nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Zufallsgröße (ohne Wahrscheinlichkeit)

Beispiel:

In einer Urne sind zwei Kugeln, die mit der Zahl 4 beschriftet sind und drei Kugeln, die mit der Zahl 6 beschriftet sind. Es werden zwei Kugeln mit Zurücklegen gezogen.Die Zufallsgröße X beschreibt das Produkt der Zahlen der beiden gezogenen Kugeln. Gib alle Werte an, die die Zufallsgröße X annehmen kann.

Lösung einblenden

Für die Zufallsgröße X: 'Produkt der beiden Kugeln' sind folgende Werte möglich:

Zufallsgröße X162436
zugehörige
Ereignisse
4 - 44 - 6
6 - 4
6 - 6

Zufallsgröße WS-Verteilung

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Zwei gleiche Glücksräder wie rechts in der Abbildung werden gleichzeitig gedreht. Die Zufallsgröße X beschreibt die Summe der Zahlen die bei den beiden Glücksräder erscheinen. Stelle eine Wahrscheinlichkeitsverteilung für die Zufallsgröße X auf.

Lösung einblenden

Für die Zufallsgröße X: 'Summe der beiden Glücksräder' sind folgende Werte möglich:

Zufallsgröße XX = 2X = 3X = 4X = 5X = 6
zugehörige
Ergebnisse
1 → 11 → 2
2 → 1
1 → 3
2 → 2
3 → 1
2 → 3
3 → 2
3 → 3
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(


Jetzt müssen die Wahrscheinlichkeiten der einzelnen Ereignisse erst mal (mit Hilfe eines Baums) berechnet werden.


Und somit können wir dann auch die Wahrscheinlichkeiten für die einzelnen Werte der Zufallsgröße berechnen.

Zufallsgröße XX = 2X = 3X = 4X = 5X = 6
zugehörige
Wahrscheinlichkeit P(X)
3 8 3 8 3 8 3 8
+ 3 8 3 8
3 8 1 4
+ 3 8 3 8
+ 1 4 3 8
3 8 1 4
+ 1 4 3 8
1 4 1 4
  = 9 64 9 64 + 9 64 3 32 + 9 64 + 3 32 3 32 + 3 32 1 16



Hiermit ergibt sich die gesuchte Wahrscheinlichkeitsverteilung für die Zufallsgröße X:

Zufallsgröße X23456
P(X=k) 9 64 9 32 21 64 3 16 1 16

Zufallsgr. WS-Vert. (auch ohne zur.)

Beispiel:

In einer Urne sind vier Kugeln, die mit der Zahl 4 beschriftet sind und sechs Kugeln, die mit der Zahl 6 beschriftet sind. Es werden zwei Kugeln ohne Zurücklegen gezogen. Die Zufallsgröße X beschreibt die Summe der Zahlen der beiden gezogenen Kugeln. Stelle eine Wahrscheinlichkeitsverteilung für die Zufallsgröße X auf.

Lösung einblenden

Für die Zufallsgröße X: 'Summe der beiden Kugeln' sind folgende Werte möglich:

Zufallsgröße XX = 8X = 10X = 12
zugehörige
Ergebnisse
4 → 44 → 6
6 → 4
6 → 6
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(


Jetzt müssen die Wahrscheinlichkeiten der einzelnen Ereignisse erst mal (mit Hilfe eines Baums) berechnet werden.


Und somit können wir dann auch die Wahrscheinlichkeiten für die einzelnen Werte der Zufallsgröße berechnen.

Zufallsgröße XX = 8X = 10X = 12
zugehörige
Wahrscheinlichkeit P(X)
2 5 3 9 2 5 6 9
+ 3 5 4 9
3 5 5 9
  = 2 15 4 15 + 4 15 1 3



Hiermit ergibt sich die gesuchte Wahrscheinlichkeitsverteilung für die Zufallsgröße X:

Zufallsgröße X81012
P(X=k) 2 15 8 15 1 3

Zufallsgr. WS-Vert. (ziehen bis erstmals ...)

Beispiel:

Aus einem Kartenstapel mit 8 Karten der Farbe Herz und 2 weiteren Karten soll solange eine Karte gezogen werden, bis eine Herz-Karte erscheint. Die Zufallsgröße X beschreibt dabei die Anzahl der Ziehungen, bis die erste Herz-Karte gezogen worden ist. Stelle eine Wahrscheinlichkeitsverteilung für die Zufallsgröße X auf.
(Denk daran, die Brüche vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Da ja nur 2 Karten vom Typ 'kein Herz' vorhanden sind, muss spätestens im 3-ten Versuch (wenn dann alle Karten vom Typ 'kein Herz' bereits gezogen und damit weg sind) eine Karte vom Typ 'Herz' gezogen werden.

Das heißt die Zufallsgröße X kann nur Werte zwischen 1 und 3 annehmen.

Aus dem reduzierten Baumdiagramm rechts kann man nun die Wahrscheinlichkeitsverteilung der Zufallsgröße X übernehmen:

Zufallsgröße X123
P(X=k) 4 5 8 45 1 45

Zufallsgröße rückwärts

Beispiel:

Ein Glücksrad hat drei Sektoren, die mit den Zahlen 1, 2 und 3 beschriftet sind. Es wird zwei mal gedreht. Die Zufallsgröße X beschreibt dabei das Produkt der Zahlen die bei den beiden Glücksraddrehungen erscheinen. Bei der Wahrscheinlichkeitsverteilung von X sind nur der erste und der letzte Wert bekannt (siehe Tabelle). Wie groß müssen jeweils die Winkel der Sektoren sein?

Zufallsgröße X123469
P(X=k) 169 1296 ???? 121 324

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Für X=1 gibt es nur das Ereignis: '1'-'1', also dass zwei mal hintereinander '1' kommt.

Wenn p1 die Wahrscheinlichkeit von '1' ist, dann muss also für die Wahrscheinlichkeit, dass zwei mal hintereinander '1' kommt, gelten: P(X=1) = p1 ⋅ p1 (siehe Baumdiagramm).

Aus der Tabelle können wir aber P(X=1) = 169 1296 heraus lesen, also muss gelten:

p1 ⋅ p1 = (p1)2 = 169 1296 und somit p1 = 13 36 .

Ebenso gibt es für X=9 nur das Ereignis: '3'-'3', also dass zwei mal hintereinander '3' kommt.

Wenn p3 die Wahrscheinlichkeit von '3' ist, dann muss also für die Wahrscheinlichkeit, dass zwei mal hintereinander '3' kommt, gelten: P(X=9) = p3 ⋅ p3 (siehe Baumdiagramm).

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Aus der Tabelle können wir aber P(X=9) = 121 324 heraus lesen, also muss gelten:

p3 ⋅ p3 = (p3)2 = 121 324 und somit p3 = 11 18 .

Da es aber nur drei Optionen gibt, muss p1 + p2 + p3 = 1 gelten, also

p2 = 1 - p1 - p3 = 1 - 13 36 - 11 18 = 36 36 - 13 36 - 22 36 = 1 36

Um nun noch die Mittelpunktswinkel der drei Sektoren zu ermittlen, müssen wir einfach die Wahrscheinlichkeit mit 360° multiplizieren, weil ja für die Wahrscheinlichkeit eines Sektors mit Mittelpunktswinkel α gilt: p = α 360°

Somit erhalten wir:

α1 = 13 36 ⋅ 360° = 130°

α2 = 1 36 ⋅ 360° = 10°

α3 = 11 18 ⋅ 360° = 220°

Erwartungswerte

Beispiel:

Ein Spieler darf einmal Würfeln. Bei einer 6 bekommt er 18€, bei einer 5 bekommt er 24€, bei einer 4 bekommt er 12€. Würfelt er eine 1, 2 oder 3 so bekommt er 6€. Wie hoch müsste der Einsatz sein, damit das Spiel fair ist?

Lösung einblenden

Die Zufallsgröße X beschreibt den Auszahlungsbetrag.

Erwartungswert der Zufallsgröße X

Ereignis 1-3 4 5 6
Zufallsgröße xi 6 12 24 18
P(X=xi) 1 2 1 6 1 6 1 6
xi ⋅ P(X=xi) 3 2 4 3

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 6⋅ 1 2 + 12⋅ 1 6 + 24⋅ 1 6 + 18⋅ 1 6

= 3+ 2+ 4+ 3
= 12

Einsatz für faires Spiel bestimmen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Bei einem Glücksrad wie rechts abgebildet soll das noch fehlende Feld mit einem Betrag so bestückt werden, dass das Spiel bei einem Einsatz von 10,75€ fair ist.

Lösung einblenden

Die Zufallsgröße X beschreibt die Auszahlung.

Die Zufallsgröße Y beschreibt den Gewinn, also Auszahlung - Einsatz.

Erwartungswerte der Zufallsgrößen X und Y

Ereignis 2 8 16 ?
Zufallsgröße xi 2 8 16 x
Zufallsgröße yi (Gewinn) -8.75 -2.75 5.25 x-10.75
P(X=xi) 3 8 2 8 2 8 1 8
xi ⋅ P(X=xi) 3 4 2 4 1 8 ⋅ x
yi ⋅ P(Y=yi) - 26.25 8 - 5.5 8 10.5 8 1 8 ⋅(x-10.75)

Um den gesuchten Auszahlungsbetrag zu berrechnen hat man zwei Möglichkeiten:

Entweder stellt man eine Gleichung auf, so dass der Erwartungswert des Auszahlungsbetrags gleich des Einsatzes ist ...

E(X) = 10.75

3 8 · 2 + 2 8 · 8 + 2 8 · 16 + 1 8 x = 10.75

3 4 +2 +4 + 1 8 x = 10.75

3 4 +2 +4 + 1 8 x = 10,75
1 8 x + 27 4 = 10,75 |⋅ 8
8( 1 8 x + 27 4 ) = 86
x +54 = 86 | -54
x = 32

... oder man stellt eine Gleichung auf, so dass der Erwartungswert des Gewinns gleich null ist:

E(Y) = 0

3 8 · ( -8,75 ) + 2 8 · ( -2,75 ) + 2 8 · 5,25 + 1 8 ( x -10,75 ) = 0

- 26,25 8 - 2,75 4 + 5,25 4 + 1 8 · x + 1 8 · ( -10,75 ) = 0

- 26,25 8 - 2,75 4 + 5,25 4 + 1 8 · x + 1 8 · ( -10,75 ) = 0
-3,28125 -0,6875 +1,3125 + 1 8 x -1,34375 = 0
1 8 x -4 = 0 |⋅ 8
8( 1 8 x -4 ) = 0
x -32 = 0 | +32
x = 32

In beiden Fällen ist also der gesuchte Betrag: 32

Erwartungswert ganz offen

Beispiel:

Eine Klasse möchte beim Schulfest ein Glücksrad mit Spielgeld anbieten. Dabei soll das Glücksrad in Sektoren aufgeteilt werden, in denen der Auszahlungsbetrag (z.B. 3€) drin steht. Nach langer Diskussion einigt man sich auf folgende Punkte:• Das Spiel mit dem Glücksrad muss fair sein • Der Einsatz soll 8€ betragen• Der minimale Auszahlungsbetrag soll 4€ sein• Der maximale Auszahlungsbetrag soll soll 17€ sein• Es sollen genau 4 Sektoren mit verschiedenen Auszahlungsbeträgen auf dem Glücksrad seinFinde eine Möglichkeit für solch ein Glücksrad und trage diese in die Tabelle ein.

Lösung einblenden

Eine (von vielen möglichen) Lösungen:

Als erstes schreiben wir mal die Vorgaben in die Tabelle rein.

  Feld1 Feld2 Feld3 Feld4
X (z.B. Auszahlung) 4 17
Y Gewinn (Ausz. - Einsatz) -4 9
P(X) = P(Y)
Y ⋅ P(Y)

Jetzt setzen wir die Wahrscheinlichkeiten so, dass der negative Beitrag vom minimalen Betrag zum Erwartungswert den gleichen Betrag hat wie der positve vom maximalen Betrag.(dazu einfach jeweils den Gewinn in den Nenner der Wahrscheinlichkeit)

  Feld1 Feld2 Feld3 Feld4
X (z.B. Auszahlung) 4 17
Y Gewinn (Ausz. - Einsatz) -4 9
P(X) = P(Y) 1 4 1 9
Y ⋅ P(Y) -1 1

Die bisherigen Optionen vereinen eine Wahrscheinlichkeit von 1 4 + 1 9 = 13 36
Als Restwahrscheinlichkeit für die verbleibenden Beträge bleibt nun also 1- 13 36 = 23 36 .
Diese wird auf die beiden verbleibenden Optionen verteilt:

  Feld1 Feld2 Feld3 Feld4
X (z.B. Auszahlung) 4 17
Y Gewinn (Ausz. - Einsatz) -4 9
P(X) = P(Y) 1 4 23 72 23 72 1 9
Y ⋅ P(Y) -1 1

Damit nun der Erwartungswert =0 wird, müssen sich die beiden noch verbleibenden Anteile daran gegenseitig aufheben. Dies erreicht man, in dem man den Gewinn jeweils gleich 'weit vom Einsatz weg' (nämlich 2) setzt.

  Feld1 Feld2 Feld3 Feld4
X (z.B. Auszahlung) 4 6 10 17
Y Gewinn (Ausz. - Einsatz) -4 -2 2 9
P(X) = P(Y) 1 4 23 72 23 72 1 9
Winkel 90° 115° 115° 40°
Y ⋅ P(Y) -1 - 23 36 23 36 1

Wenn man nun den Erwartungswert berechnet, kommt der gesuchte heraus:

E(Y)= -4⋅ 1 4 + -2⋅ 23 72 + 2⋅ 23 72 + 9⋅ 1 9

= -1 - 23 36 + 23 36 + 1
= - 36 36 - 23 36 + 23 36 + 36 36
= 0 36
= 0

Erwartungswerte bei 'Ziehen bis erstmals ...'

Beispiel:

In einer Urne sind 11 rote und 4 blaue Kugeln. Es soll (ohne zurücklegen) solange gezogen werden, bis erstmals eine rote Kugel erscheint. Bestimme den Erwartungswert für die Anzahl der Ziehungen, bis die erste rote Kugel gezogen ist.
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Wahrscheinlichkeiten für die verschiedenen Ausgänge

Die Wahrscheinlichkeit für ein 'rot' im 1-ten Versuch st: 11 15

Die Wahrscheinlichkeit für ein 'rot' im 2-ten Versuch st: 22 105

Die Wahrscheinlichkeit für ein 'rot' im 3-ten Versuch st: 22 455

Die Wahrscheinlichkeit für ein 'rot' im 4-ten Versuch st: 11 1365

Die Wahrscheinlichkeit für ein 'rot' im 5-ten Versuch st: 1 1365

Die Zufallsgröße X beschreibt die Anzahl der Ziehungen. bis die erste rote Kugel gezogen ist.

Erwartungswert der Zufallsgröße X

Ereignis 1 2 3 4 5
Zufallsgröße xi 1 2 3 4 5
P(X=xi) 11 15 22 105 22 455 11 1365 1 1365
xi ⋅ P(X=xi) 11 15 44 105 66 455 44 1365 1 273

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 1⋅ 11 15 + 2⋅ 22 105 + 3⋅ 22 455 + 4⋅ 11 1365 + 5⋅ 1 1365

= 11 15 + 44 105 + 66 455 + 44 1365 + 1 273
= 1001 1365 + 572 1365 + 198 1365 + 44 1365 + 5 1365
= 1820 1365
= 4 3

1.33

Erwartungswerte mit gesuchten Anzahlen im WS-Baum

Beispiel:

Ein Spieler darf aus einer Urne mit 3 blauen und 7 roten Kugeln 3 Kugeln ohne zurücklegen ziehen. Zieht er dabei 3 blaue Kugeln, so erhält er 100€, bei 2 blauen bekommt er noch 20€, bei einer 9€. Ist gar keine blaue Kugel dabei, erhält er 0€. Welchen Gewinn kann er erwarten?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Wahrscheinlichkeiten für die verschiedenen Ausgänge

EreignisP
blau -> blau -> blau 1 120
blau -> blau -> rot 7 120
blau -> rot -> blau 7 120
blau -> rot -> rot 7 40
rot -> blau -> blau 7 120
rot -> blau -> rot 7 40
rot -> rot -> blau 7 40
rot -> rot -> rot 7 24

Die Wahrscheinlichkeit für 0 mal 'blau' ist: 7 24

Die Wahrscheinlichkeit für 1 mal 'blau' ist: 7 40 + 7 40 + 7 40 = 21 40

Die Wahrscheinlichkeit für 2 mal 'blau' ist: 7 120 + 7 120 + 7 120 = 7 40

Die Wahrscheinlichkeit für 3 mal 'blau' ist: 1 120

Die Zufallsgröße X beschreibt den ausbezahlten Euro-Betrag.

Erwartungswert der Zufallsgröße X

Ereignis 0 1 2 3
Zufallsgröße xi 0 9 20 100
P(X=xi) 7 24 21 40 7 40 1 120
xi ⋅ P(X=xi) 0 189 40 7 2 5 6

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 0⋅ 7 24 + 9⋅ 21 40 + 20⋅ 7 40 + 100⋅ 1 120

= 0+ 189 40 + 7 2 + 5 6
= 0 120 + 567 120 + 420 120 + 100 120
= 1087 120

9.06

Erwartungswerte mit best. Optionen im WS-Baum

Beispiel:

Ein leidenschaftlicher Mäxle-Spieler möchte eine Mäxle-Spielautomat bauen. Wie beim richtigen Mäxle sollen auch hier zwei normale Würfel gleichzeitig geworfen werden (bzw. dies eben simuliert). Bei einem Mäxle (also eine 1 und eine 2) soll dann 16€ ausbezahlt werden, bei einem Pasch (also zwei gleiche Augenzahlen) 5€ und bei 61-65 also (also ein Würfel 6 und der andere keine 6) noch 3€. Wie groß müsste der Einsatz sein, damit das Spiel fair wird?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Wahrscheinlichkeiten für die verschiedenen Ausgänge

EreignisP
1 -> 1 1 36
1 -> 2 1 36
1 -> 3 1 36
1 -> 4 1 36
1 -> 5 1 36
1 -> 6 1 36
2 -> 1 1 36
2 -> 2 1 36
2 -> 3 1 36
2 -> 4 1 36
2 -> 5 1 36
2 -> 6 1 36
3 -> 1 1 36
3 -> 2 1 36
3 -> 3 1 36
3 -> 4 1 36
3 -> 5 1 36
3 -> 6 1 36
4 -> 1 1 36
4 -> 2 1 36
4 -> 3 1 36
4 -> 4 1 36
4 -> 5 1 36
4 -> 6 1 36
5 -> 1 1 36
5 -> 2 1 36
5 -> 3 1 36
5 -> 4 1 36
5 -> 5 1 36
5 -> 6 1 36
6 -> 1 1 36
6 -> 2 1 36
6 -> 3 1 36
6 -> 4 1 36
6 -> 5 1 36
6 -> 6 1 36

Die Wahrscheinlichkeit für 'Mäxle' ist:

P('1'-'2') + P('2'-'1')
= 1 36 + 1 36 = 1 18

Die Wahrscheinlichkeit für 'Pasch' ist:

P('1'-'1') + P('2'-'2') + P('3'-'3') + P('4'-'4') + P('5'-'5') + P('6'-'6')
= 1 36 + 1 36 + 1 36 + 1 36 + 1 36 + 1 36 = 1 6

Die Wahrscheinlichkeit für '60er' ist:

P('1'-'6') + P('2'-'6') + P('3'-'6') + P('4'-'6') + P('5'-'6') + P('6'-'1') + P('6'-'2') + P('6'-'3') + P('6'-'4') + P('6'-'5')
= 1 36 + 1 36 + 1 36 + 1 36 + 1 36 + 1 36 + 1 36 + 1 36 + 1 36 + 1 36 = 5 18

Die Zufallsgröße X beschreibt den durch die beiden Würfel ausbezahlten Euro-Betrag.

Erwartungswert der Zufallsgröße X

Ereignis Mäxle Pasch 60er
Zufallsgröße xi 16 5 3
P(X=xi) 1 18 1 6 5 18
xi ⋅ P(X=xi) 8 9 5 6 5 6

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 16⋅ 1 18 + 5⋅ 1 6 + 3⋅ 5 18

= 8 9 + 5 6 + 5 6
= 16 18 + 15 18 + 15 18
= 46 18
= 23 9

2.56