Klasse 5
Klasse 6
Klasse 7
Klasse 8
Klasse 9
Klasse 10
Fit für die Oberstufe
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Zweisatz (antiproportional)
Beispiel:
Wenn Karla mit ihrem Handy jeden Tag immer 1 Minute telefonieren würde, würden ihre Freiminuten noch genau 24 Tage halten.
Wann wären ihre Freiminuten aufgebraucht, wenn sie täglich 6 min telefonieren würde?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Um von 1 Minuten pro Tag in der ersten Zeile auf 6 Minuten pro Tag in der zweiten Zeile zu kommen, müssen wir mit 6 multiplizieren. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 24 Tage durch 6 teilen, um auf den Wert zu kommen, der den 6 Minuten pro Tag entspricht:
|
⋅ 6
|
![]() |
|
![]() |
: 6
|
|
⋅ 6
|
![]() |
|
![]() |
: 6
|
Damit haben wir nun den gesuchten Wert, der den 6 Minuten pro Tag entspricht: 4 Tage
Dreisatz (antiproportional)
Beispiel:
Ein Hausmeister hat ein extra Budget für die Schulreinigung in den Ferien, das er unter helfenden Schüler:innen aufteilen kann (er selbst bekommt nichts von dem Geld). Wenn er 5 Helfer:innen einstellt, reicht es für jeden 90 € Lohn.
Welchen Lohn könnte er jeder Helfer:in bezahlen, wenn er 3 Helfer:innen hätte?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Wir suchen einen möglichst großen Zwischenwert für die Helfer:innen in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 5 Helfer:innen teilen müssen.) Diese Zahl sollte eine Teiler von 5 und von 3 sein, also der ggT(5,3) = 1.
Wir suchen deswegen erst den entsprechenden Wert für 1 Helfer:innen:
|
Um von 5 Helfer:innen in der ersten Zeile auf 1 Helfer:innen in der zweiten Zeile zu kommen, müssen wir durch 5 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 90 € Lohn nicht durch 5 teilen, sondern mit 5 multiplizieren um auf den Wert zu kommen, der den 1 Helfer:innen links entspricht:
|
: 5
|
![]() |
|
![]() |
⋅ 5
|
|
: 5
|
![]() |
|
![]() |
⋅ 5
|
Jetzt müssen wir ja wieder die 1 Helfer:innen in der mittleren Zeile mit 3 multiplizieren, um auf die 3 Helfer:innen in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 5
⋅ 3
|
![]() ![]() |
|
![]() ![]() |
⋅ 5
: 3
|
Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 450 € Lohn in der mittleren Zeile durch 3 dividieren:
|
: 5
⋅ 3
|
![]() ![]() |
|
![]() ![]() |
⋅ 5
: 3
|
Damit haben wir nun den gesuchten Wert, der den 3 Helfer:innen entspricht: 150 € Lohn
Tabelle (antiproportional)
Beispiel:
Die Tabelle zeigt Werte von zwei Größen mit einem antiproportionalen Zusammenhang. Übertrage die Tabelle in dein Heft und berechne mit dem Dreisatz die fehlende Größen.
| 9 € Lospreis | 50 Lose |
| ? | ? |
| 15 € Lospreis | ? |
Wir suchen einen möglichst großen Zwischenwert für die € Lospreis in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 9 € Lospreis teilen müssen.) Diese Zahl sollte eine Teiler von 9 und von 15 sein, also der ggT(9,15) = 3.
Wir suchen deswegen erst den entsprechenden Wert für 3 € Lospreis:
|
Um von 9 € Lospreis in der ersten Zeile auf 3 € Lospreis in der zweiten Zeile zu kommen, müssen wir durch 3 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 50 Lose nicht durch 3 teilen, sondern mit 3 multiplizieren um auf den Wert zu kommen, der den 3 € Lospreis links entspricht:
|
: 3
|
![]() |
|
![]() |
⋅ 3
|
|
: 3
|
![]() |
|
![]() |
⋅ 3
|
Jetzt müssen wir ja wieder die 3 € Lospreis in der mittleren Zeile mit 5 multiplizieren, um auf die 15 € Lospreis in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 3
⋅ 5
|
![]() ![]() |
|
![]() ![]() |
⋅ 3
: 5
|
Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 150 Lose in der mittleren Zeile durch 5 dividieren:
|
: 3
⋅ 5
|
![]() ![]() |
|
![]() ![]() |
⋅ 3
: 5
|
Damit haben wir nun den gesuchten Wert, der den 15 € Lospreis entspricht: 30 Lose
Antiproportionalität überprüfen
Beispiel:
Prüfe, ob es sich um einen antiproportionalen Zusammenhang handelt; falls nicht, korrigiere die Werte so, dass der Zusammenhang antiproportional wird.
Wir überprüfen zuerst, ob die 4 Spezi-Flaschen den 12 Gäste entsprechen.
|
: 2
⋅ 3
|
![]() ![]() |
|
![]() ![]() |
⋅ 2
: 3
|
Der urpsrünglich vorgegebene Wert 4 Spezi-Flaschen(für 12 Gäste) war also korrekt.
Jetzt überprüfen wir, ob die 8 Spezi-Flaschen den 6 Gäste entsprechen.
|
: 4
⋅ 3
|
![]() ![]() |
|
![]() ![]() |
⋅ 4
: 3
|
Der urpsrünglich vorgegebene Wert 8 Spezi-Flaschen (für 6 Gäste) war also korrekt.
Dreisatz (antiprop.) beide Richtungen
Beispiel:
Bei einer großen Baustelle muss das Erdreich der Baugrube abtransportiert werden. 6 Lastwagen müssten dafür 6 mal fahren.
Wie oft müssten 4 LKWs fahren?
Wie viele LKWs bräuchte man, damit es mit 12 Fuhren für jeden reicht?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Wir suchen einen möglichst großen Zwischenwert für die Lastwagen in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 6 Lastwagen teilen müssen.) Diese Zahl sollte eine Teiler von 6 und von 4 sein, also der ggT(6,4) = 2.
Wir suchen deswegen erst den entsprechenden Wert für 2 Lastwagen:
|
Um von 6 Lastwagen in der ersten Zeile auf 2 Lastwagen in der zweiten Zeile zu kommen, müssen wir durch 3 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 6 Fuhren nicht durch 3 teilen, sondern mit 3 multiplizieren um auf den Wert zu kommen, der den 2 Lastwagen links entspricht:
|
: 3
|
![]() |
|
![]() |
⋅ 3
|
Jetzt müssen wir ja wieder die 2 Lastwagen in der mittleren Zeile mit 2 multiplizieren, um auf die 4 Lastwagen in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 3
⋅ 2
|
![]() ![]() |
|
![]() ![]() |
⋅ 3
: 2
|
Damit haben wir nun den gesuchten Wert, der den 4 Lastwagen entspricht: 9 Fuhren
Um von 6 Fuhren in der ersten Zeile auf 12 Fuhren in der zweiten Zeile zu kommen, müssen wir mit 2 multiplizieren. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 6 Lastwagen durch 2 teilen, um auf den Wert zu kommen, der den 12 Fuhren entspricht:
|
⋅ 2
|
![]() |
|
![]() |
: 2
|
|
⋅ 2
|
![]() |
|
![]() |
: 2
|
Damit haben wir nun den gesuchten Wert, der den 12 Fuhren entspricht: 3 Lastwagen
Wert bei Anti-Proport. (Anwendungen)
Beispiel:
Eine Drohne muss eine bestimmte Strecke zurücklegen. Wenn sie dabei mit einer Geschwindigkeit von 50 km/h fliegt, braucht sie dafür 4 Minuten.Wie lange braucht sie bei einer Geschwindigkeit von 43 km/h?
Da die Zuordnung der beiden Größen antiproportional ist, schreiben wir die Werte am besten mal in eine Tabelle:
| Geschwindigkeit | Flugzeit |
|---|---|
| 50 km/h | 4 min |
| ( : 50 ) | ( ⋅ 50 ) |
| 1 km/h | min |
| ( ⋅ 43 ) | ( : 43 ) |
| 43 km/h | min |
Die gesuchte Flugzeit ist also = 4 ≈ 4.651 min


