nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Zweisatz (antiproportional)

Beispiel:

Wenn Karla mit ihrem Handy jeden Tag immer 1 Minute telefonieren würde, würden ihre Freiminuten noch genau 45 Tage halten.

Wann wären ihre Freiminuten aufgebraucht, wenn sie täglich 5 min telefonieren würde?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:

1 Minute pro Tag45 Tage
5 Minuten pro Tag?

Um von 1 Minuten pro Tag in der ersten Zeile auf 5 Minuten pro Tag in der zweiten Zeile zu kommen, müssen wir mit 5 multiplizieren. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 45 Tage durch 5 teilen, um auf den Wert zu kommen, der den 5 Minuten pro Tag entspricht:

⋅ 5
1 Minute pro Tag45 Tage
5 Minuten pro Tag?
: 5
⋅ 5
1 Minute pro Tag45 Tage
5 Minuten pro Tag9 Tage
: 5

Damit haben wir nun den gesuchten Wert, der den 5 Minuten pro Tag entspricht: 9 Tage

Dreisatz (antiproportional)

Beispiel:

Um den noch fehlenden Betrag für eine Klassenfahrt zu bekommen, veranstaltet eine Schulkasse ein Lotterie. Wenn sie 7€ für ein Los verlangen, müssten sie 80 Lose verkaufen um genügend Geld zusammen zu bekommen.

Wie viele Lose müssten sie bei einem Lospreis von 4 € verkaufen?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:


7 € Lospreis80 Lose
??
4 € Lospreis?

Wir suchen einen möglichst großen Zwischenwert für die € Lospreis in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 7 € Lospreis teilen müssen.) Diese Zahl sollte eine Teiler von 7 und von 4 sein, also der ggT(7,4) = 1.

Wir suchen deswegen erst den entsprechenden Wert für 1 € Lospreis:


7 € Lospreis80 Lose
1 € Lospreis?
4 € Lospreis?

Um von 7 € Lospreis in der ersten Zeile auf 1 € Lospreis in der zweiten Zeile zu kommen, müssen wir durch 7 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 80 Lose nicht durch 7 teilen, sondern mit 7 multiplizieren um auf den Wert zu kommen, der den 1 € Lospreis links entspricht:

: 7

7 € Lospreis80 Lose
1 € Lospreis?
4 € Lospreis?

⋅ 7
: 7

7 € Lospreis80 Lose
1 € Lospreis560 Lose
4 € Lospreis?

⋅ 7

Jetzt müssen wir ja wieder die 1 € Lospreis in der mittleren Zeile mit 4 multiplizieren, um auf die 4 € Lospreis in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 7
⋅ 4

7 € Lospreis80 Lose
1 € Lospreis560 Lose
4 € Lospreis?

⋅ 7
: 4

Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 560 Lose in der mittleren Zeile durch 4 dividieren:

: 7
⋅ 4

7 € Lospreis80 Lose
1 € Lospreis560 Lose
4 € Lospreis140 Lose

⋅ 7
: 4

Damit haben wir nun den gesuchten Wert, der den 4 € Lospreis entspricht: 140 Lose

Tabelle (antiproportional)

Beispiel:

Die Tabelle zeigt Werte von zwei Größen mit einem antiproportionalen Zusammenhang. Übertrage die Tabelle in dein Heft und berechne mit dem Dreisatz die fehlende Größen.

8 Minuten pro Tag7 Tage
??
14 Minuten pro Tag?

Lösung einblenden

Wir suchen einen möglichst großen Zwischenwert für die Minuten pro Tag in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 8 Minuten pro Tag teilen müssen.) Diese Zahl sollte eine Teiler von 8 und von 14 sein, also der ggT(8,14) = 2.

Wir suchen deswegen erst den entsprechenden Wert für 2 Minuten pro Tag:


8 Minuten pro Tag7 Tage
2 Minuten pro Tag?
14 Minuten pro Tag?

Um von 8 Minuten pro Tag in der ersten Zeile auf 2 Minuten pro Tag in der zweiten Zeile zu kommen, müssen wir durch 4 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 7 Tage nicht durch 4 teilen, sondern mit 4 multiplizieren um auf den Wert zu kommen, der den 2 Minuten pro Tag links entspricht:

: 4

8 Minuten pro Tag7 Tage
2 Minuten pro Tag?
14 Minuten pro Tag?

⋅ 4
: 4

8 Minuten pro Tag7 Tage
2 Minuten pro Tag28 Tage
14 Minuten pro Tag?

⋅ 4

Jetzt müssen wir ja wieder die 2 Minuten pro Tag in der mittleren Zeile mit 7 multiplizieren, um auf die 14 Minuten pro Tag in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 4
⋅ 7

8 Minuten pro Tag7 Tage
2 Minuten pro Tag28 Tage
14 Minuten pro Tag?

⋅ 4
: 7

Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 28 Tage in der mittleren Zeile durch 7 dividieren:

: 4
⋅ 7

8 Minuten pro Tag7 Tage
2 Minuten pro Tag28 Tage
14 Minuten pro Tag4 Tage

⋅ 4
: 7

Damit haben wir nun den gesuchten Wert, der den 14 Minuten pro Tag entspricht: 4 Tage

Antiproportionalität überprüfen

Beispiel:

Prüfe, ob es sich um einen antiproportionalen Zusammenhang handelt; falls nicht, korrigiere die Werte so, dass der Zusammenhang antiproportional wird.

Lösung einblenden

Wir überprüfen zuerst, ob die 12 Tage den 3 Minuten pro Tag entsprechen.

: 4
⋅ 3

4 Minuten pro Tag9 Tage
1 Minute pro Tag36 Tage
3 Minuten pro Tag12 Tage

⋅ 4
: 3

Der urpsrünglich vorgegebene Wert 12 Tage(für 3 Minuten pro Tag) war also korrekt.


Jetzt überprüfen wir, ob die 3 Tage den 12 Minuten pro Tag entsprechen.

: 1
⋅ 3

4 Minuten pro Tag9 Tage
4 Minuten pro Tag9 Tage
12 Minuten pro Tag3 Tage

⋅ 1
: 3

Der urpsrünglich vorgegebene Wert 3 Tage (für 12 Minuten pro Tag) war also korrekt.

Dreisatz (antiprop.) beide Richtungen

Beispiel:

Ein Hausmeister hat ein extra Budget für die Schulreinigung in den Ferien, das er unter helfenden Schüler:innen aufteilen kann (er selbst bekommt nichts von dem Geld). Wenn er 5 Helfer:innen einstellt, reicht es für jeden 80 € Lohn.

Welchen Lohn könnte er jeder Helfer:in bezahlen, wenn er 4 Helfer:innen hätte?
Wie viele Helfer:innen könnte man mit einem Lohn von 25 € bezahlen?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:


5 Helfer:innen80 € Lohn
??
4 Helfer:innen?

Wir suchen einen möglichst großen Zwischenwert für die Helfer:innen in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 5 Helfer:innen teilen müssen.) Diese Zahl sollte eine Teiler von 5 und von 4 sein, also der ggT(5,4) = 1.

Wir suchen deswegen erst den entsprechenden Wert für 1 Helfer:innen:


5 Helfer:innen80 € Lohn
1 Helfer:in?
4 Helfer:innen?

Um von 5 Helfer:innen in der ersten Zeile auf 1 Helfer:innen in der zweiten Zeile zu kommen, müssen wir durch 5 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 80 € Lohn nicht durch 5 teilen, sondern mit 5 multiplizieren um auf den Wert zu kommen, der den 1 Helfer:innen links entspricht:

: 5

5 Helfer:innen80 € Lohn
1 Helfer:in400 € Lohn
4 Helfer:innen?

⋅ 5

Jetzt müssen wir ja wieder die 1 Helfer:innen in der mittleren Zeile mit 4 multiplizieren, um auf die 4 Helfer:innen in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 5
⋅ 4

5 Helfer:innen80 € Lohn
1 Helfer:in400 € Lohn
4 Helfer:innen100 € Lohn

⋅ 5
: 4

Damit haben wir nun den gesuchten Wert, der den 4 Helfer:innen entspricht: 100 € Lohn



Für die andere Frage (Wie viele Helfer:innen könnte man mit einem Lohn von 25 € bezahlen?) vertauschen wir die linke mit der rechten Spalte in der Tabelle, weil wir jetzt ja zwei "€ Lohn"-Werte haben und nach einem "Helfer:innen"-Wert gesucht wird:


80 € Lohn5 Helfer:innen
??
25 € Lohn?

Wir suchen einen möglichst großen Zwischenwert für die € Lohn in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 80 € Lohn teilen müssen.) Diese Zahl sollte eine Teiler von 80 und von 25 sein, also der ggT(80,25) = 5.

Wir suchen deswegen erst den entsprechenden Wert für 5 € Lohn:


80 € Lohn5 Helfer:innen
5 € Lohn?
25 € Lohn?

Um von 80 € Lohn in der ersten Zeile auf 5 € Lohn in der zweiten Zeile zu kommen, müssen wir durch 16 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 5 Helfer:innen nicht durch 16 teilen, sondern mit 16 multiplizieren um auf den Wert zu kommen, der den 5 € Lohn links entspricht:

: 16

80 € Lohn5 Helfer:innen
5 € Lohn80 Helfer:innen
25 € Lohn?

⋅ 16

Jetzt müssen wir ja wieder die 5 € Lohn in der mittleren Zeile mit 5 multiplizieren, um auf die 25 € Lohn in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 16
⋅ 5

80 € Lohn5 Helfer:innen
5 € Lohn80 Helfer:innen
25 € Lohn16 Helfer:innen

⋅ 16
: 5

Damit haben wir nun den gesuchten Wert, der den 25 € Lohn entspricht: 16 Helfer:innen

Wert bei Anti-Proport. (Anwendungen)

Beispiel:

Ein Raum wird mit 35 LED-Leuchten á 140 Lumen ausgeleuchtet. Aus ästhetischen Gründen sollen nur noch 11 Leuchten im Raum installiert sein, diese sollen aber die gleiche Helligkeit erzeugen. Wie viel Lumen brauchen dann diese neuen LED-Leuchten?

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Da die Zuordnung der beiden Größen antiproportional ist, schreiben wir die Werte am besten mal in eine Tabelle:

Anzahl LED-LeuchtenHelligkeit
35 140 Lumen
( : 35 )( ⋅ 35 )
1 4900 Lumen
( ⋅ 11 )( : 11 )
11 4900 11 Lumen

Die gesuchte Helligkeit ist also 4900 11 = 445 5 11 ≈ 445.455 Lumen