Klasse 5
Klasse 6
Klasse 7
Klasse 8
Klasse 9
Klasse 10
Fit für die Oberstufe
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Zweisatz (antiproportional)
Beispiel:
Bei einer großen Baustelle muss das Erdreich der Baugrube abtransportiert werden. 1 Lastwagen müsste dafür 36 mal fahren.
Wie oft müssten 12 LKWs fahren?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Um von 1 Lastwagen in der ersten Zeile auf 12 Lastwagen in der zweiten Zeile zu kommen, müssen wir mit 12 multiplizieren. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 36 Fuhren durch 12 teilen, um auf den Wert zu kommen, der den 12 Lastwagen entspricht:
⋅ 12
|
![]() |
|
![]() |
: 12
|
⋅ 12
|
![]() |
|
![]() |
: 12
|
Damit haben wir nun den gesuchten Wert, der den 12 Lastwagen entspricht: 3 Fuhren
Dreisatz (antiproportional)
Beispiel:
Bei einer großen Baustelle muss das Erdreich der Baugrube abtransportiert werden. 5 Lastwagen müssten dafür 9 mal fahren.
Wie oft müssten 3 LKWs fahren?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Wir suchen einen möglichst großen Zwischenwert für die Lastwagen in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 5 Lastwagen teilen müssen.) Diese Zahl sollte eine Teiler von 5 und von 3 sein, also der ggT(5,3) = 1.
Wir suchen deswegen erst den entsprechenden Wert für 1 Lastwagen:
|
Um von 5 Lastwagen in der ersten Zeile auf 1 Lastwagen in der zweiten Zeile zu kommen, müssen wir durch 5 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 9 Fuhren nicht durch 5 teilen, sondern mit 5 multiplizieren um auf den Wert zu kommen, der den 1 Lastwagen links entspricht:
: 5
|
![]() |
|
![]() |
⋅ 5
|
: 5
|
![]() |
|
![]() |
⋅ 5
|
Jetzt müssen wir ja wieder die 1 Lastwagen in der mittleren Zeile mit 3 multiplizieren, um auf die 3 Lastwagen in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
: 5
⋅ 3
|
![]() ![]() |
|
![]() ![]() |
⋅ 5
: 3
|
Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 45 Fuhren in der mittleren Zeile durch 3 dividieren:
: 5
⋅ 3
|
![]() ![]() |
|
![]() ![]() |
⋅ 5
: 3
|
Damit haben wir nun den gesuchten Wert, der den 3 Lastwagen entspricht: 15 Fuhren
Tabelle (antiproportional)
Beispiel:
Die Tabelle zeigt Werte von zwei Größen mit einem antiproportionalen Zusammenhang. Übertrage die Tabelle in dein Heft und berechne mit dem Dreisatz die fehlende Größen.
9 Personen | 5 h |
? | ? |
15 Personen | ? |
Wir suchen einen möglichst großen Zwischenwert für die Personen in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 9 Personen teilen müssen.) Diese Zahl sollte eine Teiler von 9 und von 15 sein, also der ggT(9,15) = 3.
Wir suchen deswegen erst den entsprechenden Wert für 3 Personen:
|
Um von 9 Personen in der ersten Zeile auf 3 Personen in der zweiten Zeile zu kommen, müssen wir durch 3 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 5 h nicht durch 3 teilen, sondern mit 3 multiplizieren um auf den Wert zu kommen, der den 3 Personen links entspricht:
: 3
|
![]() |
|
![]() |
⋅ 3
|
: 3
|
![]() |
|
![]() |
⋅ 3
|
Jetzt müssen wir ja wieder die 3 Personen in der mittleren Zeile mit 5 multiplizieren, um auf die 15 Personen in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
: 3
⋅ 5
|
![]() ![]() |
|
![]() ![]() |
⋅ 3
: 5
|
Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 15 h in der mittleren Zeile durch 5 dividieren:
: 3
⋅ 5
|
![]() ![]() |
|
![]() ![]() |
⋅ 3
: 5
|
Damit haben wir nun den gesuchten Wert, der den 15 Personen entspricht: 3 h
Antiproportionalität überprüfen
Beispiel:
Prüfe, ob es sich um einen antiproportionalen Zusammenhang handelt; falls nicht, korrigiere die Werte.
Wir überprüfen zuerst, ob die 40 Lose den 10 € Lospreis entsprechen.
: 4
⋅ 5
|
![]() ![]() |
|
![]() ![]() |
⋅ 4
: 5
|
Der urpsrünglich vorgegebene Wert 40 Lose(für 10 € Lospreis) war also korrekt.
Jetzt überprüfen wir, ob die 9 Lose den 40 € Lospreis entsprechen.
: 1
⋅ 5
|
![]() ![]() |
|
![]() ![]() |
⋅ 1
: 5
|
Der urpsrünglich vorgegebene Wert 9 Lose (für 40 € Lospreis) war also falsch, richtig wäre 10 Lose gewesen.
Dreisatz (antiprop.) beide Richtungen
Beispiel:
Wenn 4 Personen das Schulhaus putzen, brauchen sie dafür 6 h.
Wie lange bräuchten 3 Personen hierfür?
Wie viele Personen bräuchte man, damit jeder 4 h putzen müsste?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Wir suchen einen möglichst großen Zwischenwert für die Personen in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 4 Personen teilen müssen.) Diese Zahl sollte eine Teiler von 4 und von 3 sein, also der ggT(4,3) = 1.
Wir suchen deswegen erst den entsprechenden Wert für 1 Personen:
|
Um von 4 Personen in der ersten Zeile auf 1 Personen in der zweiten Zeile zu kommen, müssen wir durch 4 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 6 h nicht durch 4 teilen, sondern mit 4 multiplizieren um auf den Wert zu kommen, der den 1 Personen links entspricht:
: 4
|
![]() |
|
![]() |
⋅ 4
|
Jetzt müssen wir ja wieder die 1 Personen in der mittleren Zeile mit 3 multiplizieren, um auf die 3 Personen in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
: 4
⋅ 3
|
![]() ![]() |
|
![]() ![]() |
⋅ 4
: 3
|
Damit haben wir nun den gesuchten Wert, der den 3 Personen entspricht: 8 h
Für die andere Frage (Wie viele Personen bräuchte man, damit jeder 4 h putzen müsste?) vertauschen wir die linke mit der rechten Spalte in der Tabelle, weil wir jetzt ja zwei "h"-Werte haben und nach einem "Personen"-Wert gesucht wird:
|
Wir suchen einen möglichst großen Zwischenwert für die h in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 6 h teilen müssen.) Diese Zahl sollte eine Teiler von 6 und von 4 sein, also der ggT(6,4) = 2.
Wir suchen deswegen erst den entsprechenden Wert für 2 h:
|
Um von 6 h in der ersten Zeile auf 2 h in der zweiten Zeile zu kommen, müssen wir durch 3 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 4 Personen nicht durch 3 teilen, sondern mit 3 multiplizieren um auf den Wert zu kommen, der den 2 h links entspricht:
: 3
|
![]() |
|
![]() |
⋅ 3
|
Jetzt müssen wir ja wieder die 2 h in der mittleren Zeile mit 2 multiplizieren, um auf die 4 h in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
: 3
⋅ 2
|
![]() ![]() |
|
![]() ![]() |
⋅ 3
: 2
|
Damit haben wir nun den gesuchten Wert, der den 4 h entspricht: 6 Personen
Wert bei Anti-Proport. (Anwendungen)
Beispiel:
Ein Raum wird mit 35 LED-Leuchten á 170 Lumen ausgeleuchtet. Aus ästhetischen Gründen sollen nur noch 13 Leuchten im Raum installiert sein, diese sollen aber die gleiche Helligkeit erzeugen. Wie viel Lumen brauchen dann diese neuen LED-Leuchten?
Da die Zuordnung der beiden Größen antiproportional ist, schreiben wir die Werte am besten mal in eine Tabelle:
Anzahl LED-Leuchten | Helligkeit |
---|---|
35 | 170 Lumen |
( : 35 ) | ( ⋅ 35 ) |
1 | Lumen |
( ⋅ 13 ) | ( : 13 ) |
13 | Lumen |
Die gesuchte Helligkeit ist also = 457 ≈ 457.692 Lumen