Klasse 5
Klasse 6
Klasse 7
Klasse 8
Klasse 9
Klasse 10
Fit für die Oberstufe
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Zweisatz (antiproportional)
Beispiel:
Karls hat für seine Geburtstagsparty 40 Flaschen Spezi bekommen.
Wie viele Flaschen würde jeder bekommen, wenn insgesamt 8 Personen auf der Party wären?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Um von 1 Gäste in der ersten Zeile auf 8 Gäste in der zweiten Zeile zu kommen, müssen wir mit 8 multiplizieren. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 40 Spezi-Flaschen durch 8 teilen, um auf den Wert zu kommen, der den 8 Gäste entspricht:
|
⋅ 8
|
![]() |
|
![]() |
: 8
|
|
⋅ 8
|
![]() |
|
![]() |
: 8
|
Damit haben wir nun den gesuchten Wert, der den 8 Gäste entspricht: 5 Spezi-Flaschen
Dreisatz (antiproportional)
Beispiel:
Zur Berechnung einer komplizierten Verschlüsselung muss ein Computer mit 10 CPU-Kernen 6 ms rechnen.
Wie lange bräuchte ein Computer mit 12 solchen CPU-Kernen?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Wir suchen einen möglichst großen Zwischenwert für die CPU-Kerne in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 10 CPU-Kerne teilen müssen.) Diese Zahl sollte eine Teiler von 10 und von 12 sein, also der ggT(10,12) = 2.
Wir suchen deswegen erst den entsprechenden Wert für 2 CPU-Kerne:
|
Um von 10 CPU-Kerne in der ersten Zeile auf 2 CPU-Kerne in der zweiten Zeile zu kommen, müssen wir durch 5 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 6 ms nicht durch 5 teilen, sondern mit 5 multiplizieren um auf den Wert zu kommen, der den 2 CPU-Kerne links entspricht:
|
: 5
|
![]() |
|
![]() |
⋅ 5
|
|
: 5
|
![]() |
|
![]() |
⋅ 5
|
Jetzt müssen wir ja wieder die 2 CPU-Kerne in der mittleren Zeile mit 6 multiplizieren, um auf die 12 CPU-Kerne in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 5
⋅ 6
|
![]() ![]() |
|
![]() ![]() |
⋅ 5
: 6
|
Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 30 ms in der mittleren Zeile durch 6 dividieren:
|
: 5
⋅ 6
|
![]() ![]() |
|
![]() ![]() |
⋅ 5
: 6
|
Damit haben wir nun den gesuchten Wert, der den 12 CPU-Kerne entspricht: 5 ms
Tabelle (antiproportional)
Beispiel:
Die Tabelle zeigt Werte von zwei Größen mit einem antiproportionalen Zusammenhang. Übertrage die Tabelle in dein Heft und berechne mit dem Dreisatz die fehlende Größen.
| 6 CPU-Kerne | 4 ms |
| ? | ? |
| 8 CPU-Kerne | ? |
Wir suchen einen möglichst großen Zwischenwert für die CPU-Kerne in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 6 CPU-Kerne teilen müssen.) Diese Zahl sollte eine Teiler von 6 und von 8 sein, also der ggT(6,8) = 2.
Wir suchen deswegen erst den entsprechenden Wert für 2 CPU-Kerne:
|
Um von 6 CPU-Kerne in der ersten Zeile auf 2 CPU-Kerne in der zweiten Zeile zu kommen, müssen wir durch 3 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 4 ms nicht durch 3 teilen, sondern mit 3 multiplizieren um auf den Wert zu kommen, der den 2 CPU-Kerne links entspricht:
|
: 3
|
![]() |
|
![]() |
⋅ 3
|
|
: 3
|
![]() |
|
![]() |
⋅ 3
|
Jetzt müssen wir ja wieder die 2 CPU-Kerne in der mittleren Zeile mit 4 multiplizieren, um auf die 8 CPU-Kerne in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 3
⋅ 4
|
![]() ![]() |
|
![]() ![]() |
⋅ 3
: 4
|
Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 12 ms in der mittleren Zeile durch 4 dividieren:
|
: 3
⋅ 4
|
![]() ![]() |
|
![]() ![]() |
⋅ 3
: 4
|
Damit haben wir nun den gesuchten Wert, der den 8 CPU-Kerne entspricht: 3 ms
Antiproportionalität überprüfen
Beispiel:
Prüfe, ob es sich um einen antiproportionalen Zusammenhang handelt; falls nicht, korrigiere die Werte so, dass der Zusammenhang antiproportional wird.
Wir überprüfen zuerst, ob die 3 Tage den 12 Minuten pro Tag entsprechen.
|
: 3
⋅ 4
|
![]() ![]() |
|
![]() ![]() |
⋅ 3
: 4
|
Der urpsrünglich vorgegebene Wert 3 Tage(für 12 Minuten pro Tag) war also korrekt.
Jetzt überprüfen wir, ob die 6 Tage den 6 Minuten pro Tag entsprechen.
|
: 3
⋅ 2
|
![]() ![]() |
|
![]() ![]() |
⋅ 3
: 2
|
Der urpsrünglich vorgegebene Wert 6 Tage (für 6 Minuten pro Tag) war also korrekt.
Dreisatz (antiprop.) beide Richtungen
Beispiel:
Um den noch fehlenden Betrag für eine Klassenfahrt zu bekommen, veranstaltet eine Schulkasse ein Lotterie. Wenn sie 4€ für ein Los verlangen, müssten sie 60 Lose verkaufen um genügend Geld zusammen zu bekommen.
Wie viele Lose müssten sie bei einem Lospreis von 3 € verkaufen?
Wie hoch muss man den Preis ansetzen, wenn man erwartet, das sich 24 Lose verkaufen?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Wir suchen einen möglichst großen Zwischenwert für die € Lospreis in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 4 € Lospreis teilen müssen.) Diese Zahl sollte eine Teiler von 4 und von 3 sein, also der ggT(4,3) = 1.
Wir suchen deswegen erst den entsprechenden Wert für 1 € Lospreis:
|
Um von 4 € Lospreis in der ersten Zeile auf 1 € Lospreis in der zweiten Zeile zu kommen, müssen wir durch 4 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 60 Lose nicht durch 4 teilen, sondern mit 4 multiplizieren um auf den Wert zu kommen, der den 1 € Lospreis links entspricht:
|
: 4
|
![]() |
|
![]() |
⋅ 4
|
Jetzt müssen wir ja wieder die 1 € Lospreis in der mittleren Zeile mit 3 multiplizieren, um auf die 3 € Lospreis in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 4
⋅ 3
|
![]() ![]() |
|
![]() ![]() |
⋅ 4
: 3
|
Damit haben wir nun den gesuchten Wert, der den 3 € Lospreis entspricht: 80 Lose
Für die andere Frage (Wie hoch muss man den Preis ansetzen, wenn man erwartet, das sich 24 Lose verkaufen?) vertauschen wir die linke mit der rechten Spalte in der Tabelle, weil wir jetzt ja zwei "Lose"-Werte haben und nach einem "€ Lospreis"-Wert gesucht wird:
|
Wir suchen einen möglichst großen Zwischenwert für die Lose in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 60 Lose teilen müssen.) Diese Zahl sollte eine Teiler von 60 und von 24 sein, also der ggT(60,24) = 12.
Wir suchen deswegen erst den entsprechenden Wert für 12 Lose:
|
Um von 60 Lose in der ersten Zeile auf 12 Lose in der zweiten Zeile zu kommen, müssen wir durch 5 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 4 € Lospreis nicht durch 5 teilen, sondern mit 5 multiplizieren um auf den Wert zu kommen, der den 12 Lose links entspricht:
|
: 5
|
![]() |
|
![]() |
⋅ 5
|
Jetzt müssen wir ja wieder die 12 Lose in der mittleren Zeile mit 2 multiplizieren, um auf die 24 Lose in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 5
⋅ 2
|
![]() ![]() |
|
![]() ![]() |
⋅ 5
: 2
|
Damit haben wir nun den gesuchten Wert, der den 24 Lose entspricht: 10 € Lospreis
Wert bei Anti-Proport. (Anwendungen)
Beispiel:
Eine Drohne muss eine bestimmte Strecke zurücklegen. Wenn sie dabei mit einer Geschwindigkeit von 30 km/h fliegt, braucht sie dafür 12 Minuten.Wie lange braucht sie bei einer Geschwindigkeit von 39 km/h?
Da die Zuordnung der beiden Größen antiproportional ist, schreiben wir die Werte am besten mal in eine Tabelle:
| Geschwindigkeit | Flugzeit |
|---|---|
| 30 km/h | 12 min |
| ( : 30 ) | ( ⋅ 30 ) |
| 1 km/h | min |
| ( ⋅ 39 ) | ( : 39 ) |
| 39 km/h | min |
Die gesuchte Flugzeit ist also = = 9 ≈ 9.231 min


