Klasse 5
Klasse 6
Klasse 7
Klasse 8
Klasse 9
Klasse 10
Fit für die Oberstufe
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Zweisatz (antiproportional)
Beispiel:
Wenn Karla mit ihrem Handy jeden Tag immer 1 Minute telefonieren würde, würden ihre Freiminuten noch genau 50 Tage halten.
Wann wären ihre Freiminuten aufgebraucht, wenn sie täglich 10 min telefonieren würde?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Um von 1 Minuten pro Tag in der ersten Zeile auf 10 Minuten pro Tag in der zweiten Zeile zu kommen, müssen wir mit 10 multiplizieren. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 50 Tage durch 10 teilen, um auf den Wert zu kommen, der den 10 Minuten pro Tag entspricht:
|
⋅ 10
|
![]() |
|
![]() |
: 10
|
|
⋅ 10
|
![]() |
|
![]() |
: 10
|
Damit haben wir nun den gesuchten Wert, der den 10 Minuten pro Tag entspricht: 5 Tage
Dreisatz (antiproportional)
Beispiel:
Wenn Frau Baumann so Auto fährt, dass sie 8 Liter pro 100km verbraucht, kommt sie mit einer Tankfüllung 700 km weit.
Wie weit würde sie mit einer Tankfüllung kommen, wenn sie mit einem "14 Liter/100km "-Schnitt fahren würde?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Wir suchen einen möglichst großen Zwischenwert für die Liter pro 100km in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 8 Liter pro 100km teilen müssen.) Diese Zahl sollte eine Teiler von 8 und von 14 sein, also der ggT(8,14) = 2.
Wir suchen deswegen erst den entsprechenden Wert für 2 Liter pro 100km:
|
Um von 8 Liter pro 100km in der ersten Zeile auf 2 Liter pro 100km in der zweiten Zeile zu kommen, müssen wir durch 4 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 700 km nicht durch 4 teilen, sondern mit 4 multiplizieren um auf den Wert zu kommen, der den 2 Liter pro 100km links entspricht:
|
: 4
|
![]() |
|
![]() |
⋅ 4
|
|
: 4
|
![]() |
|
![]() |
⋅ 4
|
Jetzt müssen wir ja wieder die 2 Liter pro 100km in der mittleren Zeile mit 7 multiplizieren, um auf die 14 Liter pro 100km in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 4
⋅ 7
|
![]() ![]() |
|
![]() ![]() |
⋅ 4
: 7
|
Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 2800 km in der mittleren Zeile durch 7 dividieren:
|
: 4
⋅ 7
|
![]() ![]() |
|
![]() ![]() |
⋅ 4
: 7
|
Damit haben wir nun den gesuchten Wert, der den 14 Liter pro 100km entspricht: 400 km
Tabelle (antiproportional)
Beispiel:
Die Tabelle zeigt Werte von zwei Größen mit einem antiproportionalen Zusammenhang. Übertrage die Tabelle in dein Heft und berechne mit dem Dreisatz die fehlende Größen.
| 5 € Lospreis | 120 Lose |
| ? | ? |
| 4 € Lospreis | ? |
Wir suchen einen möglichst großen Zwischenwert für die € Lospreis in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 5 € Lospreis teilen müssen.) Diese Zahl sollte eine Teiler von 5 und von 4 sein, also der ggT(5,4) = 1.
Wir suchen deswegen erst den entsprechenden Wert für 1 € Lospreis:
|
Um von 5 € Lospreis in der ersten Zeile auf 1 € Lospreis in der zweiten Zeile zu kommen, müssen wir durch 5 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 120 Lose nicht durch 5 teilen, sondern mit 5 multiplizieren um auf den Wert zu kommen, der den 1 € Lospreis links entspricht:
|
: 5
|
![]() |
|
![]() |
⋅ 5
|
|
: 5
|
![]() |
|
![]() |
⋅ 5
|
Jetzt müssen wir ja wieder die 1 € Lospreis in der mittleren Zeile mit 4 multiplizieren, um auf die 4 € Lospreis in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 5
⋅ 4
|
![]() ![]() |
|
![]() ![]() |
⋅ 5
: 4
|
Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 600 Lose in der mittleren Zeile durch 4 dividieren:
|
: 5
⋅ 4
|
![]() ![]() |
|
![]() ![]() |
⋅ 5
: 4
|
Damit haben wir nun den gesuchten Wert, der den 4 € Lospreis entspricht: 150 Lose
Antiproportionalität überprüfen
Beispiel:
Prüfe, ob es sich um einen antiproportionalen Zusammenhang handelt; falls nicht, korrigiere die Werte so, dass der Zusammenhang antiproportional wird.
Wir überprüfen zuerst, ob die 26 ms den 2 CPU-Kerne entsprechen.
|
: 5
⋅ 2
|
![]() ![]() |
|
![]() ![]() |
⋅ 5
: 2
|
Der urpsrünglich vorgegebene Wert 26 ms (für 2 CPU-Kerne) war also falsch, richtig wäre 25 ms gewesen.
Jetzt überprüfen wir, ob die 5 ms den 10 CPU-Kerne entsprechen.
|
: 1
⋅ 2
|
![]() ![]() |
|
![]() ![]() |
⋅ 1
: 2
|
Der urpsrünglich vorgegebene Wert 5 ms (für 10 CPU-Kerne) war also korrekt.
Dreisatz (antiprop.) beide Richtungen
Beispiel:
Wenn Karla mit ihrem Handy jeden Tag immer 10 Minuten telefonieren würde, würden ihre Freiminuten noch genau 5 Tage halten.
Wann wären ihre Freiminuten aufgebraucht, wenn sie täglich 25 min telefonieren würde?
Wie lange kann sie täglich telefonieren, wenn die Freiminuten 10 Tage reichen sollen?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Wir suchen einen möglichst großen Zwischenwert für die Minuten pro Tag in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 10 Minuten pro Tag teilen müssen.) Diese Zahl sollte eine Teiler von 10 und von 25 sein, also der ggT(10,25) = 5.
Wir suchen deswegen erst den entsprechenden Wert für 5 Minuten pro Tag:
|
Um von 10 Minuten pro Tag in der ersten Zeile auf 5 Minuten pro Tag in der zweiten Zeile zu kommen, müssen wir durch 2 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 5 Tage nicht durch 2 teilen, sondern mit 2 multiplizieren um auf den Wert zu kommen, der den 5 Minuten pro Tag links entspricht:
|
: 2
|
![]() |
|
![]() |
⋅ 2
|
Jetzt müssen wir ja wieder die 5 Minuten pro Tag in der mittleren Zeile mit 5 multiplizieren, um auf die 25 Minuten pro Tag in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 2
⋅ 5
|
![]() ![]() |
|
![]() ![]() |
⋅ 2
: 5
|
Damit haben wir nun den gesuchten Wert, der den 25 Minuten pro Tag entspricht: 2 Tage
Um von 5 Tage in der ersten Zeile auf 10 Tage in der zweiten Zeile zu kommen, müssen wir mit 2 multiplizieren. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 10 Minuten pro Tag durch 2 teilen, um auf den Wert zu kommen, der den 10 Tage entspricht:
|
⋅ 2
|
![]() |
|
![]() |
: 2
|
|
⋅ 2
|
![]() |
|
![]() |
: 2
|
Damit haben wir nun den gesuchten Wert, der den 10 Tage entspricht: 5 Minuten pro Tag
Wert bei Anti-Proport. (Anwendungen)
Beispiel:
Eine Drohne muss eine bestimmte Strecke zurücklegen. Wenn sie dabei mit einer Geschwindigkeit von 30 km/h fliegt, braucht sie dafür 12 Minuten.Wie lange braucht sie bei einer Geschwindigkeit von 26 km/h?
Da die Zuordnung der beiden Größen antiproportional ist, schreiben wir die Werte am besten mal in eine Tabelle:
| Geschwindigkeit | Flugzeit |
|---|---|
| 30 km/h | 12 min |
| ( : 30 ) | ( ⋅ 30 ) |
| 1 km/h | min |
| ( ⋅ 26 ) | ( : 26 ) |
| 26 km/h | min |
Die gesuchte Flugzeit ist also = = 13 ≈ 13.846 min


