Klasse 5
Klasse 6
Klasse 7
Klasse 8
Klasse 9
Klasse 10
Fit für die Oberstufe
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Zweisatz (antiproportional)
Beispiel:
Zur Berechnung einer komplizierten Verschlüsselung muss ein Computer mit einem CPU-Kern 60 ms rechnen.
Wie lange bräuchte ein Computer mit 12 solchen CPU-Kernen?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Um von 1 CPU-Kerne in der ersten Zeile auf 12 CPU-Kerne in der zweiten Zeile zu kommen, müssen wir mit 12 multiplizieren. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 60 ms durch 12 teilen, um auf den Wert zu kommen, der den 12 CPU-Kerne entspricht:
|
⋅ 12
|
![]() |
|
![]() |
: 12
|
|
⋅ 12
|
![]() |
|
![]() |
: 12
|
Damit haben wir nun den gesuchten Wert, der den 12 CPU-Kerne entspricht: 5 ms
Dreisatz (antiproportional)
Beispiel:
Bei einer großen Baustelle muss das Erdreich der Baugrube abtransportiert werden. 4 Lastwagen müssten dafür 15 mal fahren.
Wie oft müssten 3 LKWs fahren?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Wir suchen einen möglichst großen Zwischenwert für die Lastwagen in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 4 Lastwagen teilen müssen.) Diese Zahl sollte eine Teiler von 4 und von 3 sein, also der ggT(4,3) = 1.
Wir suchen deswegen erst den entsprechenden Wert für 1 Lastwagen:
|
Um von 4 Lastwagen in der ersten Zeile auf 1 Lastwagen in der zweiten Zeile zu kommen, müssen wir durch 4 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 15 Fuhren nicht durch 4 teilen, sondern mit 4 multiplizieren um auf den Wert zu kommen, der den 1 Lastwagen links entspricht:
|
: 4
|
![]() |
|
![]() |
⋅ 4
|
|
: 4
|
![]() |
|
![]() |
⋅ 4
|
Jetzt müssen wir ja wieder die 1 Lastwagen in der mittleren Zeile mit 3 multiplizieren, um auf die 3 Lastwagen in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 4
⋅ 3
|
![]() ![]() |
|
![]() ![]() |
⋅ 4
: 3
|
Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 60 Fuhren in der mittleren Zeile durch 3 dividieren:
|
: 4
⋅ 3
|
![]() ![]() |
|
![]() ![]() |
⋅ 4
: 3
|
Damit haben wir nun den gesuchten Wert, der den 3 Lastwagen entspricht: 20 Fuhren
Tabelle (antiproportional)
Beispiel:
Die Tabelle zeigt Werte von zwei Größen mit einem antiproportionalen Zusammenhang. Übertrage die Tabelle in dein Heft und berechne mit dem Dreisatz die fehlende Größen.
| 8 Helfer:innen | 50 € Lohn |
| ? | ? |
| 10 Helfer:innen | ? |
Wir suchen einen möglichst großen Zwischenwert für die Helfer:innen in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 8 Helfer:innen teilen müssen.) Diese Zahl sollte eine Teiler von 8 und von 10 sein, also der ggT(8,10) = 2.
Wir suchen deswegen erst den entsprechenden Wert für 2 Helfer:innen:
|
Um von 8 Helfer:innen in der ersten Zeile auf 2 Helfer:innen in der zweiten Zeile zu kommen, müssen wir durch 4 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 50 € Lohn nicht durch 4 teilen, sondern mit 4 multiplizieren um auf den Wert zu kommen, der den 2 Helfer:innen links entspricht:
|
: 4
|
![]() |
|
![]() |
⋅ 4
|
|
: 4
|
![]() |
|
![]() |
⋅ 4
|
Jetzt müssen wir ja wieder die 2 Helfer:innen in der mittleren Zeile mit 5 multiplizieren, um auf die 10 Helfer:innen in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 4
⋅ 5
|
![]() ![]() |
|
![]() ![]() |
⋅ 4
: 5
|
Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 200 € Lohn in der mittleren Zeile durch 5 dividieren:
|
: 4
⋅ 5
|
![]() ![]() |
|
![]() ![]() |
⋅ 4
: 5
|
Damit haben wir nun den gesuchten Wert, der den 10 Helfer:innen entspricht: 40 € Lohn
Antiproportionalität überprüfen
Beispiel:
Prüfe, ob es sich um einen antiproportionalen Zusammenhang handelt; falls nicht, korrigiere die Werte so, dass der Zusammenhang antiproportional wird.
Wir überprüfen zuerst, ob die 12 Spezi-Flaschen den 5 Gäste entsprechen.
|
: 6
⋅ 5
|
![]() ![]() |
|
![]() ![]() |
⋅ 6
: 5
|
Der urpsrünglich vorgegebene Wert 12 Spezi-Flaschen(für 5 Gäste) war also korrekt.
Jetzt überprüfen wir, ob die 23 Spezi-Flaschen den 3 Gäste entsprechen.
|
: 2
⋅ 1
|
![]() ![]() |
|
![]() ![]() |
⋅ 2
: 1
|
Der urpsrünglich vorgegebene Wert 23 Spezi-Flaschen (für 3 Gäste) war also falsch, richtig wäre 20 Spezi-Flaschen gewesen.
Dreisatz (antiprop.) beide Richtungen
Beispiel:
Karls hat für seine Geburtstagsparty Spezi bekommen. Dabei reicht es für jeden genau 9 Flaschen, wenn insgesamt 4 Personen auf seiner Party sind.
Wie viele Flaschen würde jeder bekommen, wenn insgesamt 3 Personen auf der Party wären?
Wie viele Personen können auf die Party, damit es für jeden zu 4 Flaschen reicht?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Wir suchen einen möglichst großen Zwischenwert für die Gäste in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 4 Gäste teilen müssen.) Diese Zahl sollte eine Teiler von 4 und von 3 sein, also der ggT(4,3) = 1.
Wir suchen deswegen erst den entsprechenden Wert für 1 Gäste:
|
Um von 4 Gäste in der ersten Zeile auf 1 Gäste in der zweiten Zeile zu kommen, müssen wir durch 4 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 9 Spezi-Flaschen nicht durch 4 teilen, sondern mit 4 multiplizieren um auf den Wert zu kommen, der den 1 Gäste links entspricht:
|
: 4
|
![]() |
|
![]() |
⋅ 4
|
Jetzt müssen wir ja wieder die 1 Gäste in der mittleren Zeile mit 3 multiplizieren, um auf die 3 Gäste in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 4
⋅ 3
|
![]() ![]() |
|
![]() ![]() |
⋅ 4
: 3
|
Damit haben wir nun den gesuchten Wert, der den 3 Gäste entspricht: 12 Spezi-Flaschen
Für die andere Frage (Wie viele Personen können auf die Party, damit es für jeden zu 4 Flaschen reicht?) vertauschen wir die linke mit der rechten Spalte in der Tabelle, weil wir jetzt ja zwei "Spezi-Flaschen"-Werte haben und nach einem "Gäste"-Wert gesucht wird:
|
Wir suchen einen möglichst großen Zwischenwert für die Spezi-Flaschen in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 9 Spezi-Flaschen teilen müssen.) Diese Zahl sollte eine Teiler von 9 und von 4 sein, also der ggT(9,4) = 1.
Wir suchen deswegen erst den entsprechenden Wert für 1 Spezi-Flaschen:
|
Um von 9 Spezi-Flaschen in der ersten Zeile auf 1 Spezi-Flaschen in der zweiten Zeile zu kommen, müssen wir durch 9 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 4 Gäste nicht durch 9 teilen, sondern mit 9 multiplizieren um auf den Wert zu kommen, der den 1 Spezi-Flaschen links entspricht:
|
: 9
|
![]() |
|
![]() |
⋅ 9
|
Jetzt müssen wir ja wieder die 1 Spezi-Flaschen in der mittleren Zeile mit 4 multiplizieren, um auf die 4 Spezi-Flaschen in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 9
⋅ 4
|
![]() ![]() |
|
![]() ![]() |
⋅ 9
: 4
|
Damit haben wir nun den gesuchten Wert, der den 4 Spezi-Flaschen entspricht: 9 Gäste
Wert bei Anti-Proport. (Anwendungen)
Beispiel:
Ein Raum wird mit 55 LED-Leuchten á 120 Lumen ausgeleuchtet. Aus ästhetischen Gründen sollen nur noch 20 Leuchten im Raum installiert sein, diese sollen aber die gleiche Helligkeit erzeugen. Wie viel Lumen brauchen dann diese neuen LED-Leuchten?
Da die Zuordnung der beiden Größen antiproportional ist, schreiben wir die Werte am besten mal in eine Tabelle:
| Anzahl LED-Leuchten | Helligkeit |
|---|---|
| 55 | 120 Lumen |
| ( : 55 ) | ( ⋅ 55 ) |
| 1 | Lumen |
| ( ⋅ 20 ) | ( : 20 ) |
| 20 | Lumen |
Die gesuchte Helligkeit ist also = Lumen


