nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Zweisatz (antiproportional)

Beispiel:

Wenn Frau Baumanns Auto nur ein Liter pro 100km verbrauchen würde, würde sie mit einer Tankfüllung 3000 km weit kommen.

Wie weit würde sie mit einer Tankfüllung kommen, wenn sie mit einem "10 Liter/100km "-Schnitt fahren würde?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:

1 Liter pro 100km3000 km
10 Liter pro 100km?

Um von 1 Liter pro 100km in der ersten Zeile auf 10 Liter pro 100km in der zweiten Zeile zu kommen, müssen wir mit 10 multiplizieren. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 3000 km durch 10 teilen, um auf den Wert zu kommen, der den 10 Liter pro 100km entspricht:

⋅ 10
1 Liter pro 100km3000 km
10 Liter pro 100km?
: 10
⋅ 10
1 Liter pro 100km3000 km
10 Liter pro 100km300 km
: 10

Damit haben wir nun den gesuchten Wert, der den 10 Liter pro 100km entspricht: 300 km

Dreisatz (antiproportional)

Beispiel:

Wenn Frau Baumann so Auto fährt, dass sie 5 Liter pro 100km verbraucht, kommt sie mit einer Tankfüllung 1000 km weit.

Wie weit würde sie mit einer Tankfüllung kommen, wenn sie mit einem "2 Liter/100km "-Schnitt fahren würde?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:


5 Liter pro 100km1000 km
??
2 Liter pro 100km?

Wir suchen einen möglichst großen Zwischenwert für die Liter pro 100km in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 5 Liter pro 100km teilen müssen.) Diese Zahl sollte eine Teiler von 5 und von 2 sein, also der ggT(5,2) = 1.

Wir suchen deswegen erst den entsprechenden Wert für 1 Liter pro 100km:


5 Liter pro 100km1000 km
1 Liter pro 100km?
2 Liter pro 100km?

Um von 5 Liter pro 100km in der ersten Zeile auf 1 Liter pro 100km in der zweiten Zeile zu kommen, müssen wir durch 5 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 1000 km nicht durch 5 teilen, sondern mit 5 multiplizieren um auf den Wert zu kommen, der den 1 Liter pro 100km links entspricht:

: 5

5 Liter pro 100km1000 km
1 Liter pro 100km?
2 Liter pro 100km?

⋅ 5
: 5

5 Liter pro 100km1000 km
1 Liter pro 100km5000 km
2 Liter pro 100km?

⋅ 5

Jetzt müssen wir ja wieder die 1 Liter pro 100km in der mittleren Zeile mit 2 multiplizieren, um auf die 2 Liter pro 100km in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 5
⋅ 2

5 Liter pro 100km1000 km
1 Liter pro 100km5000 km
2 Liter pro 100km?

⋅ 5
: 2

Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 5000 km in der mittleren Zeile durch 2 dividieren:

: 5
⋅ 2

5 Liter pro 100km1000 km
1 Liter pro 100km5000 km
2 Liter pro 100km2500 km

⋅ 5
: 2

Damit haben wir nun den gesuchten Wert, der den 2 Liter pro 100km entspricht: 2500 km

Tabelle (antiproportional)

Beispiel:

Die Tabelle zeigt Werte von zwei Größen mit einem antiproportionalen Zusammenhang. Übertrage die Tabelle in dein Heft und berechne mit dem Dreisatz die fehlende Größen.

10 € Lospreis50 Lose
??
25 € Lospreis?

Lösung einblenden

Wir suchen einen möglichst großen Zwischenwert für die € Lospreis in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 10 € Lospreis teilen müssen.) Diese Zahl sollte eine Teiler von 10 und von 25 sein, also der ggT(10,25) = 5.

Wir suchen deswegen erst den entsprechenden Wert für 5 € Lospreis:


10 € Lospreis50 Lose
5 € Lospreis?
25 € Lospreis?

Um von 10 € Lospreis in der ersten Zeile auf 5 € Lospreis in der zweiten Zeile zu kommen, müssen wir durch 2 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 50 Lose nicht durch 2 teilen, sondern mit 2 multiplizieren um auf den Wert zu kommen, der den 5 € Lospreis links entspricht:

: 2

10 € Lospreis50 Lose
5 € Lospreis?
25 € Lospreis?

⋅ 2
: 2

10 € Lospreis50 Lose
5 € Lospreis100 Lose
25 € Lospreis?

⋅ 2

Jetzt müssen wir ja wieder die 5 € Lospreis in der mittleren Zeile mit 5 multiplizieren, um auf die 25 € Lospreis in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 2
⋅ 5

10 € Lospreis50 Lose
5 € Lospreis100 Lose
25 € Lospreis?

⋅ 2
: 5

Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 100 Lose in der mittleren Zeile durch 5 dividieren:

: 2
⋅ 5

10 € Lospreis50 Lose
5 € Lospreis100 Lose
25 € Lospreis20 Lose

⋅ 2
: 5

Damit haben wir nun den gesuchten Wert, der den 25 € Lospreis entspricht: 20 Lose

Antiproportionalität überprüfen

Beispiel:

Prüfe, ob es sich um einen antiproportionalen Zusammenhang handelt; falls nicht, korrigiere die Werte so, dass der Zusammenhang antiproportional wird.

Lösung einblenden

Wir überprüfen zuerst, ob die 25 Tage den 2 Minuten pro Tag entsprechen.

: 5
⋅ 2

5 Minuten pro Tag10 Tage
1 Minute pro Tag50 Tage
2 Minuten pro Tag25 Tage

⋅ 5
: 2

Der urpsrünglich vorgegebene Wert 25 Tage(für 2 Minuten pro Tag) war also korrekt.


Jetzt überprüfen wir, ob die 4 Tage den 10 Minuten pro Tag entsprechen.

: 1
⋅ 2

5 Minuten pro Tag10 Tage
5 Minuten pro Tag10 Tage
10 Minuten pro Tag5 Tage

⋅ 1
: 2

Der urpsrünglich vorgegebene Wert 4 Tage (für 10 Minuten pro Tag) war also falsch, richtig wäre 5 Tage gewesen.

Dreisatz (antiprop.) beide Richtungen

Beispiel:

Zur Berechnung einer komplizierten Verschlüsselung muss ein Computer mit 8 CPU-Kernen 5 ms rechnen.

Wie lange bräuchte ein Computer mit 10 solchen CPU-Kernen?
Wie viele CPU-Kerne bräuchte der Computer, wenn er es in 8 ms rechnen könnte?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:


8 CPU-Kerne5 ms
??
10 CPU-Kerne?

Wir suchen einen möglichst großen Zwischenwert für die CPU-Kerne in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 8 CPU-Kerne teilen müssen.) Diese Zahl sollte eine Teiler von 8 und von 10 sein, also der ggT(8,10) = 2.

Wir suchen deswegen erst den entsprechenden Wert für 2 CPU-Kerne:


8 CPU-Kerne5 ms
2 CPU-Kerne?
10 CPU-Kerne?

Um von 8 CPU-Kerne in der ersten Zeile auf 2 CPU-Kerne in der zweiten Zeile zu kommen, müssen wir durch 4 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 5 ms nicht durch 4 teilen, sondern mit 4 multiplizieren um auf den Wert zu kommen, der den 2 CPU-Kerne links entspricht:

: 4

8 CPU-Kerne5 ms
2 CPU-Kerne20 ms
10 CPU-Kerne?

⋅ 4

Jetzt müssen wir ja wieder die 2 CPU-Kerne in der mittleren Zeile mit 5 multiplizieren, um auf die 10 CPU-Kerne in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 4
⋅ 5

8 CPU-Kerne5 ms
2 CPU-Kerne20 ms
10 CPU-Kerne4 ms

⋅ 4
: 5

Damit haben wir nun den gesuchten Wert, der den 10 CPU-Kerne entspricht: 4 ms



Für die andere Frage (Wie viele CPU-Kerne bräuchte der Computer, wenn er es in 8 ms rechnen könnte?) vertauschen wir die linke mit der rechten Spalte in der Tabelle, weil wir jetzt ja zwei "ms"-Werte haben und nach einem "CPU-Kerne"-Wert gesucht wird:


5 ms8 CPU-Kerne
??
8 ms?

Wir suchen einen möglichst großen Zwischenwert für die ms in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 5 ms teilen müssen.) Diese Zahl sollte eine Teiler von 5 und von 8 sein, also der ggT(5,8) = 1.

Wir suchen deswegen erst den entsprechenden Wert für 1 ms:


5 ms8 CPU-Kerne
1 ms?
8 ms?

Um von 5 ms in der ersten Zeile auf 1 ms in der zweiten Zeile zu kommen, müssen wir durch 5 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 8 CPU-Kerne nicht durch 5 teilen, sondern mit 5 multiplizieren um auf den Wert zu kommen, der den 1 ms links entspricht:

: 5

5 ms8 CPU-Kerne
1 ms40 CPU-Kerne
8 ms?

⋅ 5

Jetzt müssen wir ja wieder die 1 ms in der mittleren Zeile mit 8 multiplizieren, um auf die 8 ms in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 5
⋅ 8

5 ms8 CPU-Kerne
1 ms40 CPU-Kerne
8 ms5 CPU-Kerne

⋅ 5
: 8

Damit haben wir nun den gesuchten Wert, der den 8 ms entspricht: 5 CPU-Kerne

Wert bei Anti-Proport. (Anwendungen)

Beispiel:

Ein Raum wird mit 55 LED-Leuchten á 170 Lumen ausgeleuchtet. Aus ästhetischen Gründen sollen nur noch 17 Leuchten im Raum installiert sein, diese sollen aber die gleiche Helligkeit erzeugen. Wie viel Lumen brauchen dann diese neuen LED-Leuchten?

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Da die Zuordnung der beiden Größen antiproportional ist, schreiben wir die Werte am besten mal in eine Tabelle:

Anzahl LED-LeuchtenHelligkeit
55 170 Lumen
( : 55 )( ⋅ 55 )
1 9350 Lumen
( ⋅ 17 )( : 17 )
17 9350 17 Lumen

Die gesuchte Helligkeit ist also 9350 17 = 550 Lumen