nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Zweisatz (antiproportional)

Beispiel:

Karls hat für seine Geburtstagsparty 45 Flaschen Spezi bekommen.

Wie viele Flaschen würde jeder bekommen, wenn insgesamt 9 Personen auf der Party wären?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:

1 Gast45 Spezi-Flaschen
9 Gäste?

Um von 1 Gäste in der ersten Zeile auf 9 Gäste in der zweiten Zeile zu kommen, müssen wir mit 9 multiplizieren. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 45 Spezi-Flaschen durch 9 teilen, um auf den Wert zu kommen, der den 9 Gäste entspricht:

⋅ 9
1 Gast45 Spezi-Flaschen
9 Gäste?
: 9
⋅ 9
1 Gast45 Spezi-Flaschen
9 Gäste5 Spezi-Flaschen
: 9

Damit haben wir nun den gesuchten Wert, der den 9 Gäste entspricht: 5 Spezi-Flaschen

Dreisatz (antiproportional)

Beispiel:

Wenn Karla mit ihrem Handy jeden Tag immer 6 Minuten telefonieren würde, würden ihre Freiminuten noch genau 4 Tage halten.

Wann wären ihre Freiminuten aufgebraucht, wenn sie täglich 8 min telefonieren würde?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:


6 Minuten pro Tag4 Tage
??
8 Minuten pro Tag?

Wir suchen einen möglichst großen Zwischenwert für die Minuten pro Tag in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 6 Minuten pro Tag teilen müssen.) Diese Zahl sollte eine Teiler von 6 und von 8 sein, also der ggT(6,8) = 2.

Wir suchen deswegen erst den entsprechenden Wert für 2 Minuten pro Tag:


6 Minuten pro Tag4 Tage
2 Minuten pro Tag?
8 Minuten pro Tag?

Um von 6 Minuten pro Tag in der ersten Zeile auf 2 Minuten pro Tag in der zweiten Zeile zu kommen, müssen wir durch 3 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 4 Tage nicht durch 3 teilen, sondern mit 3 multiplizieren um auf den Wert zu kommen, der den 2 Minuten pro Tag links entspricht:

: 3

6 Minuten pro Tag4 Tage
2 Minuten pro Tag?
8 Minuten pro Tag?

⋅ 3
: 3

6 Minuten pro Tag4 Tage
2 Minuten pro Tag12 Tage
8 Minuten pro Tag?

⋅ 3

Jetzt müssen wir ja wieder die 2 Minuten pro Tag in der mittleren Zeile mit 4 multiplizieren, um auf die 8 Minuten pro Tag in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 3
⋅ 4

6 Minuten pro Tag4 Tage
2 Minuten pro Tag12 Tage
8 Minuten pro Tag?

⋅ 3
: 4

Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 12 Tage in der mittleren Zeile durch 4 dividieren:

: 3
⋅ 4

6 Minuten pro Tag4 Tage
2 Minuten pro Tag12 Tage
8 Minuten pro Tag3 Tage

⋅ 3
: 4

Damit haben wir nun den gesuchten Wert, der den 8 Minuten pro Tag entspricht: 3 Tage

Tabelle (antiproportional)

Beispiel:

Die Tabelle zeigt Werte von zwei Größen mit einem antiproportionalen Zusammenhang. Übertrage die Tabelle in dein Heft und berechne mit dem Dreisatz die fehlende Größen.

15 Minuten pro Tag4 Tage
??
20 Minuten pro Tag?

Lösung einblenden

Wir suchen einen möglichst großen Zwischenwert für die Minuten pro Tag in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 15 Minuten pro Tag teilen müssen.) Diese Zahl sollte eine Teiler von 15 und von 20 sein, also der ggT(15,20) = 5.

Wir suchen deswegen erst den entsprechenden Wert für 5 Minuten pro Tag:


15 Minuten pro Tag4 Tage
5 Minuten pro Tag?
20 Minuten pro Tag?

Um von 15 Minuten pro Tag in der ersten Zeile auf 5 Minuten pro Tag in der zweiten Zeile zu kommen, müssen wir durch 3 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 4 Tage nicht durch 3 teilen, sondern mit 3 multiplizieren um auf den Wert zu kommen, der den 5 Minuten pro Tag links entspricht:

: 3

15 Minuten pro Tag4 Tage
5 Minuten pro Tag?
20 Minuten pro Tag?

⋅ 3
: 3

15 Minuten pro Tag4 Tage
5 Minuten pro Tag12 Tage
20 Minuten pro Tag?

⋅ 3

Jetzt müssen wir ja wieder die 5 Minuten pro Tag in der mittleren Zeile mit 4 multiplizieren, um auf die 20 Minuten pro Tag in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 3
⋅ 4

15 Minuten pro Tag4 Tage
5 Minuten pro Tag12 Tage
20 Minuten pro Tag?

⋅ 3
: 4

Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 12 Tage in der mittleren Zeile durch 4 dividieren:

: 3
⋅ 4

15 Minuten pro Tag4 Tage
5 Minuten pro Tag12 Tage
20 Minuten pro Tag3 Tage

⋅ 3
: 4

Damit haben wir nun den gesuchten Wert, der den 20 Minuten pro Tag entspricht: 3 Tage

Antiproportionalität überprüfen

Beispiel:

Prüfe, ob es sich um einen antiproportionalen Zusammenhang handelt; falls nicht, korrigiere die Werte so, dass der Zusammenhang antiproportional wird.

Lösung einblenden

Wir überprüfen zuerst, ob die 0 ms den 15 CPU-Kerne entsprechen.

: 3
⋅ 5

9 CPU-Kerne5 ms
3 CPU-Kerne15 ms
15 CPU-Kerne3 ms

⋅ 3
: 5

Der urpsrünglich vorgegebene Wert 0 ms (für 15 CPU-Kerne) war also falsch, richtig wäre 3 ms gewesen.


Jetzt überprüfen wir, ob die 9 ms den 5 CPU-Kerne entsprechen.

: 9
⋅ 5

9 CPU-Kerne5 ms
1 CPU-Kerne45 ms
5 CPU-Kerne9 ms

⋅ 9
: 5

Der urpsrünglich vorgegebene Wert 9 ms (für 5 CPU-Kerne) war also korrekt.

Dreisatz (antiprop.) beide Richtungen

Beispiel:

Ein Hausmeister hat ein extra Budget für die Schulreinigung in den Ferien, das er unter helfenden Schüler:innen aufteilen kann (er selbst bekommt nichts von dem Geld). Wenn er 4 Helfer:innen einstellt, reicht es für jeden 60 € Lohn.

Welchen Lohn könnte er jeder Helfer:in bezahlen, wenn er 3 Helfer:innen hätte?
Wie viele Helfer:innen könnte man mit einem Lohn von 30 € bezahlen?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:


4 Helfer:innen60 € Lohn
??
3 Helfer:innen?

Wir suchen einen möglichst großen Zwischenwert für die Helfer:innen in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 4 Helfer:innen teilen müssen.) Diese Zahl sollte eine Teiler von 4 und von 3 sein, also der ggT(4,3) = 1.

Wir suchen deswegen erst den entsprechenden Wert für 1 Helfer:innen:


4 Helfer:innen60 € Lohn
1 Helfer:in?
3 Helfer:innen?

Um von 4 Helfer:innen in der ersten Zeile auf 1 Helfer:innen in der zweiten Zeile zu kommen, müssen wir durch 4 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 60 € Lohn nicht durch 4 teilen, sondern mit 4 multiplizieren um auf den Wert zu kommen, der den 1 Helfer:innen links entspricht:

: 4

4 Helfer:innen60 € Lohn
1 Helfer:in240 € Lohn
3 Helfer:innen?

⋅ 4

Jetzt müssen wir ja wieder die 1 Helfer:innen in der mittleren Zeile mit 3 multiplizieren, um auf die 3 Helfer:innen in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 4
⋅ 3

4 Helfer:innen60 € Lohn
1 Helfer:in240 € Lohn
3 Helfer:innen80 € Lohn

⋅ 4
: 3

Damit haben wir nun den gesuchten Wert, der den 3 Helfer:innen entspricht: 80 € Lohn



Um von 60 € Lohn in der ersten Zeile auf 30 € Lohn in der zweiten Zeile zu kommen, müssen wir durch 2 teilen. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 4 Helfer:innen mit 2 multiplizieren, um auf den Wert zu kommen, der den 30 € Lohn entspricht:

: 2
60 € Lohn4 Helfer:innen
30 € Lohn?
⋅ 2
: 2
60 € Lohn4 Helfer:innen
30 € Lohn8 Helfer:innen
⋅ 2

Damit haben wir nun den gesuchten Wert, der den 30 € Lohn entspricht: 8 Helfer:innen

Wert bei Anti-Proport. (Anwendungen)

Beispiel:

Ein Raum wird mit 45 LED-Leuchten á 200 Lumen ausgeleuchtet. Aus ästhetischen Gründen sollen nur noch 22 Leuchten im Raum installiert sein, diese sollen aber die gleiche Helligkeit erzeugen. Wie viel Lumen brauchen dann diese neuen LED-Leuchten?

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Da die Zuordnung der beiden Größen antiproportional ist, schreiben wir die Werte am besten mal in eine Tabelle:

Anzahl LED-LeuchtenHelligkeit
45 200 Lumen
( : 45 )( ⋅ 45 )
1 9000 Lumen
( ⋅ 22 )( : 22 )
22 9000 22 Lumen

Die gesuchte Helligkeit ist also 9000 22 = 4500 11 = 409 1 11 ≈ 409.091 Lumen