nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Zweisatz (antiproportional)

Beispiel:

Ein Hausmeister hat ein extra Budget von 560 € für die Schulreinigung in den Ferien, das er unter helfenden Schüler:innen aufteilen kann (er selbst bekommt nichts von dem Geld).

Welchen Lohn könnte er jeder Helfer:in bezahlen, wenn er 8 Helfer:innen hätte?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:

1 Helfer:in560 € Lohn
8 Helfer:innen?

Um von 1 Helfer:innen in der ersten Zeile auf 8 Helfer:innen in der zweiten Zeile zu kommen, müssen wir mit 8 multiplizieren. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 560 € Lohn durch 8 teilen, um auf den Wert zu kommen, der den 8 Helfer:innen entspricht:

⋅ 8
1 Helfer:in560 € Lohn
8 Helfer:innen?
: 8
⋅ 8
1 Helfer:in560 € Lohn
8 Helfer:innen70 € Lohn
: 8

Damit haben wir nun den gesuchten Wert, der den 8 Helfer:innen entspricht: 70 € Lohn

Dreisatz (antiproportional)

Beispiel:

Wenn 8 Personen das Schulhaus putzen, brauchen sie dafür 5 h.

Wie lange bräuchten 10 Personen hierfür?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:


8 Personen5 h
??
10 Personen?

Wir suchen einen möglichst großen Zwischenwert für die Personen in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 8 Personen teilen müssen.) Diese Zahl sollte eine Teiler von 8 und von 10 sein, also der ggT(8,10) = 2.

Wir suchen deswegen erst den entsprechenden Wert für 2 Personen:


8 Personen5 h
2 Personen?
10 Personen?

Um von 8 Personen in der ersten Zeile auf 2 Personen in der zweiten Zeile zu kommen, müssen wir durch 4 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 5 h nicht durch 4 teilen, sondern mit 4 multiplizieren um auf den Wert zu kommen, der den 2 Personen links entspricht:

: 4

8 Personen5 h
2 Personen?
10 Personen?

⋅ 4
: 4

8 Personen5 h
2 Personen20 h
10 Personen?

⋅ 4

Jetzt müssen wir ja wieder die 2 Personen in der mittleren Zeile mit 5 multiplizieren, um auf die 10 Personen in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 4
⋅ 5

8 Personen5 h
2 Personen20 h
10 Personen?

⋅ 4
: 5

Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 20 h in der mittleren Zeile durch 5 dividieren:

: 4
⋅ 5

8 Personen5 h
2 Personen20 h
10 Personen4 h

⋅ 4
: 5

Damit haben wir nun den gesuchten Wert, der den 10 Personen entspricht: 4 h

Tabelle (antiproportional)

Beispiel:

Die Tabelle zeigt Werte von zwei Größen mit einem antiproportionalen Zusammenhang. Übertrage die Tabelle in dein Heft und berechne mit dem Dreisatz die fehlende Größen.

5 Personen8 h
??
4 Personen?

Lösung einblenden

Wir suchen einen möglichst großen Zwischenwert für die Personen in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 5 Personen teilen müssen.) Diese Zahl sollte eine Teiler von 5 und von 4 sein, also der ggT(5,4) = 1.

Wir suchen deswegen erst den entsprechenden Wert für 1 Personen:


5 Personen8 h
1 Person?
4 Personen?

Um von 5 Personen in der ersten Zeile auf 1 Personen in der zweiten Zeile zu kommen, müssen wir durch 5 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 8 h nicht durch 5 teilen, sondern mit 5 multiplizieren um auf den Wert zu kommen, der den 1 Personen links entspricht:

: 5

5 Personen8 h
1 Person?
4 Personen?

⋅ 5
: 5

5 Personen8 h
1 Person40 h
4 Personen?

⋅ 5

Jetzt müssen wir ja wieder die 1 Personen in der mittleren Zeile mit 4 multiplizieren, um auf die 4 Personen in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 5
⋅ 4

5 Personen8 h
1 Person40 h
4 Personen?

⋅ 5
: 4

Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 40 h in der mittleren Zeile durch 4 dividieren:

: 5
⋅ 4

5 Personen8 h
1 Person40 h
4 Personen10 h

⋅ 5
: 4

Damit haben wir nun den gesuchten Wert, der den 4 Personen entspricht: 10 h

Antiproportionalität überprüfen

Beispiel:

Prüfe, ob es sich um einen antiproportionalen Zusammenhang handelt; falls nicht, korrigiere die Werte so, dass der Zusammenhang antiproportional wird.

Lösung einblenden

Wir überprüfen zuerst, ob die 5 Tage den 15 Minuten pro Tag entsprechen.

: 4
⋅ 5

12 Minuten pro Tag5 Tage
3 Minuten pro Tag20 Tage
15 Minuten pro Tag4 Tage

⋅ 4
: 5

Der urpsrünglich vorgegebene Wert 5 Tage (für 15 Minuten pro Tag) war also falsch, richtig wäre 4 Tage gewesen.


Jetzt überprüfen wir, ob die 20 Tage den 3 Minuten pro Tag entsprechen.

: 4
⋅ 1

12 Minuten pro Tag5 Tage
3 Minuten pro Tag20 Tage
3 Minuten pro Tag20 Tage

⋅ 4
: 1

Der urpsrünglich vorgegebene Wert 20 Tage (für 3 Minuten pro Tag) war also korrekt.

Dreisatz (antiprop.) beide Richtungen

Beispiel:

Um den noch fehlenden Betrag für eine Klassenfahrt zu bekommen, veranstaltet eine Schulkasse ein Lotterie. Wenn sie 8€ für ein Los verlangen, müssten sie 50 Lose verkaufen um genügend Geld zusammen zu bekommen.

Wie viele Lose müssten sie bei einem Lospreis von 10 € verkaufen?
Wie hoch muss man den Preis ansetzen, wenn man erwartet, das sich 25 Lose verkaufen?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:


8 € Lospreis50 Lose
??
10 € Lospreis?

Wir suchen einen möglichst großen Zwischenwert für die € Lospreis in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 8 € Lospreis teilen müssen.) Diese Zahl sollte eine Teiler von 8 und von 10 sein, also der ggT(8,10) = 2.

Wir suchen deswegen erst den entsprechenden Wert für 2 € Lospreis:


8 € Lospreis50 Lose
2 € Lospreis?
10 € Lospreis?

Um von 8 € Lospreis in der ersten Zeile auf 2 € Lospreis in der zweiten Zeile zu kommen, müssen wir durch 4 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 50 Lose nicht durch 4 teilen, sondern mit 4 multiplizieren um auf den Wert zu kommen, der den 2 € Lospreis links entspricht:

: 4

8 € Lospreis50 Lose
2 € Lospreis200 Lose
10 € Lospreis?

⋅ 4

Jetzt müssen wir ja wieder die 2 € Lospreis in der mittleren Zeile mit 5 multiplizieren, um auf die 10 € Lospreis in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 4
⋅ 5

8 € Lospreis50 Lose
2 € Lospreis200 Lose
10 € Lospreis40 Lose

⋅ 4
: 5

Damit haben wir nun den gesuchten Wert, der den 10 € Lospreis entspricht: 40 Lose



Um von 50 Lose in der ersten Zeile auf 25 Lose in der zweiten Zeile zu kommen, müssen wir durch 2 teilen. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 8 € Lospreis mit 2 multiplizieren, um auf den Wert zu kommen, der den 25 Lose entspricht:

: 2
50 Lose8 € Lospreis
25 Lose?
⋅ 2
: 2
50 Lose8 € Lospreis
25 Lose16 € Lospreis
⋅ 2

Damit haben wir nun den gesuchten Wert, der den 25 Lose entspricht: 16 € Lospreis

Wert bei Anti-Proport. (Anwendungen)

Beispiel:

Eine Drohne muss eine bestimmte Strecke zurücklegen. Wenn sie dabei mit einer Geschwindigkeit von 20 km/h fliegt, braucht sie dafür 12 Minuten.Wie lange braucht sie bei einer Geschwindigkeit von 30 km/h?

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Da die Zuordnung der beiden Größen antiproportional ist, schreiben wir die Werte am besten mal in eine Tabelle:

GeschwindigkeitFlugzeit
20 km/h12 min
( : 20 )( ⋅ 20 )
1 km/h240 min
( ⋅ 30 )( : 30 )
30 km/h 240 30 min

Die gesuchte Flugzeit ist also 240 30 = 8 min