Klasse 5
Klasse 6
Klasse 7
Klasse 8
Klasse 9
Klasse 10
Fit für die Oberstufe
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Zweisatz (antiproportional)
Beispiel:
Bei einer großen Baustelle muss das Erdreich der Baugrube abtransportiert werden. 1 Lastwagen müsste dafür 48 mal fahren.
Wie oft müssten 12 LKWs fahren?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Um von 1 Lastwagen in der ersten Zeile auf 12 Lastwagen in der zweiten Zeile zu kommen, müssen wir mit 12 multiplizieren. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 48 Fuhren durch 12 teilen, um auf den Wert zu kommen, der den 12 Lastwagen entspricht:
|
⋅ 12
|
![]() |
|
![]() |
: 12
|
|
⋅ 12
|
![]() |
|
![]() |
: 12
|
Damit haben wir nun den gesuchten Wert, der den 12 Lastwagen entspricht: 4 Fuhren
Dreisatz (antiproportional)
Beispiel:
Karls hat für seine Geburtstagsparty Spezi bekommen. Dabei reicht es für jeden genau 6 Flaschen, wenn insgesamt 4 Personen auf seiner Party sind.
Wie viele Flaschen würde jeder bekommen, wenn insgesamt 3 Personen auf der Party wären?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Wir suchen einen möglichst großen Zwischenwert für die Gäste in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 4 Gäste teilen müssen.) Diese Zahl sollte eine Teiler von 4 und von 3 sein, also der ggT(4,3) = 1.
Wir suchen deswegen erst den entsprechenden Wert für 1 Gäste:
|
Um von 4 Gäste in der ersten Zeile auf 1 Gäste in der zweiten Zeile zu kommen, müssen wir durch 4 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 6 Spezi-Flaschen nicht durch 4 teilen, sondern mit 4 multiplizieren um auf den Wert zu kommen, der den 1 Gäste links entspricht:
|
: 4
|
![]() |
|
![]() |
⋅ 4
|
|
: 4
|
![]() |
|
![]() |
⋅ 4
|
Jetzt müssen wir ja wieder die 1 Gäste in der mittleren Zeile mit 3 multiplizieren, um auf die 3 Gäste in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 4
⋅ 3
|
![]() ![]() |
|
![]() ![]() |
⋅ 4
: 3
|
Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 24 Spezi-Flaschen in der mittleren Zeile durch 3 dividieren:
|
: 4
⋅ 3
|
![]() ![]() |
|
![]() ![]() |
⋅ 4
: 3
|
Damit haben wir nun den gesuchten Wert, der den 3 Gäste entspricht: 8 Spezi-Flaschen
Tabelle (antiproportional)
Beispiel:
Die Tabelle zeigt Werte von zwei Größen mit einem antiproportionalen Zusammenhang. Übertrage die Tabelle in dein Heft und berechne mit dem Dreisatz die fehlende Größen.
| 7 CPU-Kerne | 8 ms |
| ? | ? |
| 4 CPU-Kerne | ? |
Wir suchen einen möglichst großen Zwischenwert für die CPU-Kerne in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 7 CPU-Kerne teilen müssen.) Diese Zahl sollte eine Teiler von 7 und von 4 sein, also der ggT(7,4) = 1.
Wir suchen deswegen erst den entsprechenden Wert für 1 CPU-Kerne:
|
Um von 7 CPU-Kerne in der ersten Zeile auf 1 CPU-Kerne in der zweiten Zeile zu kommen, müssen wir durch 7 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 8 ms nicht durch 7 teilen, sondern mit 7 multiplizieren um auf den Wert zu kommen, der den 1 CPU-Kerne links entspricht:
|
: 7
|
![]() |
|
![]() |
⋅ 7
|
|
: 7
|
![]() |
|
![]() |
⋅ 7
|
Jetzt müssen wir ja wieder die 1 CPU-Kerne in der mittleren Zeile mit 4 multiplizieren, um auf die 4 CPU-Kerne in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 7
⋅ 4
|
![]() ![]() |
|
![]() ![]() |
⋅ 7
: 4
|
Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 56 ms in der mittleren Zeile durch 4 dividieren:
|
: 7
⋅ 4
|
![]() ![]() |
|
![]() ![]() |
⋅ 7
: 4
|
Damit haben wir nun den gesuchten Wert, der den 4 CPU-Kerne entspricht: 14 ms
Antiproportionalität überprüfen
Beispiel:
Prüfe, ob es sich um einen antiproportionalen Zusammenhang handelt; falls nicht, korrigiere die Werte so, dass der Zusammenhang antiproportional wird.
Wir überprüfen zuerst, ob die 13 ms den 3 CPU-Kerne entsprechen.
|
: 4
⋅ 3
|
![]() ![]() |
|
![]() ![]() |
⋅ 4
: 3
|
Der urpsrünglich vorgegebene Wert 13 ms (für 3 CPU-Kerne) war also falsch, richtig wäre 12 ms gewesen.
Jetzt überprüfen wir, ob die 4 ms den 6 CPU-Kerne entsprechen.
|
: 2
⋅ 3
|
![]() ![]() |
|
![]() ![]() |
⋅ 2
: 3
|
Der urpsrünglich vorgegebene Wert 4 ms (für 6 CPU-Kerne) war also falsch, richtig wäre 6 ms gewesen.
Dreisatz (antiprop.) beide Richtungen
Beispiel:
Zur Berechnung einer komplizierten Verschlüsselung muss ein Computer mit 3 CPU-Kernen 10 ms rechnen.
Wie lange bräuchte ein Computer mit 2 solchen CPU-Kernen?
Wie viele CPU-Kerne bräuchte der Computer, wenn er es in 6 ms rechnen könnte?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Wir suchen einen möglichst großen Zwischenwert für die CPU-Kerne in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 3 CPU-Kerne teilen müssen.) Diese Zahl sollte eine Teiler von 3 und von 2 sein, also der ggT(3,2) = 1.
Wir suchen deswegen erst den entsprechenden Wert für 1 CPU-Kerne:
|
Um von 3 CPU-Kerne in der ersten Zeile auf 1 CPU-Kerne in der zweiten Zeile zu kommen, müssen wir durch 3 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 10 ms nicht durch 3 teilen, sondern mit 3 multiplizieren um auf den Wert zu kommen, der den 1 CPU-Kerne links entspricht:
|
: 3
|
![]() |
|
![]() |
⋅ 3
|
Jetzt müssen wir ja wieder die 1 CPU-Kerne in der mittleren Zeile mit 2 multiplizieren, um auf die 2 CPU-Kerne in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 3
⋅ 2
|
![]() ![]() |
|
![]() ![]() |
⋅ 3
: 2
|
Damit haben wir nun den gesuchten Wert, der den 2 CPU-Kerne entspricht: 15 ms
Für die andere Frage (Wie viele CPU-Kerne bräuchte der Computer, wenn er es in 6 ms rechnen könnte?) vertauschen wir die linke mit der rechten Spalte in der Tabelle, weil wir jetzt ja zwei "ms"-Werte haben und nach einem "CPU-Kerne"-Wert gesucht wird:
|
Wir suchen einen möglichst großen Zwischenwert für die ms in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 10 ms teilen müssen.) Diese Zahl sollte eine Teiler von 10 und von 6 sein, also der ggT(10,6) = 2.
Wir suchen deswegen erst den entsprechenden Wert für 2 ms:
|
Um von 10 ms in der ersten Zeile auf 2 ms in der zweiten Zeile zu kommen, müssen wir durch 5 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 3 CPU-Kerne nicht durch 5 teilen, sondern mit 5 multiplizieren um auf den Wert zu kommen, der den 2 ms links entspricht:
|
: 5
|
![]() |
|
![]() |
⋅ 5
|
Jetzt müssen wir ja wieder die 2 ms in der mittleren Zeile mit 3 multiplizieren, um auf die 6 ms in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 5
⋅ 3
|
![]() ![]() |
|
![]() ![]() |
⋅ 5
: 3
|
Damit haben wir nun den gesuchten Wert, der den 6 ms entspricht: 5 CPU-Kerne
Wert bei Anti-Proport. (Anwendungen)
Beispiel:
Ein Raum wird mit 40 LED-Leuchten á 150 Lumen ausgeleuchtet. Aus ästhetischen Gründen sollen nur noch 18 Leuchten im Raum installiert sein, diese sollen aber die gleiche Helligkeit erzeugen. Wie viel Lumen brauchen dann diese neuen LED-Leuchten?
Da die Zuordnung der beiden Größen antiproportional ist, schreiben wir die Werte am besten mal in eine Tabelle:
| Anzahl LED-Leuchten | Helligkeit |
|---|---|
| 40 | 150 Lumen |
| ( : 40 ) | ( ⋅ 40 ) |
| 1 | Lumen |
| ( ⋅ 18 ) | ( : 18 ) |
| 18 | Lumen |
Die gesuchte Helligkeit ist also = = 333 ≈ 333.333 Lumen


