nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Zweisatz (antiproportional)

Beispiel:

Bei einer großen Baustelle muss das Erdreich der Baugrube abtransportiert werden. 1 Lastwagen müsste dafür 24 mal fahren.

Wie oft müssten 6 LKWs fahren?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:

1 Lastwagen24 Fuhren
6 Lastwagen?

Um von 1 Lastwagen in der ersten Zeile auf 6 Lastwagen in der zweiten Zeile zu kommen, müssen wir mit 6 multiplizieren. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 24 Fuhren durch 6 teilen, um auf den Wert zu kommen, der den 6 Lastwagen entspricht:

⋅ 6
1 Lastwagen24 Fuhren
6 Lastwagen?
: 6
⋅ 6
1 Lastwagen24 Fuhren
6 Lastwagen4 Fuhren
: 6

Damit haben wir nun den gesuchten Wert, der den 6 Lastwagen entspricht: 4 Fuhren

Dreisatz (antiproportional)

Beispiel:

Wenn Karla mit ihrem Handy jeden Tag immer 8 Minuten telefonieren würde, würden ihre Freiminuten noch genau 5 Tage halten.

Wann wären ihre Freiminuten aufgebraucht, wenn sie täglich 10 min telefonieren würde?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:


8 Minuten pro Tag5 Tage
??
10 Minuten pro Tag?

Wir suchen einen möglichst großen Zwischenwert für die Minuten pro Tag in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 8 Minuten pro Tag teilen müssen.) Diese Zahl sollte eine Teiler von 8 und von 10 sein, also der ggT(8,10) = 2.

Wir suchen deswegen erst den entsprechenden Wert für 2 Minuten pro Tag:


8 Minuten pro Tag5 Tage
2 Minuten pro Tag?
10 Minuten pro Tag?

Um von 8 Minuten pro Tag in der ersten Zeile auf 2 Minuten pro Tag in der zweiten Zeile zu kommen, müssen wir durch 4 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 5 Tage nicht durch 4 teilen, sondern mit 4 multiplizieren um auf den Wert zu kommen, der den 2 Minuten pro Tag links entspricht:

: 4

8 Minuten pro Tag5 Tage
2 Minuten pro Tag?
10 Minuten pro Tag?

⋅ 4
: 4

8 Minuten pro Tag5 Tage
2 Minuten pro Tag20 Tage
10 Minuten pro Tag?

⋅ 4

Jetzt müssen wir ja wieder die 2 Minuten pro Tag in der mittleren Zeile mit 5 multiplizieren, um auf die 10 Minuten pro Tag in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 4
⋅ 5

8 Minuten pro Tag5 Tage
2 Minuten pro Tag20 Tage
10 Minuten pro Tag?

⋅ 4
: 5

Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 20 Tage in der mittleren Zeile durch 5 dividieren:

: 4
⋅ 5

8 Minuten pro Tag5 Tage
2 Minuten pro Tag20 Tage
10 Minuten pro Tag4 Tage

⋅ 4
: 5

Damit haben wir nun den gesuchten Wert, der den 10 Minuten pro Tag entspricht: 4 Tage

Tabelle (antiproportional)

Beispiel:

Die Tabelle zeigt Werte von zwei Größen mit einem antiproportionalen Zusammenhang. Übertrage die Tabelle in dein Heft und berechne mit dem Dreisatz die fehlende Größen.

9 Helfer:innen50 € Lohn
??
15 Helfer:innen?

Lösung einblenden

Wir suchen einen möglichst großen Zwischenwert für die Helfer:innen in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 9 Helfer:innen teilen müssen.) Diese Zahl sollte eine Teiler von 9 und von 15 sein, also der ggT(9,15) = 3.

Wir suchen deswegen erst den entsprechenden Wert für 3 Helfer:innen:


9 Helfer:innen50 € Lohn
3 Helfer:innen?
15 Helfer:innen?

Um von 9 Helfer:innen in der ersten Zeile auf 3 Helfer:innen in der zweiten Zeile zu kommen, müssen wir durch 3 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 50 € Lohn nicht durch 3 teilen, sondern mit 3 multiplizieren um auf den Wert zu kommen, der den 3 Helfer:innen links entspricht:

: 3

9 Helfer:innen50 € Lohn
3 Helfer:innen?
15 Helfer:innen?

⋅ 3
: 3

9 Helfer:innen50 € Lohn
3 Helfer:innen150 € Lohn
15 Helfer:innen?

⋅ 3

Jetzt müssen wir ja wieder die 3 Helfer:innen in der mittleren Zeile mit 5 multiplizieren, um auf die 15 Helfer:innen in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 3
⋅ 5

9 Helfer:innen50 € Lohn
3 Helfer:innen150 € Lohn
15 Helfer:innen?

⋅ 3
: 5

Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 150 € Lohn in der mittleren Zeile durch 5 dividieren:

: 3
⋅ 5

9 Helfer:innen50 € Lohn
3 Helfer:innen150 € Lohn
15 Helfer:innen30 € Lohn

⋅ 3
: 5

Damit haben wir nun den gesuchten Wert, der den 15 Helfer:innen entspricht: 30 € Lohn

Antiproportionalität überprüfen

Beispiel:

Prüfe, ob es sich um einen antiproportionalen Zusammenhang handelt; falls nicht, korrigiere die Werte so, dass der Zusammenhang antiproportional wird.

Lösung einblenden

Wir überprüfen zuerst, ob die 5 Fuhren den 18 Lastwagen entsprechen.

: 2
⋅ 3

12 Lastwagen3 Fuhren
6 Lastwagen6 Fuhren
18 Lastwagen2 Fuhren

⋅ 2
: 3

Der urpsrünglich vorgegebene Wert 5 Fuhren (für 18 Lastwagen) war also falsch, richtig wäre 2 Fuhren gewesen.


Jetzt überprüfen wir, ob die 9 Fuhren den 3 Lastwagen entsprechen.

: 4
⋅ 1

12 Lastwagen3 Fuhren
3 Lastwagen12 Fuhren
3 Lastwagen12 Fuhren

⋅ 4
: 1

Der urpsrünglich vorgegebene Wert 9 Fuhren (für 3 Lastwagen) war also falsch, richtig wäre 12 Fuhren gewesen.

Dreisatz (antiprop.) beide Richtungen

Beispiel:

Karls hat für seine Geburtstagsparty Spezi bekommen. Dabei reicht es für jeden genau 8 Flaschen, wenn insgesamt 5 Personen auf seiner Party sind.

Wie viele Flaschen würde jeder bekommen, wenn insgesamt 4 Personen auf der Party wären?
Wie viele Personen können auf die Party, damit es für jeden zu 5 Flaschen reicht?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:


5 Gäste8 Spezi-Flaschen
??
4 Gäste?

Wir suchen einen möglichst großen Zwischenwert für die Gäste in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 5 Gäste teilen müssen.) Diese Zahl sollte eine Teiler von 5 und von 4 sein, also der ggT(5,4) = 1.

Wir suchen deswegen erst den entsprechenden Wert für 1 Gäste:


5 Gäste8 Spezi-Flaschen
1 Gast?
4 Gäste?

Um von 5 Gäste in der ersten Zeile auf 1 Gäste in der zweiten Zeile zu kommen, müssen wir durch 5 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 8 Spezi-Flaschen nicht durch 5 teilen, sondern mit 5 multiplizieren um auf den Wert zu kommen, der den 1 Gäste links entspricht:

: 5

5 Gäste8 Spezi-Flaschen
1 Gast40 Spezi-Flaschen
4 Gäste?

⋅ 5

Jetzt müssen wir ja wieder die 1 Gäste in der mittleren Zeile mit 4 multiplizieren, um auf die 4 Gäste in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 5
⋅ 4

5 Gäste8 Spezi-Flaschen
1 Gast40 Spezi-Flaschen
4 Gäste10 Spezi-Flaschen

⋅ 5
: 4

Damit haben wir nun den gesuchten Wert, der den 4 Gäste entspricht: 10 Spezi-Flaschen



Für die andere Frage (Wie viele Personen können auf die Party, damit es für jeden zu 5 Flaschen reicht?) vertauschen wir die linke mit der rechten Spalte in der Tabelle, weil wir jetzt ja zwei "Spezi-Flaschen"-Werte haben und nach einem "Gäste"-Wert gesucht wird:


8 Spezi-Flaschen5 Gäste
??
5 Spezi-Flaschen?

Wir suchen einen möglichst großen Zwischenwert für die Spezi-Flaschen in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 8 Spezi-Flaschen teilen müssen.) Diese Zahl sollte eine Teiler von 8 und von 5 sein, also der ggT(8,5) = 1.

Wir suchen deswegen erst den entsprechenden Wert für 1 Spezi-Flaschen:


8 Spezi-Flaschen5 Gäste
1 Spezi-Flasche?
5 Spezi-Flaschen?

Um von 8 Spezi-Flaschen in der ersten Zeile auf 1 Spezi-Flaschen in der zweiten Zeile zu kommen, müssen wir durch 8 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 5 Gäste nicht durch 8 teilen, sondern mit 8 multiplizieren um auf den Wert zu kommen, der den 1 Spezi-Flaschen links entspricht:

: 8

8 Spezi-Flaschen5 Gäste
1 Spezi-Flasche40 Gäste
5 Spezi-Flaschen?

⋅ 8

Jetzt müssen wir ja wieder die 1 Spezi-Flaschen in der mittleren Zeile mit 5 multiplizieren, um auf die 5 Spezi-Flaschen in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 8
⋅ 5

8 Spezi-Flaschen5 Gäste
1 Spezi-Flasche40 Gäste
5 Spezi-Flaschen8 Gäste

⋅ 8
: 5

Damit haben wir nun den gesuchten Wert, der den 5 Spezi-Flaschen entspricht: 8 Gäste

Wert bei Anti-Proport. (Anwendungen)

Beispiel:

Eine Drohne muss eine bestimmte Strecke zurücklegen. Wenn sie dabei mit einer Geschwindigkeit von 40 km/h fliegt, braucht sie dafür 12 Minuten.Wie lange braucht sie bei einer Geschwindigkeit von 20 km/h?

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Da die Zuordnung der beiden Größen antiproportional ist, schreiben wir die Werte am besten mal in eine Tabelle:

GeschwindigkeitFlugzeit
40 km/h12 min
( : 40 )( ⋅ 40 )
1 km/h480 min
( ⋅ 20 )( : 20 )
20 km/h 480 20 min

Die gesuchte Flugzeit ist also 480 20 = 24 min