Klasse 5
Klasse 6
Klasse 7
Klasse 8
Klasse 9
Klasse 10
Fit für die Oberstufe
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Zweisatz (antiproportional)
Beispiel:
Um den noch fehlenden Betrag für eine Klassenfahrt zu bekommen, veranstaltet eine Schulkasse ein Lotterie. Wenn sie 1€ für ein Los verlangen, müssten sie 480 Lose verkaufen um genügend Geld zusammen zu bekommen.
Wie viele Lose müssten sie bei einem Lospreis von 8 € verkaufen?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Um von 1 € Lospreis in der ersten Zeile auf 8 € Lospreis in der zweiten Zeile zu kommen, müssen wir mit 8 multiplizieren. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 480 Lose durch 8 teilen, um auf den Wert zu kommen, der den 8 € Lospreis entspricht:
|
⋅ 8
|
![]() |
|
![]() |
: 8
|
|
⋅ 8
|
![]() |
|
![]() |
: 8
|
Damit haben wir nun den gesuchten Wert, der den 8 € Lospreis entspricht: 60 Lose
Dreisatz (antiproportional)
Beispiel:
Zur Berechnung einer komplizierten Verschlüsselung muss ein Computer mit 6 CPU-Kernen 5 ms rechnen.
Wie lange bräuchte ein Computer mit 10 solchen CPU-Kernen?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Wir suchen einen möglichst großen Zwischenwert für die CPU-Kerne in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 6 CPU-Kerne teilen müssen.) Diese Zahl sollte eine Teiler von 6 und von 10 sein, also der ggT(6,10) = 2.
Wir suchen deswegen erst den entsprechenden Wert für 2 CPU-Kerne:
|
Um von 6 CPU-Kerne in der ersten Zeile auf 2 CPU-Kerne in der zweiten Zeile zu kommen, müssen wir durch 3 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 5 ms nicht durch 3 teilen, sondern mit 3 multiplizieren um auf den Wert zu kommen, der den 2 CPU-Kerne links entspricht:
|
: 3
|
![]() |
|
![]() |
⋅ 3
|
|
: 3
|
![]() |
|
![]() |
⋅ 3
|
Jetzt müssen wir ja wieder die 2 CPU-Kerne in der mittleren Zeile mit 5 multiplizieren, um auf die 10 CPU-Kerne in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 3
⋅ 5
|
![]() ![]() |
|
![]() ![]() |
⋅ 3
: 5
|
Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 15 ms in der mittleren Zeile durch 5 dividieren:
|
: 3
⋅ 5
|
![]() ![]() |
|
![]() ![]() |
⋅ 3
: 5
|
Damit haben wir nun den gesuchten Wert, der den 10 CPU-Kerne entspricht: 3 ms
Tabelle (antiproportional)
Beispiel:
Die Tabelle zeigt Werte von zwei Größen mit einem antiproportionalen Zusammenhang. Übertrage die Tabelle in dein Heft und berechne mit dem Dreisatz die fehlende Größen.
| 3 Personen | 20 h |
| ? | ? |
| 2 Personen | ? |
Wir suchen einen möglichst großen Zwischenwert für die Personen in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 3 Personen teilen müssen.) Diese Zahl sollte eine Teiler von 3 und von 2 sein, also der ggT(3,2) = 1.
Wir suchen deswegen erst den entsprechenden Wert für 1 Personen:
|
Um von 3 Personen in der ersten Zeile auf 1 Personen in der zweiten Zeile zu kommen, müssen wir durch 3 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 20 h nicht durch 3 teilen, sondern mit 3 multiplizieren um auf den Wert zu kommen, der den 1 Personen links entspricht:
|
: 3
|
![]() |
|
![]() |
⋅ 3
|
|
: 3
|
![]() |
|
![]() |
⋅ 3
|
Jetzt müssen wir ja wieder die 1 Personen in der mittleren Zeile mit 2 multiplizieren, um auf die 2 Personen in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 3
⋅ 2
|
![]() ![]() |
|
![]() ![]() |
⋅ 3
: 2
|
Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 60 h in der mittleren Zeile durch 2 dividieren:
|
: 3
⋅ 2
|
![]() ![]() |
|
![]() ![]() |
⋅ 3
: 2
|
Damit haben wir nun den gesuchten Wert, der den 2 Personen entspricht: 30 h
Antiproportionalität überprüfen
Beispiel:
Prüfe, ob es sich um einen antiproportionalen Zusammenhang handelt; falls nicht, korrigiere die Werte so, dass der Zusammenhang antiproportional wird.
Wir überprüfen zuerst, ob die 11 ms den 5 CPU-Kerne entsprechen.
|
: 6
⋅ 5
|
![]() ![]() |
|
![]() ![]() |
⋅ 6
: 5
|
Der urpsrünglich vorgegebene Wert 11 ms (für 5 CPU-Kerne) war also falsch, richtig wäre 12 ms gewesen.
Jetzt überprüfen wir, ob die 21 ms den 3 CPU-Kerne entsprechen.
|
: 2
⋅ 1
|
![]() ![]() |
|
![]() ![]() |
⋅ 2
: 1
|
Der urpsrünglich vorgegebene Wert 21 ms (für 3 CPU-Kerne) war also falsch, richtig wäre 20 ms gewesen.
Dreisatz (antiprop.) beide Richtungen
Beispiel:
Wenn Frau Baumann so Auto fährt, dass sie 3 Liter pro 100km verbraucht, kommt sie mit einer Tankfüllung 1000 km weit.
Wie weit würde sie mit einer Tankfüllung kommen, wenn sie mit einem "2 Liter/100km "-Schnitt fahren würde?
Mit welchem "Liter pro 100km"-Schnitt muss sie fahren, dass sie mit einer Tankfüllung 500 km weit kommt?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Wir suchen einen möglichst großen Zwischenwert für die Liter pro 100km in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 3 Liter pro 100km teilen müssen.) Diese Zahl sollte eine Teiler von 3 und von 2 sein, also der ggT(3,2) = 1.
Wir suchen deswegen erst den entsprechenden Wert für 1 Liter pro 100km:
|
Um von 3 Liter pro 100km in der ersten Zeile auf 1 Liter pro 100km in der zweiten Zeile zu kommen, müssen wir durch 3 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 1000 km nicht durch 3 teilen, sondern mit 3 multiplizieren um auf den Wert zu kommen, der den 1 Liter pro 100km links entspricht:
|
: 3
|
![]() |
|
![]() |
⋅ 3
|
Jetzt müssen wir ja wieder die 1 Liter pro 100km in der mittleren Zeile mit 2 multiplizieren, um auf die 2 Liter pro 100km in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 3
⋅ 2
|
![]() ![]() |
|
![]() ![]() |
⋅ 3
: 2
|
Damit haben wir nun den gesuchten Wert, der den 2 Liter pro 100km entspricht: 1500 km
Um von 1000 km in der ersten Zeile auf 500 km in der zweiten Zeile zu kommen, müssen wir durch 2 teilen. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 3 Liter pro 100km mit 2 multiplizieren, um auf den Wert zu kommen, der den 500 km entspricht:
|
: 2
|
![]() |
|
![]() |
⋅ 2
|
|
: 2
|
![]() |
|
![]() |
⋅ 2
|
Damit haben wir nun den gesuchten Wert, der den 500 km entspricht: 6 Liter pro 100km
Wert bei Anti-Proport. (Anwendungen)
Beispiel:
Auf einer Großbaustelle müssen unglaubliche Mengen an Aushub abtransportiert werden. Dabei brauchen 2 LKWs genau 40 Fahrten. Wieviele Fahrten bräuchten 5 LKWs durchschnittlich?(Bitte auf eine Stelle hinterm Komma runden, auch wenn es inhaltlich keinen Sinn macht.)
Da die Zuordnung der beiden Größen antiproportional ist, schreiben wir die Werte am besten mal in eine Tabelle:
| LKW-Anzahl | Fahrten-Anzahl |
|---|---|
| 2 LKWs | 40 Fahrten |
| ( : 2 ) | ( ⋅ 2 ) |
| 1 LKWs | Fahrten |
| ( ⋅ 5 ) | ( : 5 ) |
| 5 LKWs | Fahrten |
Die gesuchte Fahrten-Anzahl ist also = Fahrten


