Klasse 5
Klasse 6
Klasse 7
Klasse 8
Klasse 9
Klasse 10
Fit für die Oberstufe
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Zweisatz (antiproportional)
Beispiel:
Zur Berechnung einer komplizierten Verschlüsselung muss ein Computer mit einem CPU-Kern 60 ms rechnen.
Wie lange bräuchte ein Computer mit 6 solchen CPU-Kernen?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Um von 1 CPU-Kerne in der ersten Zeile auf 6 CPU-Kerne in der zweiten Zeile zu kommen, müssen wir mit 6 multiplizieren. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 60 ms durch 6 teilen, um auf den Wert zu kommen, der den 6 CPU-Kerne entspricht:
|
⋅ 6
|
![]() |
|
![]() |
: 6
|
|
⋅ 6
|
![]() |
|
![]() |
: 6
|
Damit haben wir nun den gesuchten Wert, der den 6 CPU-Kerne entspricht: 10 ms
Dreisatz (antiproportional)
Beispiel:
Zur Berechnung einer komplizierten Verschlüsselung muss ein Computer mit 6 CPU-Kernen 5 ms rechnen.
Wie lange bräuchte ein Computer mit 10 solchen CPU-Kernen?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Wir suchen einen möglichst großen Zwischenwert für die CPU-Kerne in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 6 CPU-Kerne teilen müssen.) Diese Zahl sollte eine Teiler von 6 und von 10 sein, also der ggT(6,10) = 2.
Wir suchen deswegen erst den entsprechenden Wert für 2 CPU-Kerne:
|
Um von 6 CPU-Kerne in der ersten Zeile auf 2 CPU-Kerne in der zweiten Zeile zu kommen, müssen wir durch 3 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 5 ms nicht durch 3 teilen, sondern mit 3 multiplizieren um auf den Wert zu kommen, der den 2 CPU-Kerne links entspricht:
|
: 3
|
![]() |
|
![]() |
⋅ 3
|
|
: 3
|
![]() |
|
![]() |
⋅ 3
|
Jetzt müssen wir ja wieder die 2 CPU-Kerne in der mittleren Zeile mit 5 multiplizieren, um auf die 10 CPU-Kerne in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 3
⋅ 5
|
![]() ![]() |
|
![]() ![]() |
⋅ 3
: 5
|
Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 15 ms in der mittleren Zeile durch 5 dividieren:
|
: 3
⋅ 5
|
![]() ![]() |
|
![]() ![]() |
⋅ 3
: 5
|
Damit haben wir nun den gesuchten Wert, der den 10 CPU-Kerne entspricht: 3 ms
Tabelle (antiproportional)
Beispiel:
Die Tabelle zeigt Werte von zwei Größen mit einem antiproportionalen Zusammenhang. Übertrage die Tabelle in dein Heft und berechne mit dem Dreisatz die fehlende Größen.
| 6 CPU-Kerne | 10 ms |
| ? | ? |
| 5 CPU-Kerne | ? |
Wir suchen einen möglichst großen Zwischenwert für die CPU-Kerne in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 6 CPU-Kerne teilen müssen.) Diese Zahl sollte eine Teiler von 6 und von 5 sein, also der ggT(6,5) = 1.
Wir suchen deswegen erst den entsprechenden Wert für 1 CPU-Kerne:
|
Um von 6 CPU-Kerne in der ersten Zeile auf 1 CPU-Kerne in der zweiten Zeile zu kommen, müssen wir durch 6 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 10 ms nicht durch 6 teilen, sondern mit 6 multiplizieren um auf den Wert zu kommen, der den 1 CPU-Kerne links entspricht:
|
: 6
|
![]() |
|
![]() |
⋅ 6
|
|
: 6
|
![]() |
|
![]() |
⋅ 6
|
Jetzt müssen wir ja wieder die 1 CPU-Kerne in der mittleren Zeile mit 5 multiplizieren, um auf die 5 CPU-Kerne in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 6
⋅ 5
|
![]() ![]() |
|
![]() ![]() |
⋅ 6
: 5
|
Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 60 ms in der mittleren Zeile durch 5 dividieren:
|
: 6
⋅ 5
|
![]() ![]() |
|
![]() ![]() |
⋅ 6
: 5
|
Damit haben wir nun den gesuchten Wert, der den 5 CPU-Kerne entspricht: 12 ms
Antiproportionalität überprüfen
Beispiel:
Prüfe, ob es sich um einen antiproportionalen Zusammenhang handelt; falls nicht, korrigiere die Werte so, dass der Zusammenhang antiproportional wird.
Wir überprüfen zuerst, ob die 179 Lose den 2 € Lospreis entsprechen.
|
: 3
⋅ 2
|
![]() ![]() |
|
![]() ![]() |
⋅ 3
: 2
|
Der urpsrünglich vorgegebene Wert 179 Lose (für 2 € Lospreis) war also falsch, richtig wäre 180 Lose gewesen.
Jetzt überprüfen wir, ob die 7 Lose den 40 € Lospreis entsprechen.
|
: 3
⋅ 40
|
![]() ![]() |
|
![]() ![]() |
⋅ 3
: 40
|
Der urpsrünglich vorgegebene Wert 7 Lose (für 40 € Lospreis) war also falsch, richtig wäre 9 Lose gewesen.
Dreisatz (antiprop.) beide Richtungen
Beispiel:
Wenn Karla mit ihrem Handy jeden Tag immer 4 Minuten telefonieren würde, würden ihre Freiminuten noch genau 6 Tage halten.
Wann wären ihre Freiminuten aufgebraucht, wenn sie täglich 3 min telefonieren würde?
Wie lange kann sie täglich telefonieren, wenn die Freiminuten 4 Tage reichen sollen?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Wir suchen einen möglichst großen Zwischenwert für die Minuten pro Tag in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 4 Minuten pro Tag teilen müssen.) Diese Zahl sollte eine Teiler von 4 und von 3 sein, also der ggT(4,3) = 1.
Wir suchen deswegen erst den entsprechenden Wert für 1 Minuten pro Tag:
|
Um von 4 Minuten pro Tag in der ersten Zeile auf 1 Minuten pro Tag in der zweiten Zeile zu kommen, müssen wir durch 4 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 6 Tage nicht durch 4 teilen, sondern mit 4 multiplizieren um auf den Wert zu kommen, der den 1 Minuten pro Tag links entspricht:
|
: 4
|
![]() |
|
![]() |
⋅ 4
|
Jetzt müssen wir ja wieder die 1 Minuten pro Tag in der mittleren Zeile mit 3 multiplizieren, um auf die 3 Minuten pro Tag in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 4
⋅ 3
|
![]() ![]() |
|
![]() ![]() |
⋅ 4
: 3
|
Damit haben wir nun den gesuchten Wert, der den 3 Minuten pro Tag entspricht: 8 Tage
Für die andere Frage (Wie lange kann sie täglich telefonieren, wenn die Freiminuten 4 Tage reichen sollen?) vertauschen wir die linke mit der rechten Spalte in der Tabelle, weil wir jetzt ja zwei "Tage"-Werte haben und nach einem "Minuten pro Tag"-Wert gesucht wird:
|
Wir suchen einen möglichst großen Zwischenwert für die Tage in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 6 Tage teilen müssen.) Diese Zahl sollte eine Teiler von 6 und von 4 sein, also der ggT(6,4) = 2.
Wir suchen deswegen erst den entsprechenden Wert für 2 Tage:
|
Um von 6 Tage in der ersten Zeile auf 2 Tage in der zweiten Zeile zu kommen, müssen wir durch 3 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 4 Minuten pro Tag nicht durch 3 teilen, sondern mit 3 multiplizieren um auf den Wert zu kommen, der den 2 Tage links entspricht:
|
: 3
|
![]() |
|
![]() |
⋅ 3
|
Jetzt müssen wir ja wieder die 2 Tage in der mittleren Zeile mit 2 multiplizieren, um auf die 4 Tage in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 3
⋅ 2
|
![]() ![]() |
|
![]() ![]() |
⋅ 3
: 2
|
Damit haben wir nun den gesuchten Wert, der den 4 Tage entspricht: 6 Minuten pro Tag
Wert bei Anti-Proport. (Anwendungen)
Beispiel:
Ein Raum wird mit 45 LED-Leuchten á 120 Lumen ausgeleuchtet. Aus ästhetischen Gründen sollen nur noch 15 Leuchten im Raum installiert sein, diese sollen aber die gleiche Helligkeit erzeugen. Wie viel Lumen brauchen dann diese neuen LED-Leuchten?
Da die Zuordnung der beiden Größen antiproportional ist, schreiben wir die Werte am besten mal in eine Tabelle:
| Anzahl LED-Leuchten | Helligkeit |
|---|---|
| 45 | 120 Lumen |
| ( : 45 ) | ( ⋅ 45 ) |
| 1 | Lumen |
| ( ⋅ 15 ) | ( : 15 ) |
| 15 | Lumen |
Die gesuchte Helligkeit ist also = Lumen


