Klasse 5
Klasse 6
Klasse 7
Klasse 8
Klasse 9
Klasse 10
Fit für die Oberstufe
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Zweisatz (antiproportional)
Beispiel:
Bei einer großen Baustelle muss das Erdreich der Baugrube abtransportiert werden. 1 Lastwagen müsste dafür 36 mal fahren.
Wie oft müssten 4 LKWs fahren?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Um von 1 Lastwagen in der ersten Zeile auf 4 Lastwagen in der zweiten Zeile zu kommen, müssen wir mit 4 multiplizieren. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 36 Fuhren durch 4 teilen, um auf den Wert zu kommen, der den 4 Lastwagen entspricht:
|
⋅ 4
|
![]() |
|
![]() |
: 4
|
|
⋅ 4
|
![]() |
|
![]() |
: 4
|
Damit haben wir nun den gesuchten Wert, der den 4 Lastwagen entspricht: 9 Fuhren
Dreisatz (antiproportional)
Beispiel:
Wenn Frau Baumann so Auto fährt, dass sie 3 Liter pro 100km verbraucht, kommt sie mit einer Tankfüllung 1000 km weit.
Wie weit würde sie mit einer Tankfüllung kommen, wenn sie mit einem "2 Liter/100km "-Schnitt fahren würde?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Wir suchen einen möglichst großen Zwischenwert für die Liter pro 100km in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 3 Liter pro 100km teilen müssen.) Diese Zahl sollte eine Teiler von 3 und von 2 sein, also der ggT(3,2) = 1.
Wir suchen deswegen erst den entsprechenden Wert für 1 Liter pro 100km:
|
Um von 3 Liter pro 100km in der ersten Zeile auf 1 Liter pro 100km in der zweiten Zeile zu kommen, müssen wir durch 3 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 1000 km nicht durch 3 teilen, sondern mit 3 multiplizieren um auf den Wert zu kommen, der den 1 Liter pro 100km links entspricht:
|
: 3
|
![]() |
|
![]() |
⋅ 3
|
|
: 3
|
![]() |
|
![]() |
⋅ 3
|
Jetzt müssen wir ja wieder die 1 Liter pro 100km in der mittleren Zeile mit 2 multiplizieren, um auf die 2 Liter pro 100km in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 3
⋅ 2
|
![]() ![]() |
|
![]() ![]() |
⋅ 3
: 2
|
Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 3000 km in der mittleren Zeile durch 2 dividieren:
|
: 3
⋅ 2
|
![]() ![]() |
|
![]() ![]() |
⋅ 3
: 2
|
Damit haben wir nun den gesuchten Wert, der den 2 Liter pro 100km entspricht: 1500 km
Tabelle (antiproportional)
Beispiel:
Die Tabelle zeigt Werte von zwei Größen mit einem antiproportionalen Zusammenhang. Übertrage die Tabelle in dein Heft und berechne mit dem Dreisatz die fehlende Größen.
| 10 Lastwagen | 5 Fuhren |
| ? | ? |
| 25 Lastwagen | ? |
Wir suchen einen möglichst großen Zwischenwert für die Lastwagen in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 10 Lastwagen teilen müssen.) Diese Zahl sollte eine Teiler von 10 und von 25 sein, also der ggT(10,25) = 5.
Wir suchen deswegen erst den entsprechenden Wert für 5 Lastwagen:
|
Um von 10 Lastwagen in der ersten Zeile auf 5 Lastwagen in der zweiten Zeile zu kommen, müssen wir durch 2 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 5 Fuhren nicht durch 2 teilen, sondern mit 2 multiplizieren um auf den Wert zu kommen, der den 5 Lastwagen links entspricht:
|
: 2
|
![]() |
|
![]() |
⋅ 2
|
|
: 2
|
![]() |
|
![]() |
⋅ 2
|
Jetzt müssen wir ja wieder die 5 Lastwagen in der mittleren Zeile mit 5 multiplizieren, um auf die 25 Lastwagen in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 2
⋅ 5
|
![]() ![]() |
|
![]() ![]() |
⋅ 2
: 5
|
Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 10 Fuhren in der mittleren Zeile durch 5 dividieren:
|
: 2
⋅ 5
|
![]() ![]() |
|
![]() ![]() |
⋅ 2
: 5
|
Damit haben wir nun den gesuchten Wert, der den 25 Lastwagen entspricht: 2 Fuhren
Antiproportionalität überprüfen
Beispiel:
Prüfe, ob es sich um einen antiproportionalen Zusammenhang handelt; falls nicht, korrigiere die Werte so, dass der Zusammenhang antiproportional wird.
Wir überprüfen zuerst, ob die 12 Tage den 4 Minuten pro Tag entsprechen.
|
: 5
⋅ 4
|
![]() ![]() |
|
![]() ![]() |
⋅ 5
: 4
|
Der urpsrünglich vorgegebene Wert 12 Tage (für 4 Minuten pro Tag) war also falsch, richtig wäre 10 Tage gewesen.
Jetzt überprüfen wir, ob die 4 Tage den 8 Minuten pro Tag entsprechen.
|
: 5
⋅ 8
|
![]() ![]() |
|
![]() ![]() |
⋅ 5
: 8
|
Der urpsrünglich vorgegebene Wert 4 Tage (für 8 Minuten pro Tag) war also falsch, richtig wäre 5 Tage gewesen.
Dreisatz (antiprop.) beide Richtungen
Beispiel:
Um den noch fehlenden Betrag für eine Klassenfahrt zu bekommen, veranstaltet eine Schulkasse ein Lotterie. Wenn sie 3€ für ein Los verlangen, müssten sie 200 Lose verkaufen um genügend Geld zusammen zu bekommen.
Wie viele Lose müssten sie bei einem Lospreis von 2 € verkaufen?
Wie hoch muss man den Preis ansetzen, wenn man erwartet, das sich 6 Lose verkaufen?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Wir suchen einen möglichst großen Zwischenwert für die € Lospreis in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 3 € Lospreis teilen müssen.) Diese Zahl sollte eine Teiler von 3 und von 2 sein, also der ggT(3,2) = 1.
Wir suchen deswegen erst den entsprechenden Wert für 1 € Lospreis:
|
Um von 3 € Lospreis in der ersten Zeile auf 1 € Lospreis in der zweiten Zeile zu kommen, müssen wir durch 3 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 200 Lose nicht durch 3 teilen, sondern mit 3 multiplizieren um auf den Wert zu kommen, der den 1 € Lospreis links entspricht:
|
: 3
|
![]() |
|
![]() |
⋅ 3
|
Jetzt müssen wir ja wieder die 1 € Lospreis in der mittleren Zeile mit 2 multiplizieren, um auf die 2 € Lospreis in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 3
⋅ 2
|
![]() ![]() |
|
![]() ![]() |
⋅ 3
: 2
|
Damit haben wir nun den gesuchten Wert, der den 2 € Lospreis entspricht: 300 Lose
Für die andere Frage (Wie hoch muss man den Preis ansetzen, wenn man erwartet, das sich 6 Lose verkaufen?) vertauschen wir die linke mit der rechten Spalte in der Tabelle, weil wir jetzt ja zwei "Lose"-Werte haben und nach einem "€ Lospreis"-Wert gesucht wird:
|
Wir suchen einen möglichst großen Zwischenwert für die Lose in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 200 Lose teilen müssen.) Diese Zahl sollte eine Teiler von 200 und von 6 sein, also der ggT(200,6) = 2.
Wir suchen deswegen erst den entsprechenden Wert für 2 Lose:
|
Um von 200 Lose in der ersten Zeile auf 2 Lose in der zweiten Zeile zu kommen, müssen wir durch 100 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 3 € Lospreis nicht durch 100 teilen, sondern mit 100 multiplizieren um auf den Wert zu kommen, der den 2 Lose links entspricht:
|
: 100
|
![]() |
|
![]() |
⋅ 100
|
Jetzt müssen wir ja wieder die 2 Lose in der mittleren Zeile mit 3 multiplizieren, um auf die 6 Lose in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 100
⋅ 3
|
![]() ![]() |
|
![]() ![]() |
⋅ 100
: 3
|
Damit haben wir nun den gesuchten Wert, der den 6 Lose entspricht: 100 € Lospreis
Wert bei Anti-Proport. (Anwendungen)
Beispiel:
Auf einer Großbaustelle müssen unglaubliche Mengen an Aushub abtransportiert werden. Dabei brauchen 2 LKWs genau 20 Fahrten. Wieviele Fahrten bräuchten 7 LKWs durchschnittlich?(Bitte auf eine Stelle hinterm Komma runden, auch wenn es inhaltlich keinen Sinn macht.)
Da die Zuordnung der beiden Größen antiproportional ist, schreiben wir die Werte am besten mal in eine Tabelle:
| LKW-Anzahl | Fahrten-Anzahl |
|---|---|
| 2 LKWs | 20 Fahrten |
| ( : 2 ) | ( ⋅ 2 ) |
| 1 LKWs | Fahrten |
| ( ⋅ 7 ) | ( : 7 ) |
| 7 LKWs | Fahrten |
Die gesuchte Fahrten-Anzahl ist also = 5 ≈ 5.714 Fahrten


