Klasse 5
Klasse 6
Klasse 7
Klasse 8
Klasse 9
Klasse 10
Fit für die Oberstufe
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Zweisatz (antiproportional)
Beispiel:
Karls hat für seine Geburtstagsparty 60 Flaschen Spezi bekommen.
Wie viele Flaschen würde jeder bekommen, wenn insgesamt 20 Personen auf der Party wären?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Um von 1 Gäste in der ersten Zeile auf 20 Gäste in der zweiten Zeile zu kommen, müssen wir mit 20 multiplizieren. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 60 Spezi-Flaschen durch 20 teilen, um auf den Wert zu kommen, der den 20 Gäste entspricht:
|
⋅ 20
|
![]() |
|
![]() |
: 20
|
|
⋅ 20
|
![]() |
|
![]() |
: 20
|
Damit haben wir nun den gesuchten Wert, der den 20 Gäste entspricht: 3 Spezi-Flaschen
Dreisatz (antiproportional)
Beispiel:
Wenn 7 Personen das Schulhaus putzen, brauchen sie dafür 8 h.
Wie lange bräuchten 4 Personen hierfür?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Wir suchen einen möglichst großen Zwischenwert für die Personen in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 7 Personen teilen müssen.) Diese Zahl sollte eine Teiler von 7 und von 4 sein, also der ggT(7,4) = 1.
Wir suchen deswegen erst den entsprechenden Wert für 1 Personen:
|
Um von 7 Personen in der ersten Zeile auf 1 Personen in der zweiten Zeile zu kommen, müssen wir durch 7 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 8 h nicht durch 7 teilen, sondern mit 7 multiplizieren um auf den Wert zu kommen, der den 1 Personen links entspricht:
|
: 7
|
![]() |
|
![]() |
⋅ 7
|
|
: 7
|
![]() |
|
![]() |
⋅ 7
|
Jetzt müssen wir ja wieder die 1 Personen in der mittleren Zeile mit 4 multiplizieren, um auf die 4 Personen in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 7
⋅ 4
|
![]() ![]() |
|
![]() ![]() |
⋅ 7
: 4
|
Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 56 h in der mittleren Zeile durch 4 dividieren:
|
: 7
⋅ 4
|
![]() ![]() |
|
![]() ![]() |
⋅ 7
: 4
|
Damit haben wir nun den gesuchten Wert, der den 4 Personen entspricht: 14 h
Tabelle (antiproportional)
Beispiel:
Die Tabelle zeigt Werte von zwei Größen mit einem antiproportionalen Zusammenhang. Übertrage die Tabelle in dein Heft und berechne mit dem Dreisatz die fehlende Größen.
| 6 Minuten pro Tag | 8 Tage |
| ? | ? |
| 4 Minuten pro Tag | ? |
Wir suchen einen möglichst großen Zwischenwert für die Minuten pro Tag in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 6 Minuten pro Tag teilen müssen.) Diese Zahl sollte eine Teiler von 6 und von 4 sein, also der ggT(6,4) = 2.
Wir suchen deswegen erst den entsprechenden Wert für 2 Minuten pro Tag:
|
Um von 6 Minuten pro Tag in der ersten Zeile auf 2 Minuten pro Tag in der zweiten Zeile zu kommen, müssen wir durch 3 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 8 Tage nicht durch 3 teilen, sondern mit 3 multiplizieren um auf den Wert zu kommen, der den 2 Minuten pro Tag links entspricht:
|
: 3
|
![]() |
|
![]() |
⋅ 3
|
|
: 3
|
![]() |
|
![]() |
⋅ 3
|
Jetzt müssen wir ja wieder die 2 Minuten pro Tag in der mittleren Zeile mit 2 multiplizieren, um auf die 4 Minuten pro Tag in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 3
⋅ 2
|
![]() ![]() |
|
![]() ![]() |
⋅ 3
: 2
|
Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 24 Tage in der mittleren Zeile durch 2 dividieren:
|
: 3
⋅ 2
|
![]() ![]() |
|
![]() ![]() |
⋅ 3
: 2
|
Damit haben wir nun den gesuchten Wert, der den 4 Minuten pro Tag entspricht: 12 Tage
Antiproportionalität überprüfen
Beispiel:
Prüfe, ob es sich um einen antiproportionalen Zusammenhang handelt; falls nicht, korrigiere die Werte so, dass der Zusammenhang antiproportional wird.
Wir überprüfen zuerst, ob die 1000 km den 3 Liter pro 100km entsprechen.
|
: 5
⋅ 3
|
![]() ![]() |
|
![]() ![]() |
⋅ 5
: 3
|
Der urpsrünglich vorgegebene Wert 1000 km(für 3 Liter pro 100km) war also korrekt.
Jetzt überprüfen wir, ob die 302 km den 10 Liter pro 100km entsprechen.
|
: 1
⋅ 2
|
![]() ![]() |
|
![]() ![]() |
⋅ 1
: 2
|
Der urpsrünglich vorgegebene Wert 302 km (für 10 Liter pro 100km) war also falsch, richtig wäre 300 km gewesen.
Dreisatz (antiprop.) beide Richtungen
Beispiel:
Ein Hausmeister hat ein extra Budget für die Schulreinigung in den Ferien, das er unter helfenden Schüler:innen aufteilen kann (er selbst bekommt nichts von dem Geld). Wenn er 5 Helfer:innen einstellt, reicht es für jeden 100 € Lohn.
Welchen Lohn könnte er jeder Helfer:in bezahlen, wenn er 2 Helfer:innen hätte?
Wie viele Helfer:innen könnte man mit einem Lohn von 5 € bezahlen?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Wir suchen einen möglichst großen Zwischenwert für die Helfer:innen in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 5 Helfer:innen teilen müssen.) Diese Zahl sollte eine Teiler von 5 und von 2 sein, also der ggT(5,2) = 1.
Wir suchen deswegen erst den entsprechenden Wert für 1 Helfer:innen:
|
Um von 5 Helfer:innen in der ersten Zeile auf 1 Helfer:innen in der zweiten Zeile zu kommen, müssen wir durch 5 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 100 € Lohn nicht durch 5 teilen, sondern mit 5 multiplizieren um auf den Wert zu kommen, der den 1 Helfer:innen links entspricht:
|
: 5
|
![]() |
|
![]() |
⋅ 5
|
Jetzt müssen wir ja wieder die 1 Helfer:innen in der mittleren Zeile mit 2 multiplizieren, um auf die 2 Helfer:innen in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 5
⋅ 2
|
![]() ![]() |
|
![]() ![]() |
⋅ 5
: 2
|
Damit haben wir nun den gesuchten Wert, der den 2 Helfer:innen entspricht: 250 € Lohn
Um von 100 € Lohn in der ersten Zeile auf 5 € Lohn in der zweiten Zeile zu kommen, müssen wir durch 20 teilen. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 5 Helfer:innen mit 20 multiplizieren, um auf den Wert zu kommen, der den 5 € Lohn entspricht:
|
: 20
|
![]() |
|
![]() |
⋅ 20
|
|
: 20
|
![]() |
|
![]() |
⋅ 20
|
Damit haben wir nun den gesuchten Wert, der den 5 € Lohn entspricht: 100 Helfer:innen
Wert bei Anti-Proport. (Anwendungen)
Beispiel:
Ein Raum wird mit 35 LED-Leuchten á 160 Lumen ausgeleuchtet. Aus ästhetischen Gründen sollen nur noch 17 Leuchten im Raum installiert sein, diese sollen aber die gleiche Helligkeit erzeugen. Wie viel Lumen brauchen dann diese neuen LED-Leuchten?
Da die Zuordnung der beiden Größen antiproportional ist, schreiben wir die Werte am besten mal in eine Tabelle:
| Anzahl LED-Leuchten | Helligkeit |
|---|---|
| 35 | 160 Lumen |
| ( : 35 ) | ( ⋅ 35 ) |
| 1 | Lumen |
| ( ⋅ 17 ) | ( : 17 ) |
| 17 | Lumen |
Die gesuchte Helligkeit ist also = 329 ≈ 329.412 Lumen


