Klasse 5
Klasse 6
Klasse 7
Klasse 8
Klasse 9
Klasse 10
Fit für die Oberstufe
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Zweisatz (antiproportional)
Beispiel:
Zur Berechnung einer komplizierten Verschlüsselung muss ein Computer mit einem CPU-Kern 50 ms rechnen.
Wie lange bräuchte ein Computer mit 5 solchen CPU-Kernen?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Um von 1 CPU-Kerne in der ersten Zeile auf 5 CPU-Kerne in der zweiten Zeile zu kommen, müssen wir mit 5 multiplizieren. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 50 ms durch 5 teilen, um auf den Wert zu kommen, der den 5 CPU-Kerne entspricht:
|
⋅ 5
|
![]() |
|
![]() |
: 5
|
|
⋅ 5
|
![]() |
|
![]() |
: 5
|
Damit haben wir nun den gesuchten Wert, der den 5 CPU-Kerne entspricht: 10 ms
Dreisatz (antiproportional)
Beispiel:
Wenn Frau Baumann so Auto fährt, dass sie 5 Liter pro 100km verbraucht, kommt sie mit einer Tankfüllung 1000 km weit.
Wie weit würde sie mit einer Tankfüllung kommen, wenn sie mit einem "2 Liter/100km "-Schnitt fahren würde?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Wir suchen einen möglichst großen Zwischenwert für die Liter pro 100km in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 5 Liter pro 100km teilen müssen.) Diese Zahl sollte eine Teiler von 5 und von 2 sein, also der ggT(5,2) = 1.
Wir suchen deswegen erst den entsprechenden Wert für 1 Liter pro 100km:
|
Um von 5 Liter pro 100km in der ersten Zeile auf 1 Liter pro 100km in der zweiten Zeile zu kommen, müssen wir durch 5 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 1000 km nicht durch 5 teilen, sondern mit 5 multiplizieren um auf den Wert zu kommen, der den 1 Liter pro 100km links entspricht:
|
: 5
|
![]() |
|
![]() |
⋅ 5
|
|
: 5
|
![]() |
|
![]() |
⋅ 5
|
Jetzt müssen wir ja wieder die 1 Liter pro 100km in der mittleren Zeile mit 2 multiplizieren, um auf die 2 Liter pro 100km in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 5
⋅ 2
|
![]() ![]() |
|
![]() ![]() |
⋅ 5
: 2
|
Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 5000 km in der mittleren Zeile durch 2 dividieren:
|
: 5
⋅ 2
|
![]() ![]() |
|
![]() ![]() |
⋅ 5
: 2
|
Damit haben wir nun den gesuchten Wert, der den 2 Liter pro 100km entspricht: 2500 km
Tabelle (antiproportional)
Beispiel:
Die Tabelle zeigt Werte von zwei Größen mit einem antiproportionalen Zusammenhang. Übertrage die Tabelle in dein Heft und berechne mit dem Dreisatz die fehlende Größen.
| 20 € Lospreis | 30 Lose |
| ? | ? |
| 30 € Lospreis | ? |
Wir suchen einen möglichst großen Zwischenwert für die € Lospreis in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 20 € Lospreis teilen müssen.) Diese Zahl sollte eine Teiler von 20 und von 30 sein, also der ggT(20,30) = 10.
Wir suchen deswegen erst den entsprechenden Wert für 10 € Lospreis:
|
Um von 20 € Lospreis in der ersten Zeile auf 10 € Lospreis in der zweiten Zeile zu kommen, müssen wir durch 2 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 30 Lose nicht durch 2 teilen, sondern mit 2 multiplizieren um auf den Wert zu kommen, der den 10 € Lospreis links entspricht:
|
: 2
|
![]() |
|
![]() |
⋅ 2
|
|
: 2
|
![]() |
|
![]() |
⋅ 2
|
Jetzt müssen wir ja wieder die 10 € Lospreis in der mittleren Zeile mit 3 multiplizieren, um auf die 30 € Lospreis in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 2
⋅ 3
|
![]() ![]() |
|
![]() ![]() |
⋅ 2
: 3
|
Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 60 Lose in der mittleren Zeile durch 3 dividieren:
|
: 2
⋅ 3
|
![]() ![]() |
|
![]() ![]() |
⋅ 2
: 3
|
Damit haben wir nun den gesuchten Wert, der den 30 € Lospreis entspricht: 20 Lose
Antiproportionalität überprüfen
Beispiel:
Prüfe, ob es sich um einen antiproportionalen Zusammenhang handelt; falls nicht, korrigiere die Werte so, dass der Zusammenhang antiproportional wird.
Wir überprüfen zuerst, ob die 1598 km den 3 Liter pro 100km entsprechen.
|
: 4
⋅ 3
|
![]() ![]() |
|
![]() ![]() |
⋅ 4
: 3
|
Der urpsrünglich vorgegebene Wert 1598 km (für 3 Liter pro 100km) war also falsch, richtig wäre 1600 km gewesen.
Jetzt überprüfen wir, ob die 797 km den 6 Liter pro 100km entsprechen.
|
: 2
⋅ 3
|
![]() ![]() |
|
![]() ![]() |
⋅ 2
: 3
|
Der urpsrünglich vorgegebene Wert 797 km (für 6 Liter pro 100km) war also falsch, richtig wäre 800 km gewesen.
Dreisatz (antiprop.) beide Richtungen
Beispiel:
Wenn 3 Personen das Schulhaus putzen, brauchen sie dafür 10 h.
Wie lange bräuchten 2 Personen hierfür?
Wie viele Personen bräuchte man, damit jeder 3 h putzen müsste?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Wir suchen einen möglichst großen Zwischenwert für die Personen in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 3 Personen teilen müssen.) Diese Zahl sollte eine Teiler von 3 und von 2 sein, also der ggT(3,2) = 1.
Wir suchen deswegen erst den entsprechenden Wert für 1 Personen:
|
Um von 3 Personen in der ersten Zeile auf 1 Personen in der zweiten Zeile zu kommen, müssen wir durch 3 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 10 h nicht durch 3 teilen, sondern mit 3 multiplizieren um auf den Wert zu kommen, der den 1 Personen links entspricht:
|
: 3
|
![]() |
|
![]() |
⋅ 3
|
Jetzt müssen wir ja wieder die 1 Personen in der mittleren Zeile mit 2 multiplizieren, um auf die 2 Personen in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 3
⋅ 2
|
![]() ![]() |
|
![]() ![]() |
⋅ 3
: 2
|
Damit haben wir nun den gesuchten Wert, der den 2 Personen entspricht: 15 h
Für die andere Frage (Wie viele Personen bräuchte man, damit jeder 3 h putzen müsste?) vertauschen wir die linke mit der rechten Spalte in der Tabelle, weil wir jetzt ja zwei "h"-Werte haben und nach einem "Personen"-Wert gesucht wird:
|
Wir suchen einen möglichst großen Zwischenwert für die h in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 10 h teilen müssen.) Diese Zahl sollte eine Teiler von 10 und von 3 sein, also der ggT(10,3) = 1.
Wir suchen deswegen erst den entsprechenden Wert für 1 h:
|
Um von 10 h in der ersten Zeile auf 1 h in der zweiten Zeile zu kommen, müssen wir durch 10 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 3 Personen nicht durch 10 teilen, sondern mit 10 multiplizieren um auf den Wert zu kommen, der den 1 h links entspricht:
|
: 10
|
![]() |
|
![]() |
⋅ 10
|
Jetzt müssen wir ja wieder die 1 h in der mittleren Zeile mit 3 multiplizieren, um auf die 3 h in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 10
⋅ 3
|
![]() ![]() |
|
![]() ![]() |
⋅ 10
: 3
|
Damit haben wir nun den gesuchten Wert, der den 3 h entspricht: 10 Personen
Wert bei Anti-Proport. (Anwendungen)
Beispiel:
Eine Drohne muss eine bestimmte Strecke zurücklegen. Wenn sie dabei mit einer Geschwindigkeit von 40 km/h fliegt, braucht sie dafür 12 Minuten.Wie lange braucht sie bei einer Geschwindigkeit von 42 km/h?
Da die Zuordnung der beiden Größen antiproportional ist, schreiben wir die Werte am besten mal in eine Tabelle:
| Geschwindigkeit | Flugzeit |
|---|---|
| 40 km/h | 12 min |
| ( : 40 ) | ( ⋅ 40 ) |
| 1 km/h | min |
| ( ⋅ 42 ) | ( : 42 ) |
| 42 km/h | min |
Die gesuchte Flugzeit ist also = = 11 ≈ 11.429 min


