nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Zweisatz (antiproportional)

Beispiel:

Bei einer großen Baustelle muss das Erdreich der Baugrube abtransportiert werden. 1 Lastwagen müsste dafür 45 mal fahren.

Wie oft müssten 9 LKWs fahren?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:

1 Lastwagen45 Fuhren
9 Lastwagen?

Um von 1 Lastwagen in der ersten Zeile auf 9 Lastwagen in der zweiten Zeile zu kommen, müssen wir mit 9 multiplizieren. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 45 Fuhren durch 9 teilen, um auf den Wert zu kommen, der den 9 Lastwagen entspricht:

⋅ 9
1 Lastwagen45 Fuhren
9 Lastwagen?
: 9
⋅ 9
1 Lastwagen45 Fuhren
9 Lastwagen5 Fuhren
: 9

Damit haben wir nun den gesuchten Wert, der den 9 Lastwagen entspricht: 5 Fuhren

Dreisatz (antiproportional)

Beispiel:

Bei einer großen Baustelle muss das Erdreich der Baugrube abtransportiert werden. 7 Lastwagen müssten dafür 8 mal fahren.

Wie oft müssten 4 LKWs fahren?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:


7 Lastwagen8 Fuhren
??
4 Lastwagen?

Wir suchen einen möglichst großen Zwischenwert für die Lastwagen in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 7 Lastwagen teilen müssen.) Diese Zahl sollte eine Teiler von 7 und von 4 sein, also der ggT(7,4) = 1.

Wir suchen deswegen erst den entsprechenden Wert für 1 Lastwagen:


7 Lastwagen8 Fuhren
1 Lastwagen?
4 Lastwagen?

Um von 7 Lastwagen in der ersten Zeile auf 1 Lastwagen in der zweiten Zeile zu kommen, müssen wir durch 7 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 8 Fuhren nicht durch 7 teilen, sondern mit 7 multiplizieren um auf den Wert zu kommen, der den 1 Lastwagen links entspricht:

: 7

7 Lastwagen8 Fuhren
1 Lastwagen?
4 Lastwagen?

⋅ 7
: 7

7 Lastwagen8 Fuhren
1 Lastwagen56 Fuhren
4 Lastwagen?

⋅ 7

Jetzt müssen wir ja wieder die 1 Lastwagen in der mittleren Zeile mit 4 multiplizieren, um auf die 4 Lastwagen in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 7
⋅ 4

7 Lastwagen8 Fuhren
1 Lastwagen56 Fuhren
4 Lastwagen?

⋅ 7
: 4

Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 56 Fuhren in der mittleren Zeile durch 4 dividieren:

: 7
⋅ 4

7 Lastwagen8 Fuhren
1 Lastwagen56 Fuhren
4 Lastwagen14 Fuhren

⋅ 7
: 4

Damit haben wir nun den gesuchten Wert, der den 4 Lastwagen entspricht: 14 Fuhren

Tabelle (antiproportional)

Beispiel:

Die Tabelle zeigt Werte von zwei Größen mit einem antiproportionalen Zusammenhang. Übertrage die Tabelle in dein Heft und berechne mit dem Dreisatz die fehlende Größen.

10 Helfer:innen30 € Lohn
??
15 Helfer:innen?

Lösung einblenden

Wir suchen einen möglichst großen Zwischenwert für die Helfer:innen in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 10 Helfer:innen teilen müssen.) Diese Zahl sollte eine Teiler von 10 und von 15 sein, also der ggT(10,15) = 5.

Wir suchen deswegen erst den entsprechenden Wert für 5 Helfer:innen:


10 Helfer:innen30 € Lohn
5 Helfer:innen?
15 Helfer:innen?

Um von 10 Helfer:innen in der ersten Zeile auf 5 Helfer:innen in der zweiten Zeile zu kommen, müssen wir durch 2 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 30 € Lohn nicht durch 2 teilen, sondern mit 2 multiplizieren um auf den Wert zu kommen, der den 5 Helfer:innen links entspricht:

: 2

10 Helfer:innen30 € Lohn
5 Helfer:innen?
15 Helfer:innen?

⋅ 2
: 2

10 Helfer:innen30 € Lohn
5 Helfer:innen60 € Lohn
15 Helfer:innen?

⋅ 2

Jetzt müssen wir ja wieder die 5 Helfer:innen in der mittleren Zeile mit 3 multiplizieren, um auf die 15 Helfer:innen in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 2
⋅ 3

10 Helfer:innen30 € Lohn
5 Helfer:innen60 € Lohn
15 Helfer:innen?

⋅ 2
: 3

Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 60 € Lohn in der mittleren Zeile durch 3 dividieren:

: 2
⋅ 3

10 Helfer:innen30 € Lohn
5 Helfer:innen60 € Lohn
15 Helfer:innen20 € Lohn

⋅ 2
: 3

Damit haben wir nun den gesuchten Wert, der den 15 Helfer:innen entspricht: 20 € Lohn

Antiproportionalität überprüfen

Beispiel:

Prüfe, ob es sich um einen antiproportionalen Zusammenhang handelt; falls nicht, korrigiere die Werte so, dass der Zusammenhang antiproportional wird.

Lösung einblenden

Wir überprüfen zuerst, ob die 6 Tage den 14 Minuten pro Tag entsprechen.

: 4
⋅ 7

8 Minuten pro Tag7 Tage
2 Minuten pro Tag28 Tage
14 Minuten pro Tag4 Tage

⋅ 4
: 7

Der urpsrünglich vorgegebene Wert 6 Tage (für 14 Minuten pro Tag) war also falsch, richtig wäre 4 Tage gewesen.


Jetzt überprüfen wir, ob die 10 Tage den 7 Minuten pro Tag entsprechen.

: 8
⋅ 7

8 Minuten pro Tag7 Tage
1 Minuten pro Tag56 Tage
7 Minuten pro Tag8 Tage

⋅ 8
: 7

Der urpsrünglich vorgegebene Wert 10 Tage (für 7 Minuten pro Tag) war also falsch, richtig wäre 8 Tage gewesen.

Dreisatz (antiprop.) beide Richtungen

Beispiel:

Ein Hausmeister hat ein extra Budget für die Schulreinigung in den Ferien, das er unter helfenden Schüler:innen aufteilen kann (er selbst bekommt nichts von dem Geld). Wenn er 9 Helfer:innen einstellt, reicht es für jeden 50 € Lohn.

Welchen Lohn könnte er jeder Helfer:in bezahlen, wenn er 15 Helfer:innen hätte?
Wie viele Helfer:innen könnte man mit einem Lohn von 50 € bezahlen?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:


9 Helfer:innen50 € Lohn
??
15 Helfer:innen?

Wir suchen einen möglichst großen Zwischenwert für die Helfer:innen in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 9 Helfer:innen teilen müssen.) Diese Zahl sollte eine Teiler von 9 und von 15 sein, also der ggT(9,15) = 3.

Wir suchen deswegen erst den entsprechenden Wert für 3 Helfer:innen:


9 Helfer:innen50 € Lohn
3 Helfer:innen?
15 Helfer:innen?

Um von 9 Helfer:innen in der ersten Zeile auf 3 Helfer:innen in der zweiten Zeile zu kommen, müssen wir durch 3 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 50 € Lohn nicht durch 3 teilen, sondern mit 3 multiplizieren um auf den Wert zu kommen, der den 3 Helfer:innen links entspricht:

: 3

9 Helfer:innen50 € Lohn
3 Helfer:innen150 € Lohn
15 Helfer:innen?

⋅ 3

Jetzt müssen wir ja wieder die 3 Helfer:innen in der mittleren Zeile mit 5 multiplizieren, um auf die 15 Helfer:innen in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 3
⋅ 5

9 Helfer:innen50 € Lohn
3 Helfer:innen150 € Lohn
15 Helfer:innen30 € Lohn

⋅ 3
: 5

Damit haben wir nun den gesuchten Wert, der den 15 Helfer:innen entspricht: 30 € Lohn



Um von 50 € Lohn in der ersten Zeile auf 50 € Lohn in der zweiten Zeile zu kommen, müssen wir mit 1 multiplizieren. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 9 Helfer:innen durch 1 teilen, um auf den Wert zu kommen, der den 50 € Lohn entspricht:

⋅ 1
50 € Lohn9 Helfer:innen
50 € Lohn?
: 1
⋅ 1
50 € Lohn9 Helfer:innen
50 € Lohn9 Helfer:innen
: 1

Damit haben wir nun den gesuchten Wert, der den 50 € Lohn entspricht: 9 Helfer:innen

Wert bei Anti-Proport. (Anwendungen)

Beispiel:

Ein Raum wird mit 30 LED-Leuchten á 150 Lumen ausgeleuchtet. Aus ästhetischen Gründen sollen nur noch 18 Leuchten im Raum installiert sein, diese sollen aber die gleiche Helligkeit erzeugen. Wie viel Lumen brauchen dann diese neuen LED-Leuchten?

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Da die Zuordnung der beiden Größen antiproportional ist, schreiben wir die Werte am besten mal in eine Tabelle:

Anzahl LED-LeuchtenHelligkeit
30 150 Lumen
( : 30 )( ⋅ 30 )
1 4500 Lumen
( ⋅ 18 )( : 18 )
18 4500 18 Lumen

Die gesuchte Helligkeit ist also 4500 18 = 250 Lumen