nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Zweisatz (antiproportional)

Beispiel:

Karls hat für seine Geburtstagsparty 50 Flaschen Spezi bekommen.

Wie viele Flaschen würde jeder bekommen, wenn insgesamt 10 Personen auf der Party wären?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:

1 Gast50 Spezi-Flaschen
10 Gäste?

Um von 1 Gäste in der ersten Zeile auf 10 Gäste in der zweiten Zeile zu kommen, müssen wir mit 10 multiplizieren. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 50 Spezi-Flaschen durch 10 teilen, um auf den Wert zu kommen, der den 10 Gäste entspricht:

⋅ 10
1 Gast50 Spezi-Flaschen
10 Gäste?
: 10
⋅ 10
1 Gast50 Spezi-Flaschen
10 Gäste5 Spezi-Flaschen
: 10

Damit haben wir nun den gesuchten Wert, der den 10 Gäste entspricht: 5 Spezi-Flaschen

Dreisatz (antiproportional)

Beispiel:

Ein Hausmeister hat ein extra Budget für die Schulreinigung in den Ferien, das er unter helfenden Schüler:innen aufteilen kann (er selbst bekommt nichts von dem Geld). Wenn er 7 Helfer:innen einstellt, reicht es für jeden 80 € Lohn.

Welchen Lohn könnte er jeder Helfer:in bezahlen, wenn er 4 Helfer:innen hätte?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:


7 Helfer:innen80 € Lohn
??
4 Helfer:innen?

Wir suchen einen möglichst großen Zwischenwert für die Helfer:innen in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 7 Helfer:innen teilen müssen.) Diese Zahl sollte eine Teiler von 7 und von 4 sein, also der ggT(7,4) = 1.

Wir suchen deswegen erst den entsprechenden Wert für 1 Helfer:innen:


7 Helfer:innen80 € Lohn
1 Helfer:in?
4 Helfer:innen?

Um von 7 Helfer:innen in der ersten Zeile auf 1 Helfer:innen in der zweiten Zeile zu kommen, müssen wir durch 7 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 80 € Lohn nicht durch 7 teilen, sondern mit 7 multiplizieren um auf den Wert zu kommen, der den 1 Helfer:innen links entspricht:

: 7

7 Helfer:innen80 € Lohn
1 Helfer:in?
4 Helfer:innen?

⋅ 7
: 7

7 Helfer:innen80 € Lohn
1 Helfer:in560 € Lohn
4 Helfer:innen?

⋅ 7

Jetzt müssen wir ja wieder die 1 Helfer:innen in der mittleren Zeile mit 4 multiplizieren, um auf die 4 Helfer:innen in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 7
⋅ 4

7 Helfer:innen80 € Lohn
1 Helfer:in560 € Lohn
4 Helfer:innen?

⋅ 7
: 4

Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 560 € Lohn in der mittleren Zeile durch 4 dividieren:

: 7
⋅ 4

7 Helfer:innen80 € Lohn
1 Helfer:in560 € Lohn
4 Helfer:innen140 € Lohn

⋅ 7
: 4

Damit haben wir nun den gesuchten Wert, der den 4 Helfer:innen entspricht: 140 € Lohn

Tabelle (antiproportional)

Beispiel:

Die Tabelle zeigt Werte von zwei Größen mit einem antiproportionalen Zusammenhang. Übertrage die Tabelle in dein Heft und berechne mit dem Dreisatz die fehlende Größen.

5 Personen8 h
??
4 Personen?

Lösung einblenden

Wir suchen einen möglichst großen Zwischenwert für die Personen in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 5 Personen teilen müssen.) Diese Zahl sollte eine Teiler von 5 und von 4 sein, also der ggT(5,4) = 1.

Wir suchen deswegen erst den entsprechenden Wert für 1 Personen:


5 Personen8 h
1 Person?
4 Personen?

Um von 5 Personen in der ersten Zeile auf 1 Personen in der zweiten Zeile zu kommen, müssen wir durch 5 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 8 h nicht durch 5 teilen, sondern mit 5 multiplizieren um auf den Wert zu kommen, der den 1 Personen links entspricht:

: 5

5 Personen8 h
1 Person?
4 Personen?

⋅ 5
: 5

5 Personen8 h
1 Person40 h
4 Personen?

⋅ 5

Jetzt müssen wir ja wieder die 1 Personen in der mittleren Zeile mit 4 multiplizieren, um auf die 4 Personen in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 5
⋅ 4

5 Personen8 h
1 Person40 h
4 Personen?

⋅ 5
: 4

Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 40 h in der mittleren Zeile durch 4 dividieren:

: 5
⋅ 4

5 Personen8 h
1 Person40 h
4 Personen10 h

⋅ 5
: 4

Damit haben wir nun den gesuchten Wert, der den 4 Personen entspricht: 10 h

Antiproportionalität überprüfen

Beispiel:

Prüfe, ob es sich um einen antiproportionalen Zusammenhang handelt; falls nicht, korrigiere die Werte so, dass der Zusammenhang antiproportional wird.

Lösung einblenden

Wir überprüfen zuerst, ob die 19 ms den 3 CPU-Kerne entsprechen.

: 4
⋅ 3

4 CPU-Kerne12 ms
1 CPU-Kern48 ms
3 CPU-Kerne16 ms

⋅ 4
: 3

Der urpsrünglich vorgegebene Wert 19 ms (für 3 CPU-Kerne) war also falsch, richtig wäre 16 ms gewesen.


Jetzt überprüfen wir, ob die 7 ms den 12 CPU-Kerne entsprechen.

: 1
⋅ 3

4 CPU-Kerne12 ms
4 CPU-Kerne12 ms
12 CPU-Kerne4 ms

⋅ 1
: 3

Der urpsrünglich vorgegebene Wert 7 ms (für 12 CPU-Kerne) war also falsch, richtig wäre 4 ms gewesen.

Dreisatz (antiprop.) beide Richtungen

Beispiel:

Zur Berechnung einer komplizierten Verschlüsselung muss ein Computer mit 6 CPU-Kernen 5 ms rechnen.

Wie lange bräuchte ein Computer mit 10 solchen CPU-Kernen?
Wie viele CPU-Kerne bräuchte der Computer, wenn er es in 6 ms rechnen könnte?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:


6 CPU-Kerne5 ms
??
10 CPU-Kerne?

Wir suchen einen möglichst großen Zwischenwert für die CPU-Kerne in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 6 CPU-Kerne teilen müssen.) Diese Zahl sollte eine Teiler von 6 und von 10 sein, also der ggT(6,10) = 2.

Wir suchen deswegen erst den entsprechenden Wert für 2 CPU-Kerne:


6 CPU-Kerne5 ms
2 CPU-Kerne?
10 CPU-Kerne?

Um von 6 CPU-Kerne in der ersten Zeile auf 2 CPU-Kerne in der zweiten Zeile zu kommen, müssen wir durch 3 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 5 ms nicht durch 3 teilen, sondern mit 3 multiplizieren um auf den Wert zu kommen, der den 2 CPU-Kerne links entspricht:

: 3

6 CPU-Kerne5 ms
2 CPU-Kerne15 ms
10 CPU-Kerne?

⋅ 3

Jetzt müssen wir ja wieder die 2 CPU-Kerne in der mittleren Zeile mit 5 multiplizieren, um auf die 10 CPU-Kerne in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 3
⋅ 5

6 CPU-Kerne5 ms
2 CPU-Kerne15 ms
10 CPU-Kerne3 ms

⋅ 3
: 5

Damit haben wir nun den gesuchten Wert, der den 10 CPU-Kerne entspricht: 3 ms



Für die andere Frage (Wie viele CPU-Kerne bräuchte der Computer, wenn er es in 6 ms rechnen könnte?) vertauschen wir die linke mit der rechten Spalte in der Tabelle, weil wir jetzt ja zwei "ms"-Werte haben und nach einem "CPU-Kerne"-Wert gesucht wird:


5 ms6 CPU-Kerne
??
6 ms?

Wir suchen einen möglichst großen Zwischenwert für die ms in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 5 ms teilen müssen.) Diese Zahl sollte eine Teiler von 5 und von 6 sein, also der ggT(5,6) = 1.

Wir suchen deswegen erst den entsprechenden Wert für 1 ms:


5 ms6 CPU-Kerne
1 ms?
6 ms?

Um von 5 ms in der ersten Zeile auf 1 ms in der zweiten Zeile zu kommen, müssen wir durch 5 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 6 CPU-Kerne nicht durch 5 teilen, sondern mit 5 multiplizieren um auf den Wert zu kommen, der den 1 ms links entspricht:

: 5

5 ms6 CPU-Kerne
1 ms30 CPU-Kerne
6 ms?

⋅ 5

Jetzt müssen wir ja wieder die 1 ms in der mittleren Zeile mit 6 multiplizieren, um auf die 6 ms in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 5
⋅ 6

5 ms6 CPU-Kerne
1 ms30 CPU-Kerne
6 ms5 CPU-Kerne

⋅ 5
: 6

Damit haben wir nun den gesuchten Wert, der den 6 ms entspricht: 5 CPU-Kerne

Wert bei Anti-Proport. (Anwendungen)

Beispiel:

Auf einer Großbaustelle müssen unglaubliche Mengen an Aushub abtransportiert werden. Dabei brauchen 2 LKWs genau 40 Fahrten. Wieviele Fahrten bräuchten 5 LKWs durchschnittlich?(Bitte auf eine Stelle hinterm Komma runden, auch wenn es inhaltlich keinen Sinn macht.)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Da die Zuordnung der beiden Größen antiproportional ist, schreiben wir die Werte am besten mal in eine Tabelle:

LKW-AnzahlFahrten-Anzahl
2 LKWs40 Fahrten
( : 2 )( ⋅ 2 )
1 LKWs80 Fahrten
( ⋅ 5 )( : 5 )
5 LKWs 80 5 Fahrten

Die gesuchte Fahrten-Anzahl ist also 80 5 = 16 Fahrten