Klasse 5
Klasse 6
Klasse 7
Klasse 8
Klasse 9
Klasse 10
Fit für die Oberstufe
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Umfang eines Kreises
Beispiel:
Ein Kreis hat den Radius 9 m. Bestimme seinen Umfang.
Wir wenden einfach die Formel
U = 2π r
an und erhalten so:
U = 2 ⋅ π ⋅ 9 m ≈ 56,549 m
Vom Umfang zum Radius
Beispiel:
Ein Kreis hat den Umfang U = 48.5 cm. Bestimme seinen Durchmesser.
Wir wenden einfach die Formel
U = π ⋅ d
an und stellen um nach:
d =
So erhalten wir:
d = cm ≈ 15,438 cm
Vom Umfang zum Radius
Beispiel:
Ein Kreis hat den Umfang U = 12 mm. Bestimme seinen Durchmesser.
Wir wenden einfach die Formel
U = π ⋅ d
an und stellen um nach:
d =
So erhalten wir:
d = mm ≈ 3,82 mm
Kreisfläche
Beispiel:
Ein Kreis hat den Radius 25,5 m. Bestimme seinen Flächeninhalt.
Wir wenden einfach die Formel
A = π ⋅ r2
an und erhalten so:
A = π ⋅ 25.52 m² ≈ 2042,821 m²
Von der Kreisfläche zum Radius
Beispiel:
Ein Kreis hat den Flächeninhalt A = 28 m². Bestimme seinen Durchmesser.
Wir wenden einfach die Formel
A = π r2
an und stellen um nach:
r2 =
r =
So erhalten wir:
r ≈
Für den Durchmesser gilt also d = 2⋅r ≈ 5,971m
Kreisfläche
Beispiel:
Ein Kreis hat den Durchmesser 30 mm. Bestimme seinen Flächeninhalt.
Zuerst müssen wir den Radius als halben Durchmesser berechnnen: r =
Wir wenden einfach die Formel
A = π ⋅ r2
an und erhalten so:
A = π ⋅ 152 mm² ≈ 706,858 mm²
Teilflächen von Kreisen
Beispiel:
Berechne den Inhalt der blauen Fläche.
Man berechnet die blaue Fläche einfach als Differenz des Flächeninhalts des großen Kreises mit Radius r1=
Somit gilt:
A = π ⋅ 832 - π ⋅ 332
= 6889⋅π - 1089⋅π
=
5800⋅π
Also A ≈ 18221,24 m2
