nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Zweisatz (antiproportional)

Beispiel:

Wenn eine Person das Schulhaus putzt, braucht sie dafür 48 h.

Wie lange bräuchten 8 Personen hierfür?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:

1 Person48 h
8 Personen?

Um von 1 Personen in der ersten Zeile auf 8 Personen in der zweiten Zeile zu kommen, müssen wir mit 8 multiplizieren. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 48 h durch 8 teilen, um auf den Wert zu kommen, der den 8 Personen entspricht:

⋅ 8
1 Person48 h
8 Personen?
: 8
⋅ 8
1 Person48 h
8 Personen6 h
: 8

Damit haben wir nun den gesuchten Wert, der den 8 Personen entspricht: 6 h

Dreisatz (antiproportional)

Beispiel:

Um den noch fehlenden Betrag für eine Klassenfahrt zu bekommen, veranstaltet eine Schulkasse ein Lotterie. Wenn sie 6€ für ein Los verlangen, müssten sie 80 Lose verkaufen um genügend Geld zusammen zu bekommen.

Wie viele Lose müssten sie bei einem Lospreis von 4 € verkaufen?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:


6 € Lospreis80 Lose
??
4 € Lospreis?

Wir suchen einen möglichst großen Zwischenwert für die € Lospreis in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 6 € Lospreis teilen müssen.) Diese Zahl sollte eine Teiler von 6 und von 4 sein, also der ggT(6,4) = 2.

Wir suchen deswegen erst den entsprechenden Wert für 2 € Lospreis:


6 € Lospreis80 Lose
2 € Lospreis?
4 € Lospreis?

Um von 6 € Lospreis in der ersten Zeile auf 2 € Lospreis in der zweiten Zeile zu kommen, müssen wir durch 3 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 80 Lose nicht durch 3 teilen, sondern mit 3 multiplizieren um auf den Wert zu kommen, der den 2 € Lospreis links entspricht:

: 3

6 € Lospreis80 Lose
2 € Lospreis?
4 € Lospreis?

⋅ 3
: 3

6 € Lospreis80 Lose
2 € Lospreis240 Lose
4 € Lospreis?

⋅ 3

Jetzt müssen wir ja wieder die 2 € Lospreis in der mittleren Zeile mit 2 multiplizieren, um auf die 4 € Lospreis in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 3
⋅ 2

6 € Lospreis80 Lose
2 € Lospreis240 Lose
4 € Lospreis?

⋅ 3
: 2

Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 240 Lose in der mittleren Zeile durch 2 dividieren:

: 3
⋅ 2

6 € Lospreis80 Lose
2 € Lospreis240 Lose
4 € Lospreis120 Lose

⋅ 3
: 2

Damit haben wir nun den gesuchten Wert, der den 4 € Lospreis entspricht: 120 Lose

Tabelle (antiproportional)

Beispiel:

Die Tabelle zeigt Werte von zwei Größen mit einem antiproportionalen Zusammenhang. Übertrage die Tabelle in dein Heft und berechne mit dem Dreisatz die fehlende Größen.

8 Gäste5 Spezi-Flaschen
??
10 Gäste?

Lösung einblenden

Wir suchen einen möglichst großen Zwischenwert für die Gäste in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 8 Gäste teilen müssen.) Diese Zahl sollte eine Teiler von 8 und von 10 sein, also der ggT(8,10) = 2.

Wir suchen deswegen erst den entsprechenden Wert für 2 Gäste:


8 Gäste5 Spezi-Flaschen
2 Gäste?
10 Gäste?

Um von 8 Gäste in der ersten Zeile auf 2 Gäste in der zweiten Zeile zu kommen, müssen wir durch 4 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 5 Spezi-Flaschen nicht durch 4 teilen, sondern mit 4 multiplizieren um auf den Wert zu kommen, der den 2 Gäste links entspricht:

: 4

8 Gäste5 Spezi-Flaschen
2 Gäste?
10 Gäste?

⋅ 4
: 4

8 Gäste5 Spezi-Flaschen
2 Gäste20 Spezi-Flaschen
10 Gäste?

⋅ 4

Jetzt müssen wir ja wieder die 2 Gäste in der mittleren Zeile mit 5 multiplizieren, um auf die 10 Gäste in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 4
⋅ 5

8 Gäste5 Spezi-Flaschen
2 Gäste20 Spezi-Flaschen
10 Gäste?

⋅ 4
: 5

Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 20 Spezi-Flaschen in der mittleren Zeile durch 5 dividieren:

: 4
⋅ 5

8 Gäste5 Spezi-Flaschen
2 Gäste20 Spezi-Flaschen
10 Gäste4 Spezi-Flaschen

⋅ 4
: 5

Damit haben wir nun den gesuchten Wert, der den 10 Gäste entspricht: 4 Spezi-Flaschen

Antiproportionalität überprüfen

Beispiel:

Prüfe, ob es sich um einen antiproportionalen Zusammenhang handelt; falls nicht, korrigiere die Werte so, dass der Zusammenhang antiproportional wird.

Lösung einblenden

Wir überprüfen zuerst, ob die 2 Tage den 25 Minuten pro Tag entsprechen.

: 2
⋅ 5

10 Minuten pro Tag5 Tage
5 Minuten pro Tag10 Tage
25 Minuten pro Tag2 Tage

⋅ 2
: 5

Der urpsrünglich vorgegebene Wert 2 Tage(für 25 Minuten pro Tag) war also korrekt.


Jetzt überprüfen wir, ob die 12 Tage den 5 Minuten pro Tag entsprechen.

: 2
⋅ 1

10 Minuten pro Tag5 Tage
5 Minuten pro Tag10 Tage
5 Minuten pro Tag10 Tage

⋅ 2
: 1

Der urpsrünglich vorgegebene Wert 12 Tage (für 5 Minuten pro Tag) war also falsch, richtig wäre 10 Tage gewesen.

Dreisatz (antiprop.) beide Richtungen

Beispiel:

Wenn 5 Personen das Schulhaus putzen, brauchen sie dafür 9 h.

Wie lange bräuchten 3 Personen hierfür?
Wie viele Personen bräuchte man, damit jeder 5 h putzen müsste?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:


5 Personen9 h
??
3 Personen?

Wir suchen einen möglichst großen Zwischenwert für die Personen in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 5 Personen teilen müssen.) Diese Zahl sollte eine Teiler von 5 und von 3 sein, also der ggT(5,3) = 1.

Wir suchen deswegen erst den entsprechenden Wert für 1 Personen:


5 Personen9 h
1 Person?
3 Personen?

Um von 5 Personen in der ersten Zeile auf 1 Personen in der zweiten Zeile zu kommen, müssen wir durch 5 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 9 h nicht durch 5 teilen, sondern mit 5 multiplizieren um auf den Wert zu kommen, der den 1 Personen links entspricht:

: 5

5 Personen9 h
1 Person45 h
3 Personen?

⋅ 5

Jetzt müssen wir ja wieder die 1 Personen in der mittleren Zeile mit 3 multiplizieren, um auf die 3 Personen in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 5
⋅ 3

5 Personen9 h
1 Person45 h
3 Personen15 h

⋅ 5
: 3

Damit haben wir nun den gesuchten Wert, der den 3 Personen entspricht: 15 h



Für die andere Frage (Wie viele Personen bräuchte man, damit jeder 5 h putzen müsste?) vertauschen wir die linke mit der rechten Spalte in der Tabelle, weil wir jetzt ja zwei "h"-Werte haben und nach einem "Personen"-Wert gesucht wird:


9 h5 Personen
??
5 h?

Wir suchen einen möglichst großen Zwischenwert für die h in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 9 h teilen müssen.) Diese Zahl sollte eine Teiler von 9 und von 5 sein, also der ggT(9,5) = 1.

Wir suchen deswegen erst den entsprechenden Wert für 1 h:


9 h5 Personen
1 h?
5 h?

Um von 9 h in der ersten Zeile auf 1 h in der zweiten Zeile zu kommen, müssen wir durch 9 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 5 Personen nicht durch 9 teilen, sondern mit 9 multiplizieren um auf den Wert zu kommen, der den 1 h links entspricht:

: 9

9 h5 Personen
1 h45 Personen
5 h?

⋅ 9

Jetzt müssen wir ja wieder die 1 h in der mittleren Zeile mit 5 multiplizieren, um auf die 5 h in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 9
⋅ 5

9 h5 Personen
1 h45 Personen
5 h9 Personen

⋅ 9
: 5

Damit haben wir nun den gesuchten Wert, der den 5 h entspricht: 9 Personen

Wert bei Anti-Proport. (Anwendungen)

Beispiel:

Ein Raum wird mit 35 LED-Leuchten á 150 Lumen ausgeleuchtet. Aus ästhetischen Gründen sollen nur noch 15 Leuchten im Raum installiert sein, diese sollen aber die gleiche Helligkeit erzeugen. Wie viel Lumen brauchen dann diese neuen LED-Leuchten?

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Da die Zuordnung der beiden Größen antiproportional ist, schreiben wir die Werte am besten mal in eine Tabelle:

Anzahl LED-LeuchtenHelligkeit
35 150 Lumen
( : 35 )( ⋅ 35 )
1 5250 Lumen
( ⋅ 15 )( : 15 )
15 5250 15 Lumen

Die gesuchte Helligkeit ist also 5250 15 = 350 Lumen