nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Zweisatz (antiproportional)

Beispiel:

Wenn Karla mit ihrem Handy jeden Tag immer 1 Minute telefonieren würde, würden ihre Freiminuten noch genau 56 Tage halten.

Wann wären ihre Freiminuten aufgebraucht, wenn sie täglich 8 min telefonieren würde?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:

1 Minute pro Tag56 Tage
8 Minuten pro Tag?

Um von 1 Minuten pro Tag in der ersten Zeile auf 8 Minuten pro Tag in der zweiten Zeile zu kommen, müssen wir mit 8 multiplizieren. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 56 Tage durch 8 teilen, um auf den Wert zu kommen, der den 8 Minuten pro Tag entspricht:

⋅ 8
1 Minute pro Tag56 Tage
8 Minuten pro Tag?
: 8
⋅ 8
1 Minute pro Tag56 Tage
8 Minuten pro Tag7 Tage
: 8

Damit haben wir nun den gesuchten Wert, der den 8 Minuten pro Tag entspricht: 7 Tage

Dreisatz (antiproportional)

Beispiel:

Zur Berechnung einer komplizierten Verschlüsselung muss ein Computer mit 9 CPU-Kernen 4 ms rechnen.

Wie lange bräuchte ein Computer mit 12 solchen CPU-Kernen?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:


9 CPU-Kerne4 ms
??
12 CPU-Kerne?

Wir suchen einen möglichst großen Zwischenwert für die CPU-Kerne in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 9 CPU-Kerne teilen müssen.) Diese Zahl sollte eine Teiler von 9 und von 12 sein, also der ggT(9,12) = 3.

Wir suchen deswegen erst den entsprechenden Wert für 3 CPU-Kerne:


9 CPU-Kerne4 ms
3 CPU-Kerne?
12 CPU-Kerne?

Um von 9 CPU-Kerne in der ersten Zeile auf 3 CPU-Kerne in der zweiten Zeile zu kommen, müssen wir durch 3 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 4 ms nicht durch 3 teilen, sondern mit 3 multiplizieren um auf den Wert zu kommen, der den 3 CPU-Kerne links entspricht:

: 3

9 CPU-Kerne4 ms
3 CPU-Kerne?
12 CPU-Kerne?

⋅ 3
: 3

9 CPU-Kerne4 ms
3 CPU-Kerne12 ms
12 CPU-Kerne?

⋅ 3

Jetzt müssen wir ja wieder die 3 CPU-Kerne in der mittleren Zeile mit 4 multiplizieren, um auf die 12 CPU-Kerne in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 3
⋅ 4

9 CPU-Kerne4 ms
3 CPU-Kerne12 ms
12 CPU-Kerne?

⋅ 3
: 4

Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 12 ms in der mittleren Zeile durch 4 dividieren:

: 3
⋅ 4

9 CPU-Kerne4 ms
3 CPU-Kerne12 ms
12 CPU-Kerne3 ms

⋅ 3
: 4

Damit haben wir nun den gesuchten Wert, der den 12 CPU-Kerne entspricht: 3 ms

Tabelle (antiproportional)

Beispiel:

Die Tabelle zeigt Werte von zwei Größen mit einem antiproportionalen Zusammenhang. Übertrage die Tabelle in dein Heft und berechne mit dem Dreisatz die fehlende Größen.

4 Minuten pro Tag12 Tage
??
3 Minuten pro Tag?

Lösung einblenden

Wir suchen einen möglichst großen Zwischenwert für die Minuten pro Tag in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 4 Minuten pro Tag teilen müssen.) Diese Zahl sollte eine Teiler von 4 und von 3 sein, also der ggT(4,3) = 1.

Wir suchen deswegen erst den entsprechenden Wert für 1 Minuten pro Tag:


4 Minuten pro Tag12 Tage
1 Minute pro Tag?
3 Minuten pro Tag?

Um von 4 Minuten pro Tag in der ersten Zeile auf 1 Minuten pro Tag in der zweiten Zeile zu kommen, müssen wir durch 4 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 12 Tage nicht durch 4 teilen, sondern mit 4 multiplizieren um auf den Wert zu kommen, der den 1 Minuten pro Tag links entspricht:

: 4

4 Minuten pro Tag12 Tage
1 Minute pro Tag?
3 Minuten pro Tag?

⋅ 4
: 4

4 Minuten pro Tag12 Tage
1 Minute pro Tag48 Tage
3 Minuten pro Tag?

⋅ 4

Jetzt müssen wir ja wieder die 1 Minuten pro Tag in der mittleren Zeile mit 3 multiplizieren, um auf die 3 Minuten pro Tag in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 4
⋅ 3

4 Minuten pro Tag12 Tage
1 Minute pro Tag48 Tage
3 Minuten pro Tag?

⋅ 4
: 3

Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 48 Tage in der mittleren Zeile durch 3 dividieren:

: 4
⋅ 3

4 Minuten pro Tag12 Tage
1 Minute pro Tag48 Tage
3 Minuten pro Tag16 Tage

⋅ 4
: 3

Damit haben wir nun den gesuchten Wert, der den 3 Minuten pro Tag entspricht: 16 Tage

Antiproportionalität überprüfen

Beispiel:

Prüfe, ob es sich um einen antiproportionalen Zusammenhang handelt; falls nicht, korrigiere die Werte so, dass der Zusammenhang antiproportional wird.

Lösung einblenden

Wir überprüfen zuerst, ob die 15 Tage den 3 Minuten pro Tag entsprechen.

: 5
⋅ 3

5 Minuten pro Tag9 Tage
1 Minute pro Tag45 Tage
3 Minuten pro Tag15 Tage

⋅ 5
: 3

Der urpsrünglich vorgegebene Wert 15 Tage(für 3 Minuten pro Tag) war also korrekt.


Jetzt überprüfen wir, ob die 8 Tage den 9 Minuten pro Tag entsprechen.

: 5
⋅ 9

5 Minuten pro Tag9 Tage
1 Minuten pro Tag45 Tage
9 Minuten pro Tag5 Tage

⋅ 5
: 9

Der urpsrünglich vorgegebene Wert 8 Tage (für 9 Minuten pro Tag) war also falsch, richtig wäre 5 Tage gewesen.

Dreisatz (antiprop.) beide Richtungen

Beispiel:

Wenn Karla mit ihrem Handy jeden Tag immer 6 Minuten telefonieren würde, würden ihre Freiminuten noch genau 4 Tage halten.

Wann wären ihre Freiminuten aufgebraucht, wenn sie täglich 8 min telefonieren würde?
Wie lange kann sie täglich telefonieren, wenn die Freiminuten 6 Tage reichen sollen?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:


6 Minuten pro Tag4 Tage
??
8 Minuten pro Tag?

Wir suchen einen möglichst großen Zwischenwert für die Minuten pro Tag in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 6 Minuten pro Tag teilen müssen.) Diese Zahl sollte eine Teiler von 6 und von 8 sein, also der ggT(6,8) = 2.

Wir suchen deswegen erst den entsprechenden Wert für 2 Minuten pro Tag:


6 Minuten pro Tag4 Tage
2 Minuten pro Tag?
8 Minuten pro Tag?

Um von 6 Minuten pro Tag in der ersten Zeile auf 2 Minuten pro Tag in der zweiten Zeile zu kommen, müssen wir durch 3 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 4 Tage nicht durch 3 teilen, sondern mit 3 multiplizieren um auf den Wert zu kommen, der den 2 Minuten pro Tag links entspricht:

: 3

6 Minuten pro Tag4 Tage
2 Minuten pro Tag12 Tage
8 Minuten pro Tag?

⋅ 3

Jetzt müssen wir ja wieder die 2 Minuten pro Tag in der mittleren Zeile mit 4 multiplizieren, um auf die 8 Minuten pro Tag in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 3
⋅ 4

6 Minuten pro Tag4 Tage
2 Minuten pro Tag12 Tage
8 Minuten pro Tag3 Tage

⋅ 3
: 4

Damit haben wir nun den gesuchten Wert, der den 8 Minuten pro Tag entspricht: 3 Tage



Für die andere Frage (Wie lange kann sie täglich telefonieren, wenn die Freiminuten 6 Tage reichen sollen?) vertauschen wir die linke mit der rechten Spalte in der Tabelle, weil wir jetzt ja zwei "Tage"-Werte haben und nach einem "Minuten pro Tag"-Wert gesucht wird:


4 Tage6 Minuten pro Tag
??
6 Tage?

Wir suchen einen möglichst großen Zwischenwert für die Tage in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 4 Tage teilen müssen.) Diese Zahl sollte eine Teiler von 4 und von 6 sein, also der ggT(4,6) = 2.

Wir suchen deswegen erst den entsprechenden Wert für 2 Tage:


4 Tage6 Minuten pro Tag
2 Tage?
6 Tage?

Um von 4 Tage in der ersten Zeile auf 2 Tage in der zweiten Zeile zu kommen, müssen wir durch 2 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 6 Minuten pro Tag nicht durch 2 teilen, sondern mit 2 multiplizieren um auf den Wert zu kommen, der den 2 Tage links entspricht:

: 2

4 Tage6 Minuten pro Tag
2 Tage12 Minuten pro Tag
6 Tage?

⋅ 2

Jetzt müssen wir ja wieder die 2 Tage in der mittleren Zeile mit 3 multiplizieren, um auf die 6 Tage in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 2
⋅ 3

4 Tage6 Minuten pro Tag
2 Tage12 Minuten pro Tag
6 Tage4 Minuten pro Tag

⋅ 2
: 3

Damit haben wir nun den gesuchten Wert, der den 6 Tage entspricht: 4 Minuten pro Tag

Wert bei Anti-Proport. (Anwendungen)

Beispiel:

Eine Drohne muss eine bestimmte Strecke zurücklegen. Wenn sie dabei mit einer Geschwindigkeit von 50 km/h fliegt, braucht sie dafür 8 Minuten.Wie lange braucht sie bei einer Geschwindigkeit von 37 km/h?

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Da die Zuordnung der beiden Größen antiproportional ist, schreiben wir die Werte am besten mal in eine Tabelle:

GeschwindigkeitFlugzeit
50 km/h8 min
( : 50 )( ⋅ 50 )
1 km/h400 min
( ⋅ 37 )( : 37 )
37 km/h 400 37 min

Die gesuchte Flugzeit ist also 400 37 = 10 30 37 ≈ 10.811 min