nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Mittelwert berechnen

Beispiel:

Bestimme den Mittelwert von: 8300; 5600; 500

Lösung einblenden

Um den Mittelwert zu ermitteln, müssen wir zuerst alle Werte addieren:

8300 + 5600 + 500 = 14400

... und dann diese Summe durch die Anzahl der Werte, also hier 3, teilen:

Mittelwert m = 14400 3 = 4800

Mittelwert rückwärts

Beispiel:

Die Werte 98; 55; 57; ⬜ haben den Mittelwert 56.

Welchen Wert muss dann das Kästchen ⬜ haben?

Lösung einblenden

Wir wissen ja, dass man den Mittelwert erhält, indem man alle Werte zusammenzählt und das Ergebnis durch die Anzahl der Werte dividiert, also:

98+55+57+ 4 = 56

Wenn wir nun alle Werte addieren erhalten wir:

210+ 4 = 56

Wenn wir die Summe im Zähler durch 4 teilen, erhalten wir 56.

Also muss doch die Summe im Zähler selbst gerade das 4-fache von 56, also 4 ⋅ 56 = 224 sein, also ...

210 + ⬜ = 224

Jetzt sieht man relativ leicht, dass dass Kästchen ⬜ = 224 - 210 sein muss.

⬜ = 14

Zentralwert angeben

Beispiel:

Gib mit Hilfe der Rangliste den Zentralwert an.

Urliste: 9; 20; 19; 18; 9; 19; 6; 1; 20; 19; 5; 17

Lösung einblenden

Zuerst sortieren wir die Datenliste:

  1. -> 1
  2. -> 5
  3. -> 6
  4. -> 9
  5. -> 9
  6. -> 17
  7. -> 18
  8. -> 19
  9. -> 19
  10. -> 19
  11. -> 20
  12. -> 20

Da die Datenmenge eine gerade Anzahl hat, müssen wir für den Zentralwert den Mittelwert zwischen größtem Wert der unteren Hälfte (also 17) und dem kleinstem Wert der oberen Hälfte (hier 18) berechnen.
also (17+18):2 = 17,5

Kenngrößen bestimmen

Beispiel:

Bestimme jeweils das Minimum, das Maximum, die Spannweite, den Mittelwert und den Zentralwert von:

140 g; 80 g; 110 g; 90 g; 100 g; 110 g; 70 g

Lösung einblenden

Minimum und Maximum

Wenn man sich alle Werte durchschaut, erkennt man schnell, dass der kleinst Wert, also das Minimum 70 g und der größte Wert, also das Maximum 140 g ist.

Spannweite

Die Spannweite ist einfach die Differenz zwischen dem Maximum und dem Minimum, also 140 g - 70 g = 70 g.

Mittelwert

Um den Mittelwert zu ermitteln, müssen wir zuerst alle Werte addieren:

140 g + 80 g + 110 g + 90 g + 100 g + 110 g + 70 g = 700 g

... und dann diese Summe durch die Anzahl der Werte, also hier 7, teilen:

Mittelwert m = 700 7 g = 100 g

Zentralwert

Zuerst sortieren wir die Datenliste:

  1. -> 70
  2. -> 80
  3. -> 90
  4. -> 100
  5. -> 110
  6. -> 110
  7. -> 140

Da die Datenmenge eine ungerade Anzahl hat, müssen wir für den Zentralwert einfach den mittleren (hier also den 4-ten) Wert der Liste nehmen, also 100 g.

Relative Häufigkeit

Beispiel:

Bei einer Umfrage unter Schüler:innen wurde gefragt, wie viele Personen in ihrem Haushalt leben. Dabei gaben 6 an, in einem 2-Personen-Haushalt zu leben, 12 in einem 3-Personen-Haushalt, 54 in einem 4-Personen-Haushalt und 28 Schüler:innen gaben an in einem Haushalt mit mindestens 5 Personen zu wohnen.Bestimme die relativen Häufigkeiten der verschiedenen Haushaltsgrößen bei den Schüler:innen in Prozent.

Lösung einblenden

Zuerst addieren wir alle Schüler:innen zusammen und erhalten: 6 + 12 + 54 + 28 = 100

Um nun die relative Häufigkleit zu bestimmen, müssen wir einfach jede Zahl durch die Gesamtsumme 100 teilen:

Um dann aus dem Bruch auf die Prozentzahl zu kommen, müssen wir den Bruch so erweitern und evtl. wieder kürzen, dass der Nenner 100 wird:

2-Personen: 6 100 = 6%

3-Personen: 12 100 = 12%

4-Personen: 54 100 = 54%

5-Personen oder mehr: 28 100 = 28%

Relative Häufigkeit rückwärts

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Die Innenwinkel aller Sektoren
sind Vielfache von 45°)

Bei einer Datenerhebung werden 320 Personen befragt. Die prozentuale Anteile für die Optionen A, B und C sind in dem Kreisdiagramm rechts dargestellt.

Bestimme jeweils die tatsächlichen Anzahlen an Personen, die für A, B oder C gestimmt haben.

Lösung einblenden

Da ja gegeben ist, dass alle Innenwinkel der Sektoren des Kreisdiagramms Vielfache von 45° sind, kann man schnnell die Innenwinkel der einzelnen Sektoren bestimemen:

A: 225°

B: 90°

C: 45°

Wenn wir nun diese Winkel durch 360° teilen, erhalten wir die relativen Häufigkeiten.

Diese müssen wir dann nur noch mit der Gesamtzahl n=320 multiplizieren, um auf die tatsächlichen Personenzahlen zu kommen:

Optionrelative Häufigkeittatsächliche Zahl
A 225 360 = 5 8 5 8 ⋅320 = 200
B 90 360 = 1 4 1 4 ⋅320 = 80
C 45 360 = 1 8 1 8 ⋅320 = 40