nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Zweisatz (antiproportional)

Beispiel:

Bei einer großen Baustelle muss das Erdreich der Baugrube abtransportiert werden. 1 Lastwagen müsste dafür 48 mal fahren.

Wie oft müssten 12 LKWs fahren?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:

1 Lastwagen48 Fuhren
12 Lastwagen?

Um von 1 Lastwagen in der ersten Zeile auf 12 Lastwagen in der zweiten Zeile zu kommen, müssen wir mit 12 multiplizieren. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 48 Fuhren durch 12 teilen, um auf den Wert zu kommen, der den 12 Lastwagen entspricht:

⋅ 12
1 Lastwagen48 Fuhren
12 Lastwagen?
: 12
⋅ 12
1 Lastwagen48 Fuhren
12 Lastwagen4 Fuhren
: 12

Damit haben wir nun den gesuchten Wert, der den 12 Lastwagen entspricht: 4 Fuhren

Dreisatz (antiproportional)

Beispiel:

Karls hat für seine Geburtstagsparty Spezi bekommen. Dabei reicht es für jeden genau 6 Flaschen, wenn insgesamt 4 Personen auf seiner Party sind.

Wie viele Flaschen würde jeder bekommen, wenn insgesamt 3 Personen auf der Party wären?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:


4 Gäste6 Spezi-Flaschen
??
3 Gäste?

Wir suchen einen möglichst großen Zwischenwert für die Gäste in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 4 Gäste teilen müssen.) Diese Zahl sollte eine Teiler von 4 und von 3 sein, also der ggT(4,3) = 1.

Wir suchen deswegen erst den entsprechenden Wert für 1 Gäste:


4 Gäste6 Spezi-Flaschen
1 Gast?
3 Gäste?

Um von 4 Gäste in der ersten Zeile auf 1 Gäste in der zweiten Zeile zu kommen, müssen wir durch 4 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 6 Spezi-Flaschen nicht durch 4 teilen, sondern mit 4 multiplizieren um auf den Wert zu kommen, der den 1 Gäste links entspricht:

: 4

4 Gäste6 Spezi-Flaschen
1 Gast?
3 Gäste?

⋅ 4
: 4

4 Gäste6 Spezi-Flaschen
1 Gast24 Spezi-Flaschen
3 Gäste?

⋅ 4

Jetzt müssen wir ja wieder die 1 Gäste in der mittleren Zeile mit 3 multiplizieren, um auf die 3 Gäste in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 4
⋅ 3

4 Gäste6 Spezi-Flaschen
1 Gast24 Spezi-Flaschen
3 Gäste?

⋅ 4
: 3

Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 24 Spezi-Flaschen in der mittleren Zeile durch 3 dividieren:

: 4
⋅ 3

4 Gäste6 Spezi-Flaschen
1 Gast24 Spezi-Flaschen
3 Gäste8 Spezi-Flaschen

⋅ 4
: 3

Damit haben wir nun den gesuchten Wert, der den 3 Gäste entspricht: 8 Spezi-Flaschen

Tabelle (antiproportional)

Beispiel:

Die Tabelle zeigt Werte von zwei Größen mit einem antiproportionalen Zusammenhang. Übertrage die Tabelle in dein Heft und berechne mit dem Dreisatz die fehlende Größen.

7 CPU-Kerne8 ms
??
4 CPU-Kerne?

Lösung einblenden

Wir suchen einen möglichst großen Zwischenwert für die CPU-Kerne in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 7 CPU-Kerne teilen müssen.) Diese Zahl sollte eine Teiler von 7 und von 4 sein, also der ggT(7,4) = 1.

Wir suchen deswegen erst den entsprechenden Wert für 1 CPU-Kerne:


7 CPU-Kerne8 ms
1 CPU-Kern?
4 CPU-Kerne?

Um von 7 CPU-Kerne in der ersten Zeile auf 1 CPU-Kerne in der zweiten Zeile zu kommen, müssen wir durch 7 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 8 ms nicht durch 7 teilen, sondern mit 7 multiplizieren um auf den Wert zu kommen, der den 1 CPU-Kerne links entspricht:

: 7

7 CPU-Kerne8 ms
1 CPU-Kern?
4 CPU-Kerne?

⋅ 7
: 7

7 CPU-Kerne8 ms
1 CPU-Kern56 ms
4 CPU-Kerne?

⋅ 7

Jetzt müssen wir ja wieder die 1 CPU-Kerne in der mittleren Zeile mit 4 multiplizieren, um auf die 4 CPU-Kerne in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 7
⋅ 4

7 CPU-Kerne8 ms
1 CPU-Kern56 ms
4 CPU-Kerne?

⋅ 7
: 4

Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 56 ms in der mittleren Zeile durch 4 dividieren:

: 7
⋅ 4

7 CPU-Kerne8 ms
1 CPU-Kern56 ms
4 CPU-Kerne14 ms

⋅ 7
: 4

Damit haben wir nun den gesuchten Wert, der den 4 CPU-Kerne entspricht: 14 ms

Antiproportionalität überprüfen

Beispiel:

Prüfe, ob es sich um einen antiproportionalen Zusammenhang handelt; falls nicht, korrigiere die Werte so, dass der Zusammenhang antiproportional wird.

Lösung einblenden

Wir überprüfen zuerst, ob die 13 ms den 3 CPU-Kerne entsprechen.

: 4
⋅ 3

4 CPU-Kerne9 ms
1 CPU-Kern36 ms
3 CPU-Kerne12 ms

⋅ 4
: 3

Der urpsrünglich vorgegebene Wert 13 ms (für 3 CPU-Kerne) war also falsch, richtig wäre 12 ms gewesen.


Jetzt überprüfen wir, ob die 4 ms den 6 CPU-Kerne entsprechen.

: 2
⋅ 3

4 CPU-Kerne9 ms
2 CPU-Kerne18 ms
6 CPU-Kerne6 ms

⋅ 2
: 3

Der urpsrünglich vorgegebene Wert 4 ms (für 6 CPU-Kerne) war also falsch, richtig wäre 6 ms gewesen.

Dreisatz (antiprop.) beide Richtungen

Beispiel:

Zur Berechnung einer komplizierten Verschlüsselung muss ein Computer mit 3 CPU-Kernen 10 ms rechnen.

Wie lange bräuchte ein Computer mit 2 solchen CPU-Kernen?
Wie viele CPU-Kerne bräuchte der Computer, wenn er es in 6 ms rechnen könnte?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:


3 CPU-Kerne10 ms
??
2 CPU-Kerne?

Wir suchen einen möglichst großen Zwischenwert für die CPU-Kerne in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 3 CPU-Kerne teilen müssen.) Diese Zahl sollte eine Teiler von 3 und von 2 sein, also der ggT(3,2) = 1.

Wir suchen deswegen erst den entsprechenden Wert für 1 CPU-Kerne:


3 CPU-Kerne10 ms
1 CPU-Kern?
2 CPU-Kerne?

Um von 3 CPU-Kerne in der ersten Zeile auf 1 CPU-Kerne in der zweiten Zeile zu kommen, müssen wir durch 3 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 10 ms nicht durch 3 teilen, sondern mit 3 multiplizieren um auf den Wert zu kommen, der den 1 CPU-Kerne links entspricht:

: 3

3 CPU-Kerne10 ms
1 CPU-Kern30 ms
2 CPU-Kerne?

⋅ 3

Jetzt müssen wir ja wieder die 1 CPU-Kerne in der mittleren Zeile mit 2 multiplizieren, um auf die 2 CPU-Kerne in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 3
⋅ 2

3 CPU-Kerne10 ms
1 CPU-Kern30 ms
2 CPU-Kerne15 ms

⋅ 3
: 2

Damit haben wir nun den gesuchten Wert, der den 2 CPU-Kerne entspricht: 15 ms



Für die andere Frage (Wie viele CPU-Kerne bräuchte der Computer, wenn er es in 6 ms rechnen könnte?) vertauschen wir die linke mit der rechten Spalte in der Tabelle, weil wir jetzt ja zwei "ms"-Werte haben und nach einem "CPU-Kerne"-Wert gesucht wird:


10 ms3 CPU-Kerne
??
6 ms?

Wir suchen einen möglichst großen Zwischenwert für die ms in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 10 ms teilen müssen.) Diese Zahl sollte eine Teiler von 10 und von 6 sein, also der ggT(10,6) = 2.

Wir suchen deswegen erst den entsprechenden Wert für 2 ms:


10 ms3 CPU-Kerne
2 ms?
6 ms?

Um von 10 ms in der ersten Zeile auf 2 ms in der zweiten Zeile zu kommen, müssen wir durch 5 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 3 CPU-Kerne nicht durch 5 teilen, sondern mit 5 multiplizieren um auf den Wert zu kommen, der den 2 ms links entspricht:

: 5

10 ms3 CPU-Kerne
2 ms15 CPU-Kerne
6 ms?

⋅ 5

Jetzt müssen wir ja wieder die 2 ms in der mittleren Zeile mit 3 multiplizieren, um auf die 6 ms in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 5
⋅ 3

10 ms3 CPU-Kerne
2 ms15 CPU-Kerne
6 ms5 CPU-Kerne

⋅ 5
: 3

Damit haben wir nun den gesuchten Wert, der den 6 ms entspricht: 5 CPU-Kerne

Wert bei Anti-Proport. (Anwendungen)

Beispiel:

Ein Raum wird mit 40 LED-Leuchten á 150 Lumen ausgeleuchtet. Aus ästhetischen Gründen sollen nur noch 18 Leuchten im Raum installiert sein, diese sollen aber die gleiche Helligkeit erzeugen. Wie viel Lumen brauchen dann diese neuen LED-Leuchten?

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Da die Zuordnung der beiden Größen antiproportional ist, schreiben wir die Werte am besten mal in eine Tabelle:

Anzahl LED-LeuchtenHelligkeit
40 150 Lumen
( : 40 )( ⋅ 40 )
1 6000 Lumen
( ⋅ 18 )( : 18 )
18 6000 18 Lumen

Die gesuchte Helligkeit ist also 6000 18 = 1000 3 = 333 1 3 ≈ 333.333 Lumen