
Jetzt müssen wir ja wieder die 10 Personen in der mittleren Zeile mit 3 multiplizieren, um auf die 30 Personen in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 2
⋅ 3
|
![]() ![]() |
|
![]() ![]() |
⋅ 2
: 3
|
Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 6 h in der mittleren Zeile durch 3 dividieren:
|
: 2
⋅ 3
|
![]() ![]() |
|
![]() ![]() |
⋅ 2
: 3
|
Damit haben wir nun den gesuchten Wert, der den 30 Personen entspricht: 2 h
Antiproportionalität überprüfen
Beispiel:
Prüfe, ob es sich um einen antiproportionalen Zusammenhang handelt; falls nicht, korrigiere die Werte so, dass der Zusammenhang antiproportional wird.
Wir überprüfen zuerst, ob die 18 Tage den 3 Minuten pro Tag entsprechen.
|
: 5
⋅ 3
|
![]() ![]() |
|
![]() ![]() |
⋅ 5
: 3
|
Der urpsrünglich vorgegebene Wert 18 Tage (für 3 Minuten pro Tag) war also falsch, richtig wäre 15 Tage gewesen.
Jetzt überprüfen wir, ob die 4 Tage den 9 Minuten pro Tag entsprechen.
|
: 5
⋅ 9
|
![]() ![]() |
|
![]() ![]() |
⋅ 5
: 9
|
Der urpsrünglich vorgegebene Wert 4 Tage (für 9 Minuten pro Tag) war also falsch, richtig wäre 5 Tage gewesen.
Dreisatz (antiprop.) beide Richtungen
Beispiel:
Bei einer großen Baustelle muss das Erdreich der Baugrube abtransportiert werden. 7 Lastwagen müssten dafür 8 mal fahren.
Wie oft müssten 4 LKWs fahren?
Wie viele LKWs bräuchte man, damit es mit 7 Fuhren für jeden reicht?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Wir suchen einen möglichst großen Zwischenwert für die Lastwagen in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 7 Lastwagen teilen müssen.) Diese Zahl sollte eine Teiler von 7 und von 4 sein, also der ggT(7,4) = 1.
Wir suchen deswegen erst den entsprechenden Wert für 1 Lastwagen:
|
Um von 7 Lastwagen in der ersten Zeile auf 1 Lastwagen in der zweiten Zeile zu kommen, müssen wir durch 7 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 8 Fuhren nicht durch 7 teilen, sondern mit 7 multiplizieren um auf den Wert zu kommen, der den 1 Lastwagen links entspricht:
|
: 7
|
![]() |
|
![]() |
⋅ 7
|
Jetzt müssen wir ja wieder die 1 Lastwagen in der mittleren Zeile mit 4 multiplizieren, um auf die 4 Lastwagen in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 7
⋅ 4
|
![]() ![]() |
|
![]() ![]() |
⋅ 7
: 4
|
Damit haben wir nun den gesuchten Wert, der den 4 Lastwagen entspricht: 14 Fuhren
Für die andere Frage (Wie viele LKWs bräuchte man, damit es mit 7 Fuhren für jeden reicht?) vertauschen wir die linke mit der rechten Spalte in der Tabelle, weil wir jetzt ja zwei "Fuhren"-Werte haben und nach einem "Lastwagen"-Wert gesucht wird:
|
Wir suchen einen möglichst großen Zwischenwert für die Fuhren in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 8 Fuhren teilen müssen.) Diese Zahl sollte eine Teiler von 8 und von 7 sein, also der ggT(8,7) = 1.
Wir suchen deswegen erst den entsprechenden Wert für 1 Fuhren:
|
Um von 8 Fuhren in der ersten Zeile auf 1 Fuhren in der zweiten Zeile zu kommen, müssen wir durch 8 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 7 Lastwagen nicht durch 8 teilen, sondern mit 8 multiplizieren um auf den Wert zu kommen, der den 1 Fuhren links entspricht:
|
: 8
|
![]() |
|
![]() |
⋅ 8
|
Jetzt müssen wir ja wieder die 1 Fuhren in der mittleren Zeile mit 7 multiplizieren, um auf die 7 Fuhren in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 8
⋅ 7
|
![]() ![]() |
|
![]() ![]() |
⋅ 8
: 7
|
Damit haben wir nun den gesuchten Wert, der den 7 Fuhren entspricht: 8 Lastwagen
Wert bei Anti-Proport. (Anwendungen)
Beispiel:
Eine Drohne muss eine bestimmte Strecke zurücklegen. Wenn sie dabei mit einer Geschwindigkeit von 30 km/h fliegt, braucht sie dafür 12 Minuten.Wie lange braucht sie bei einer Geschwindigkeit von 25 km/h?
Da die Zuordnung der beiden Größen antiproportional ist, schreiben wir die Werte am besten mal in eine Tabelle:
| Geschwindigkeit | Flugzeit |
|---|---|
| 30 km/h | 12 min |
| ( : 30 ) | ( ⋅ 30 ) |
| 1 km/h | min |
| ( ⋅ 25 ) | ( : 25 ) |
| 25 km/h | min |
Die gesuchte Flugzeit ist also = = 14 ≈ 14.4 min


