nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Zweisatz (antiproportional)

Beispiel:

Zur Berechnung einer komplizierten Verschlüsselung muss ein Computer mit einem CPU-Kern 56 ms rechnen.

Wie lange bräuchte ein Computer mit 7 solchen CPU-Kernen?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:

1 CPU-Kern56 ms
7 CPU-Kerne?

Um von 1 CPU-Kerne in der ersten Zeile auf 7 CPU-Kerne in der zweiten Zeile zu kommen, müssen wir mit 7 multiplizieren. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 56 ms durch 7 teilen, um auf den Wert zu kommen, der den 7 CPU-Kerne entspricht:

⋅ 7
1 CPU-Kern56 ms
7 CPU-Kerne?
: 7
⋅ 7
1 CPU-Kern56 ms
7 CPU-Kerne8 ms
: 7

Damit haben wir nun den gesuchten Wert, der den 7 CPU-Kerne entspricht: 8 ms

Dreisatz (antiproportional)

Beispiel:

Bei einer großen Baustelle muss das Erdreich der Baugrube abtransportiert werden. 12 Lastwagen müssten dafür 3 mal fahren.

Wie oft müssten 18 LKWs fahren?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:


12 Lastwagen3 Fuhren
??
18 Lastwagen?

Wir suchen einen möglichst großen Zwischenwert für die Lastwagen in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 12 Lastwagen teilen müssen.) Diese Zahl sollte eine Teiler von 12 und von 18 sein, also der ggT(12,18) = 6.

Wir suchen deswegen erst den entsprechenden Wert für 6 Lastwagen:


12 Lastwagen3 Fuhren
6 Lastwagen?
18 Lastwagen?

Um von 12 Lastwagen in der ersten Zeile auf 6 Lastwagen in der zweiten Zeile zu kommen, müssen wir durch 2 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 3 Fuhren nicht durch 2 teilen, sondern mit 2 multiplizieren um auf den Wert zu kommen, der den 6 Lastwagen links entspricht:

: 2

12 Lastwagen3 Fuhren
6 Lastwagen?
18 Lastwagen?

⋅ 2
: 2

12 Lastwagen3 Fuhren
6 Lastwagen6 Fuhren
18 Lastwagen?

⋅ 2

Jetzt müssen wir ja wieder die 6 Lastwagen in der mittleren Zeile mit 3 multiplizieren, um auf die 18 Lastwagen in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 2
⋅ 3

12 Lastwagen3 Fuhren
6 Lastwagen6 Fuhren
18 Lastwagen?

⋅ 2
: 3

Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 6 Fuhren in der mittleren Zeile durch 3 dividieren:

: 2
⋅ 3

12 Lastwagen3 Fuhren
6 Lastwagen6 Fuhren
18 Lastwagen2 Fuhren

⋅ 2
: 3

Damit haben wir nun den gesuchten Wert, der den 18 Lastwagen entspricht: 2 Fuhren

Tabelle (antiproportional)

Beispiel:

Die Tabelle zeigt Werte von zwei Größen mit einem antiproportionalen Zusammenhang. Übertrage die Tabelle in dein Heft und berechne mit dem Dreisatz die fehlende Größen.

4 € Lospreis60 Lose
??
3 € Lospreis?

Lösung einblenden

Wir suchen einen möglichst großen Zwischenwert für die € Lospreis in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 4 € Lospreis teilen müssen.) Diese Zahl sollte eine Teiler von 4 und von 3 sein, also der ggT(4,3) = 1.

Wir suchen deswegen erst den entsprechenden Wert für 1 € Lospreis:


4 € Lospreis60 Lose
1 € Lospreis?
3 € Lospreis?

Um von 4 € Lospreis in der ersten Zeile auf 1 € Lospreis in der zweiten Zeile zu kommen, müssen wir durch 4 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 60 Lose nicht durch 4 teilen, sondern mit 4 multiplizieren um auf den Wert zu kommen, der den 1 € Lospreis links entspricht:

: 4

4 € Lospreis60 Lose
1 € Lospreis?
3 € Lospreis?

⋅ 4
: 4

4 € Lospreis60 Lose
1 € Lospreis240 Lose
3 € Lospreis?

⋅ 4

Jetzt müssen wir ja wieder die 1 € Lospreis in der mittleren Zeile mit 3 multiplizieren, um auf die 3 € Lospreis in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 4
⋅ 3

4 € Lospreis60 Lose
1 € Lospreis240 Lose
3 € Lospreis?

⋅ 4
: 3

Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 240 Lose in der mittleren Zeile durch 3 dividieren:

: 4
⋅ 3

4 € Lospreis60 Lose
1 € Lospreis240 Lose
3 € Lospreis80 Lose

⋅ 4
: 3

Damit haben wir nun den gesuchten Wert, der den 3 € Lospreis entspricht: 80 Lose

Antiproportionalität überprüfen

Beispiel:

Prüfe, ob es sich um einen antiproportionalen Zusammenhang handelt; falls nicht, korrigiere die Werte so, dass der Zusammenhang antiproportional wird.

Lösung einblenden

Wir überprüfen zuerst, ob die 3 Fuhren den 14 Lastwagen entsprechen.

: 4
⋅ 7

8 Lastwagen7 Fuhren
2 Lastwagen28 Fuhren
14 Lastwagen4 Fuhren

⋅ 4
: 7

Der urpsrünglich vorgegebene Wert 3 Fuhren (für 14 Lastwagen) war also falsch, richtig wäre 4 Fuhren gewesen.


Jetzt überprüfen wir, ob die 8 Fuhren den 7 Lastwagen entsprechen.

: 8
⋅ 7

8 Lastwagen7 Fuhren
1 Lastwagen56 Fuhren
7 Lastwagen8 Fuhren

⋅ 8
: 7

Der urpsrünglich vorgegebene Wert 8 Fuhren (für 7 Lastwagen) war also korrekt.

Dreisatz (antiprop.) beide Richtungen

Beispiel:

Um den noch fehlenden Betrag für eine Klassenfahrt zu bekommen, veranstaltet eine Schulkasse ein Lotterie. Wenn sie 5€ für ein Los verlangen, müssten sie 120 Lose verkaufen um genügend Geld zusammen zu bekommen.

Wie viele Lose müssten sie bei einem Lospreis von 4 € verkaufen?
Wie hoch muss man den Preis ansetzen, wenn man erwartet, das sich 40 Lose verkaufen?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:


5 € Lospreis120 Lose
??
4 € Lospreis?

Wir suchen einen möglichst großen Zwischenwert für die € Lospreis in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 5 € Lospreis teilen müssen.) Diese Zahl sollte eine Teiler von 5 und von 4 sein, also der ggT(5,4) = 1.

Wir suchen deswegen erst den entsprechenden Wert für 1 € Lospreis:


5 € Lospreis120 Lose
1 € Lospreis?
4 € Lospreis?

Um von 5 € Lospreis in der ersten Zeile auf 1 € Lospreis in der zweiten Zeile zu kommen, müssen wir durch 5 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 120 Lose nicht durch 5 teilen, sondern mit 5 multiplizieren um auf den Wert zu kommen, der den 1 € Lospreis links entspricht:

: 5

5 € Lospreis120 Lose
1 € Lospreis600 Lose
4 € Lospreis?

⋅ 5

Jetzt müssen wir ja wieder die 1 € Lospreis in der mittleren Zeile mit 4 multiplizieren, um auf die 4 € Lospreis in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 5
⋅ 4

5 € Lospreis120 Lose
1 € Lospreis600 Lose
4 € Lospreis150 Lose

⋅ 5
: 4

Damit haben wir nun den gesuchten Wert, der den 4 € Lospreis entspricht: 150 Lose



Um von 120 Lose in der ersten Zeile auf 40 Lose in der zweiten Zeile zu kommen, müssen wir durch 3 teilen. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 5 € Lospreis mit 3 multiplizieren, um auf den Wert zu kommen, der den 40 Lose entspricht:

: 3
120 Lose5 € Lospreis
40 Lose?
⋅ 3
: 3
120 Lose5 € Lospreis
40 Lose15 € Lospreis
⋅ 3

Damit haben wir nun den gesuchten Wert, der den 40 Lose entspricht: 15 € Lospreis

Wert bei Anti-Proport. (Anwendungen)

Beispiel:

Ein Raum wird mit 50 LED-Leuchten á 170 Lumen ausgeleuchtet. Aus ästhetischen Gründen sollen nur noch 13 Leuchten im Raum installiert sein, diese sollen aber die gleiche Helligkeit erzeugen. Wie viel Lumen brauchen dann diese neuen LED-Leuchten?

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Da die Zuordnung der beiden Größen antiproportional ist, schreiben wir die Werte am besten mal in eine Tabelle:

Anzahl LED-LeuchtenHelligkeit
50 170 Lumen
( : 50 )( ⋅ 50 )
1 8500 Lumen
( ⋅ 13 )( : 13 )
13 8500 13 Lumen

Die gesuchte Helligkeit ist also 8500 13 = 653 11 13 ≈ 653.846 Lumen