Klasse 5
Klasse 6
Klasse 7
Klasse 8
Klasse 9
Klasse 10
Fit für die Oberstufe
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Zweisatz (antiproportional)
Beispiel:
Karls hat für seine Geburtstagsparty 45 Flaschen Spezi bekommen.
Wie viele Flaschen würde jeder bekommen, wenn insgesamt 5 Personen auf der Party wären?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Um von 1 Gäste in der ersten Zeile auf 5 Gäste in der zweiten Zeile zu kommen, müssen wir mit 5 multiplizieren. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 45 Spezi-Flaschen durch 5 teilen, um auf den Wert zu kommen, der den 5 Gäste entspricht:
|
⋅ 5
|
![]() |
|
![]() |
: 5
|
|
⋅ 5
|
![]() |
|
![]() |
: 5
|
Damit haben wir nun den gesuchten Wert, der den 5 Gäste entspricht: 9 Spezi-Flaschen
Dreisatz (antiproportional)
Beispiel:
Wenn Frau Baumann so Auto fährt, dass sie 6 Liter pro 100km verbraucht, kommt sie mit einer Tankfüllung 1000 km weit.
Wie weit würde sie mit einer Tankfüllung kommen, wenn sie mit einem "5 Liter/100km "-Schnitt fahren würde?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Wir suchen einen möglichst großen Zwischenwert für die Liter pro 100km in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 6 Liter pro 100km teilen müssen.) Diese Zahl sollte eine Teiler von 6 und von 5 sein, also der ggT(6,5) = 1.
Wir suchen deswegen erst den entsprechenden Wert für 1 Liter pro 100km:
|
Um von 6 Liter pro 100km in der ersten Zeile auf 1 Liter pro 100km in der zweiten Zeile zu kommen, müssen wir durch 6 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 1000 km nicht durch 6 teilen, sondern mit 6 multiplizieren um auf den Wert zu kommen, der den 1 Liter pro 100km links entspricht:
|
: 6
|
![]() |
|
![]() |
⋅ 6
|
|
: 6
|
![]() |
|
![]() |
⋅ 6
|
Jetzt müssen wir ja wieder die 1 Liter pro 100km in der mittleren Zeile mit 5 multiplizieren, um auf die 5 Liter pro 100km in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 6
⋅ 5
|
![]() ![]() |
|
![]() ![]() |
⋅ 6
: 5
|
Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 6000 km in der mittleren Zeile durch 5 dividieren:
|
: 6
⋅ 5
|
![]() ![]() |
|
![]() ![]() |
⋅ 6
: 5
|
Damit haben wir nun den gesuchten Wert, der den 5 Liter pro 100km entspricht: 1200 km
Tabelle (antiproportional)
Beispiel:
Die Tabelle zeigt Werte von zwei Größen mit einem antiproportionalen Zusammenhang. Übertrage die Tabelle in dein Heft und berechne mit dem Dreisatz die fehlende Größen.
| 8 Gäste | 7 Spezi-Flaschen |
| ? | ? |
| 14 Gäste | ? |
Wir suchen einen möglichst großen Zwischenwert für die Gäste in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 8 Gäste teilen müssen.) Diese Zahl sollte eine Teiler von 8 und von 14 sein, also der ggT(8,14) = 2.
Wir suchen deswegen erst den entsprechenden Wert für 2 Gäste:
|
Um von 8 Gäste in der ersten Zeile auf 2 Gäste in der zweiten Zeile zu kommen, müssen wir durch 4 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 7 Spezi-Flaschen nicht durch 4 teilen, sondern mit 4 multiplizieren um auf den Wert zu kommen, der den 2 Gäste links entspricht:
|
: 4
|
![]() |
|
![]() |
⋅ 4
|
|
: 4
|
![]() |
|
![]() |
⋅ 4
|
Jetzt müssen wir ja wieder die 2 Gäste in der mittleren Zeile mit 7 multiplizieren, um auf die 14 Gäste in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 4
⋅ 7
|
![]() ![]() |
|
![]() ![]() |
⋅ 4
: 7
|
Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 28 Spezi-Flaschen in der mittleren Zeile durch 7 dividieren:
|
: 4
⋅ 7
|
![]() ![]() |
|
![]() ![]() |
⋅ 4
: 7
|
Damit haben wir nun den gesuchten Wert, der den 14 Gäste entspricht: 4 Spezi-Flaschen
Antiproportionalität überprüfen
Beispiel:
Prüfe, ob es sich um einen antiproportionalen Zusammenhang handelt; falls nicht, korrigiere die Werte so, dass der Zusammenhang antiproportional wird.
Wir überprüfen zuerst, ob die 12 ms den 3 CPU-Kerne entsprechen.
|
: 5
⋅ 3
|
![]() ![]() |
|
![]() ![]() |
⋅ 5
: 3
|
Der urpsrünglich vorgegebene Wert 12 ms (für 3 CPU-Kerne) war also falsch, richtig wäre 10 ms gewesen.
Jetzt überprüfen wir, ob die 4 ms den 6 CPU-Kerne entsprechen.
|
: 5
⋅ 6
|
![]() ![]() |
|
![]() ![]() |
⋅ 5
: 6
|
Der urpsrünglich vorgegebene Wert 4 ms (für 6 CPU-Kerne) war also falsch, richtig wäre 5 ms gewesen.
Dreisatz (antiprop.) beide Richtungen
Beispiel:
Wenn Karla mit ihrem Handy jeden Tag immer 3 Minuten telefonieren würde, würden ihre Freiminuten noch genau 12 Tage halten.
Wann wären ihre Freiminuten aufgebraucht, wenn sie täglich 2 min telefonieren würde?
Wie lange kann sie täglich telefonieren, wenn die Freiminuten 3 Tage reichen sollen?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Wir suchen einen möglichst großen Zwischenwert für die Minuten pro Tag in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 3 Minuten pro Tag teilen müssen.) Diese Zahl sollte eine Teiler von 3 und von 2 sein, also der ggT(3,2) = 1.
Wir suchen deswegen erst den entsprechenden Wert für 1 Minuten pro Tag:
|
Um von 3 Minuten pro Tag in der ersten Zeile auf 1 Minuten pro Tag in der zweiten Zeile zu kommen, müssen wir durch 3 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 12 Tage nicht durch 3 teilen, sondern mit 3 multiplizieren um auf den Wert zu kommen, der den 1 Minuten pro Tag links entspricht:
|
: 3
|
![]() |
|
![]() |
⋅ 3
|
Jetzt müssen wir ja wieder die 1 Minuten pro Tag in der mittleren Zeile mit 2 multiplizieren, um auf die 2 Minuten pro Tag in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 3
⋅ 2
|
![]() ![]() |
|
![]() ![]() |
⋅ 3
: 2
|
Damit haben wir nun den gesuchten Wert, der den 2 Minuten pro Tag entspricht: 18 Tage
Um von 12 Tage in der ersten Zeile auf 3 Tage in der zweiten Zeile zu kommen, müssen wir durch 4 teilen. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 3 Minuten pro Tag mit 4 multiplizieren, um auf den Wert zu kommen, der den 3 Tage entspricht:
|
: 4
|
![]() |
|
![]() |
⋅ 4
|
|
: 4
|
![]() |
|
![]() |
⋅ 4
|
Damit haben wir nun den gesuchten Wert, der den 3 Tage entspricht: 12 Minuten pro Tag
Wert bei Anti-Proport. (Anwendungen)
Beispiel:
Ein Raum wird mit 45 LED-Leuchten á 160 Lumen ausgeleuchtet. Aus ästhetischen Gründen sollen nur noch 21 Leuchten im Raum installiert sein, diese sollen aber die gleiche Helligkeit erzeugen. Wie viel Lumen brauchen dann diese neuen LED-Leuchten?
Da die Zuordnung der beiden Größen antiproportional ist, schreiben wir die Werte am besten mal in eine Tabelle:
| Anzahl LED-Leuchten | Helligkeit |
|---|---|
| 45 | 160 Lumen |
| ( : 45 ) | ( ⋅ 45 ) |
| 1 | Lumen |
| ( ⋅ 21 ) | ( : 21 ) |
| 21 | Lumen |
Die gesuchte Helligkeit ist also = = 342 ≈ 342.857 Lumen


