nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Zweisatz (antiproportional)

Beispiel:

Wenn Karla mit ihrem Handy jeden Tag immer 1 Minute telefonieren würde, würden ihre Freiminuten noch genau 24 Tage halten.

Wann wären ihre Freiminuten aufgebraucht, wenn sie täglich 6 min telefonieren würde?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:

1 Minute pro Tag24 Tage
6 Minuten pro Tag?

Um von 1 Minuten pro Tag in der ersten Zeile auf 6 Minuten pro Tag in der zweiten Zeile zu kommen, müssen wir mit 6 multiplizieren. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 24 Tage durch 6 teilen, um auf den Wert zu kommen, der den 6 Minuten pro Tag entspricht:

⋅ 6
1 Minute pro Tag24 Tage
6 Minuten pro Tag?
: 6
⋅ 6
1 Minute pro Tag24 Tage
6 Minuten pro Tag4 Tage
: 6

Damit haben wir nun den gesuchten Wert, der den 6 Minuten pro Tag entspricht: 4 Tage

Dreisatz (antiproportional)

Beispiel:

Ein Hausmeister hat ein extra Budget für die Schulreinigung in den Ferien, das er unter helfenden Schüler:innen aufteilen kann (er selbst bekommt nichts von dem Geld). Wenn er 5 Helfer:innen einstellt, reicht es für jeden 90 € Lohn.

Welchen Lohn könnte er jeder Helfer:in bezahlen, wenn er 3 Helfer:innen hätte?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:


5 Helfer:innen90 € Lohn
??
3 Helfer:innen?

Wir suchen einen möglichst großen Zwischenwert für die Helfer:innen in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 5 Helfer:innen teilen müssen.) Diese Zahl sollte eine Teiler von 5 und von 3 sein, also der ggT(5,3) = 1.

Wir suchen deswegen erst den entsprechenden Wert für 1 Helfer:innen:


5 Helfer:innen90 € Lohn
1 Helfer:in?
3 Helfer:innen?

Um von 5 Helfer:innen in der ersten Zeile auf 1 Helfer:innen in der zweiten Zeile zu kommen, müssen wir durch 5 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 90 € Lohn nicht durch 5 teilen, sondern mit 5 multiplizieren um auf den Wert zu kommen, der den 1 Helfer:innen links entspricht:

: 5

5 Helfer:innen90 € Lohn
1 Helfer:in?
3 Helfer:innen?

⋅ 5
: 5

5 Helfer:innen90 € Lohn
1 Helfer:in450 € Lohn
3 Helfer:innen?

⋅ 5

Jetzt müssen wir ja wieder die 1 Helfer:innen in der mittleren Zeile mit 3 multiplizieren, um auf die 3 Helfer:innen in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 5
⋅ 3

5 Helfer:innen90 € Lohn
1 Helfer:in450 € Lohn
3 Helfer:innen?

⋅ 5
: 3

Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 450 € Lohn in der mittleren Zeile durch 3 dividieren:

: 5
⋅ 3

5 Helfer:innen90 € Lohn
1 Helfer:in450 € Lohn
3 Helfer:innen150 € Lohn

⋅ 5
: 3

Damit haben wir nun den gesuchten Wert, der den 3 Helfer:innen entspricht: 150 € Lohn

Tabelle (antiproportional)

Beispiel:

Die Tabelle zeigt Werte von zwei Größen mit einem antiproportionalen Zusammenhang. Übertrage die Tabelle in dein Heft und berechne mit dem Dreisatz die fehlende Größen.

9 € Lospreis50 Lose
??
15 € Lospreis?

Lösung einblenden

Wir suchen einen möglichst großen Zwischenwert für die € Lospreis in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 9 € Lospreis teilen müssen.) Diese Zahl sollte eine Teiler von 9 und von 15 sein, also der ggT(9,15) = 3.

Wir suchen deswegen erst den entsprechenden Wert für 3 € Lospreis:


9 € Lospreis50 Lose
3 € Lospreis?
15 € Lospreis?

Um von 9 € Lospreis in der ersten Zeile auf 3 € Lospreis in der zweiten Zeile zu kommen, müssen wir durch 3 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 50 Lose nicht durch 3 teilen, sondern mit 3 multiplizieren um auf den Wert zu kommen, der den 3 € Lospreis links entspricht:

: 3

9 € Lospreis50 Lose
3 € Lospreis?
15 € Lospreis?

⋅ 3
: 3

9 € Lospreis50 Lose
3 € Lospreis150 Lose
15 € Lospreis?

⋅ 3

Jetzt müssen wir ja wieder die 3 € Lospreis in der mittleren Zeile mit 5 multiplizieren, um auf die 15 € Lospreis in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 3
⋅ 5

9 € Lospreis50 Lose
3 € Lospreis150 Lose
15 € Lospreis?

⋅ 3
: 5

Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 150 Lose in der mittleren Zeile durch 5 dividieren:

: 3
⋅ 5

9 € Lospreis50 Lose
3 € Lospreis150 Lose
15 € Lospreis30 Lose

⋅ 3
: 5

Damit haben wir nun den gesuchten Wert, der den 15 € Lospreis entspricht: 30 Lose

Antiproportionalität überprüfen

Beispiel:

Prüfe, ob es sich um einen antiproportionalen Zusammenhang handelt; falls nicht, korrigiere die Werte so, dass der Zusammenhang antiproportional wird.

Lösung einblenden

Wir überprüfen zuerst, ob die 4 Spezi-Flaschen den 12 Gäste entsprechen.

: 2
⋅ 3

8 Gäste6 Spezi-Flaschen
4 Gäste12 Spezi-Flaschen
12 Gäste4 Spezi-Flaschen

⋅ 2
: 3

Der urpsrünglich vorgegebene Wert 4 Spezi-Flaschen(für 12 Gäste) war also korrekt.


Jetzt überprüfen wir, ob die 8 Spezi-Flaschen den 6 Gäste entsprechen.

: 4
⋅ 3

8 Gäste6 Spezi-Flaschen
2 Gäste24 Spezi-Flaschen
6 Gäste8 Spezi-Flaschen

⋅ 4
: 3

Der urpsrünglich vorgegebene Wert 8 Spezi-Flaschen (für 6 Gäste) war also korrekt.

Dreisatz (antiprop.) beide Richtungen

Beispiel:

Bei einer großen Baustelle muss das Erdreich der Baugrube abtransportiert werden. 6 Lastwagen müssten dafür 6 mal fahren.

Wie oft müssten 4 LKWs fahren?
Wie viele LKWs bräuchte man, damit es mit 12 Fuhren für jeden reicht?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:


6 Lastwagen6 Fuhren
??
4 Lastwagen?

Wir suchen einen möglichst großen Zwischenwert für die Lastwagen in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 6 Lastwagen teilen müssen.) Diese Zahl sollte eine Teiler von 6 und von 4 sein, also der ggT(6,4) = 2.

Wir suchen deswegen erst den entsprechenden Wert für 2 Lastwagen:


6 Lastwagen6 Fuhren
2 Lastwagen?
4 Lastwagen?

Um von 6 Lastwagen in der ersten Zeile auf 2 Lastwagen in der zweiten Zeile zu kommen, müssen wir durch 3 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 6 Fuhren nicht durch 3 teilen, sondern mit 3 multiplizieren um auf den Wert zu kommen, der den 2 Lastwagen links entspricht:

: 3

6 Lastwagen6 Fuhren
2 Lastwagen18 Fuhren
4 Lastwagen?

⋅ 3

Jetzt müssen wir ja wieder die 2 Lastwagen in der mittleren Zeile mit 2 multiplizieren, um auf die 4 Lastwagen in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 3
⋅ 2

6 Lastwagen6 Fuhren
2 Lastwagen18 Fuhren
4 Lastwagen9 Fuhren

⋅ 3
: 2

Damit haben wir nun den gesuchten Wert, der den 4 Lastwagen entspricht: 9 Fuhren



Um von 6 Fuhren in der ersten Zeile auf 12 Fuhren in der zweiten Zeile zu kommen, müssen wir mit 2 multiplizieren. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 6 Lastwagen durch 2 teilen, um auf den Wert zu kommen, der den 12 Fuhren entspricht:

⋅ 2
6 Fuhren6 Lastwagen
12 Fuhren?
: 2
⋅ 2
6 Fuhren6 Lastwagen
12 Fuhren3 Lastwagen
: 2

Damit haben wir nun den gesuchten Wert, der den 12 Fuhren entspricht: 3 Lastwagen

Wert bei Anti-Proport. (Anwendungen)

Beispiel:

Eine Drohne muss eine bestimmte Strecke zurücklegen. Wenn sie dabei mit einer Geschwindigkeit von 50 km/h fliegt, braucht sie dafür 4 Minuten.Wie lange braucht sie bei einer Geschwindigkeit von 43 km/h?

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Da die Zuordnung der beiden Größen antiproportional ist, schreiben wir die Werte am besten mal in eine Tabelle:

GeschwindigkeitFlugzeit
50 km/h4 min
( : 50 )( ⋅ 50 )
1 km/h200 min
( ⋅ 43 )( : 43 )
43 km/h 200 43 min

Die gesuchte Flugzeit ist also 200 43 = 4 28 43 ≈ 4.651 min