nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Zufallsgröße (ohne Wahrscheinlichkeit)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(
Ein Würfel mit nebenstehendem Netz wird 2 mal geworfen. Die Zufallsgröße X beschreibt die Differenz zwischen der größeren Augenzahl und der kleineren Augenzahl der beiden Würfe. Gib alle Werte an, die die Zufallsgröße X annehmen kann.

Lösung einblenden

Für die Zufallsgröße X: 'Differenz der beiden Würfe' sind folgende Werte möglich:

Zufallsgröße X0235
zugehörige
Ereignisse
1 - 1
4 - 4
6 - 6
4 - 6
6 - 4
1 - 4
4 - 1
1 - 6
6 - 1

Zufallsgröße WS-Verteilung

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(
Ein Würfel mit nebenstehendem Netz wird 2 mal geworfen. Die Zufallsgröße X beschreibt die Differenz: Augenzahl beim ersten Wurf - Augenzahl beim zweiten Wurf. Stelle eine Wahrscheinlichkeitsverteilung für die Zufallsgröße X auf.

Lösung einblenden

Für die Zufallsgröße X: 'Differenz Würfel1 - Würfel2' sind folgende Werte möglich:

Zufallsgröße XX = -4X = -3X = -1X = 0X = 1X = 3X = 4
zugehörige
Ergebnisse
2 → 62 → 55 → 62 → 2
5 → 5
6 → 6
6 → 55 → 26 → 2
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(


Jetzt müssen die Wahrscheinlichkeiten der einzelnen Ereignisse erst mal (mit Hilfe eines Baums) berechnet werden.


Und somit können wir dann auch die Wahrscheinlichkeiten für die einzelnen Werte der Zufallsgröße berechnen.

Zufallsgröße XX = -4X = -3X = -1X = 0X = 1X = 3X = 4
zugehörige
Wahrscheinlichkeit P(X)
1 3 1 6 1 3 1 2 1 2 1 6 1 3 1 3
+ 1 2 1 2
+ 1 6 1 6
1 6 1 2 1 2 1 3 1 6 1 3
  = 1 18 1 6 1 12 1 9 + 1 4 + 1 36 1 12 1 6 1 18



Hiermit ergibt sich die gesuchte Wahrscheinlichkeitsverteilung für die Zufallsgröße X:

Zufallsgröße X-4-3-10134
P(X=k) 1 18 1 6 1 12 7 18 1 12 1 6 1 18

Zufallsgr. WS-Vert. (auch ohne zur.)

Beispiel:

In einem Kartenstapel sind nur noch zwei Karten mit dem Wert 4, zwei Karten mit dem Wert 6 und vier 10er.Es werden zwei Karten ohne Zurücklegen gezogen. Die Zufallsgröße X beschreibt die Differenz zwischen dem größeren und dem kleineren Wert der beiden gezogenen Karten. Stelle eine Wahrscheinlichkeitsverteilung für die Zufallsgröße X auf.

Lösung einblenden

Für die Zufallsgröße X: 'Differenz der beiden Karten' sind folgende Werte möglich:

Zufallsgröße XX = 0X = 2X = 4X = 6
zugehörige
Ergebnisse
4 → 4
6 → 6
10 → 10
4 → 6
6 → 4
6 → 10
10 → 6
4 → 10
10 → 4
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(


Jetzt müssen die Wahrscheinlichkeiten der einzelnen Ereignisse erst mal (mit Hilfe eines Baums) berechnet werden.


Und somit können wir dann auch die Wahrscheinlichkeiten für die einzelnen Werte der Zufallsgröße berechnen.

Zufallsgröße XX = 0X = 2X = 4X = 6
zugehörige
Wahrscheinlichkeit P(X)
1 4 1 7
+ 1 4 1 7
+ 1 2 3 7
1 4 2 7
+ 1 4 2 7
1 4 4 7
+ 1 2 2 7
1 4 4 7
+ 1 2 2 7
  = 1 28 + 1 28 + 3 14 1 14 + 1 14 1 7 + 1 7 1 7 + 1 7



Hiermit ergibt sich die gesuchte Wahrscheinlichkeitsverteilung für die Zufallsgröße X:

Zufallsgröße X0246
P(X=k) 2 7 1 7 2 7 2 7

Zufallsgr. WS-Vert. (ziehen bis erstmals ...)

Beispiel:

In einer Urne sind 1 rote und 2 blaue Kugeln. Es soll (ohne zurücklegen) solange gezogen werden, bis erstmals eine rote Kugel erscheint. Die Zufallsgröße X beschreibt dabei die Anzahl der Ziehungen, bis die erste rote Kugel gezogen worden ist. Stelle eine Wahrscheinlichkeitsverteilung für die Zufallsgröße X auf.
(Denk daran, die Brüche vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Da ja nur 2 Kugeln vom Typ 'blau' vorhanden sind, muss spätestens im 3-ten Versuch (wenn dann alle Kugeln vom Typ 'blau' bereits gezogen und damit weg sind) eine Kugel vom Typ 'rot' gezogen werden.

Das heißt die Zufallsgröße X kann nur Werte zwischen 1 und 3 annehmen.

Aus dem reduzierten Baumdiagramm rechts kann man nun die Wahrscheinlichkeitsverteilung der Zufallsgröße X übernehmen:

Zufallsgröße X123
P(X=k) 1 3 1 3 1 3

Zufallsgröße rückwärts

Beispiel:

Ein Glücksrad hat drei Sektoren, die mit den Zahlen 1, 2 und 3 beschriftet sind. Es wird zwei mal gedreht. Die Zufallsgröße X beschreibt dabei das Produkt der Zahlen die bei den beiden Glücksraddrehungen erscheinen. Bei der Wahrscheinlichkeitsverteilung von X sind nur der erste und der letzte Wert bekannt (siehe Tabelle). Wie groß müssen jeweils die Winkel der Sektoren sein?

Zufallsgröße X123469
P(X=k) 625 1296 ???? 1 144

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Für X=1 gibt es nur das Ereignis: '1'-'1', also dass zwei mal hintereinander '1' kommt.

Wenn p1 die Wahrscheinlichkeit von '1' ist, dann muss also für die Wahrscheinlichkeit, dass zwei mal hintereinander '1' kommt, gelten: P(X=1) = p1 ⋅ p1 (siehe Baumdiagramm).

Aus der Tabelle können wir aber P(X=1) = 625 1296 heraus lesen, also muss gelten:

p1 ⋅ p1 = (p1)2 = 625 1296 und somit p1 = 25 36 .

Ebenso gibt es für X=9 nur das Ereignis: '3'-'3', also dass zwei mal hintereinander '3' kommt.

Wenn p3 die Wahrscheinlichkeit von '3' ist, dann muss also für die Wahrscheinlichkeit, dass zwei mal hintereinander '3' kommt, gelten: P(X=9) = p3 ⋅ p3 (siehe Baumdiagramm).

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Aus der Tabelle können wir aber P(X=9) = 1 144 heraus lesen, also muss gelten:

p3 ⋅ p3 = (p3)2 = 1 144 und somit p3 = 1 12 .

Da es aber nur drei Optionen gibt, muss p1 + p2 + p3 = 1 gelten, also

p2 = 1 - p1 - p3 = 1 - 25 36 - 1 12 = 36 36 - 25 36 - 3 36 = 8 36 = 2 9

Um nun noch die Mittelpunktswinkel der drei Sektoren zu ermittlen, müssen wir einfach die Wahrscheinlichkeit mit 360° multiplizieren, weil ja für die Wahrscheinlichkeit eines Sektors mit Mittelpunktswinkel α gilt: p = α 360°

Somit erhalten wir:

α1 = 25 36 ⋅ 360° = 250°

α2 = 2 9 ⋅ 360° = 80°

α3 = 1 12 ⋅ 360° = 30°

Erwartungswerte

Beispiel:

Bei einer Tombola steht auf jedem zehnten Los 200 Punkte, auf jedem fünften Los 15 Punkte, auf jedem vierten Los 12 Punkte und auf allen anderen 1 Punkt. Wie viele Punkte bringt ein Los durchschnttlich ein?

Lösung einblenden

Die Zufallsgröße X beschreibt die Anzahl der Punkte auf einem Los.

Erwartungswert der Zufallsgröße X

Ereignis 200 15 12 1
Zufallsgröße xi 200 15 12 1
P(X=xi) 1 10 1 5 1 4 9 20
xi ⋅ P(X=xi) 20 3 3 9 20

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 200⋅ 1 10 + 15⋅ 1 5 + 12⋅ 1 4 + 1⋅ 9 20

= 20+ 3+ 3+ 9 20
= 529 20

26.45

Einsatz für faires Spiel bestimmen

Beispiel:

Ein Spieler darf aus einer Urne mit 8 blauen, 4 roten, 3 grünen und 5 weißen Kugeln eine Kugel ziehen. Erwischt er eine blaue, so erhält er 5€. Bei rot erhält er 40€ und bei grün erhält er 80€. Welchen Betrag muss er bei weiß erhalten damit das Spiel fair ist, wenn der Einsatz 27€ beträgt ?

Lösung einblenden

Die Zufallsgröße X beschreibt die Auszahlung.

Die Zufallsgröße Y beschreibt den Gewinn, also Auszahlung - Einsatz.

Erwartungswerte der Zufallsgrößen X und Y

Ereignis blau rot grün weiß
Zufallsgröße xi 5 40 80 x
Zufallsgröße yi (Gewinn) -22 13 53 x-27
P(X=xi) 8 20 4 20 3 20 5 20
xi ⋅ P(X=xi) 2 8 12 5 20 ⋅ x
yi ⋅ P(Y=yi) - 44 5 13 5 159 20 5 20 ⋅(x-27)

Um den gesuchten Auszahlungsbetrag zu berrechnen hat man zwei Möglichkeiten:

Entweder stellt man eine Gleichung auf, so dass der Erwartungswert des Auszahlungsbetrags gleich des Einsatzes ist ...

E(X) = 27

8 20 · 5 + 4 20 · 40 + 3 20 · 80 + 5 20 x = 27

2 +8 +12 + 5 20 x = 27

2 +8 +12 + 1 4 x = 27
1 4 x +22 = 27 |⋅ 4
4( 1 4 x +22 ) = 108
x +88 = 108 | -88
x = 20

... oder man stellt eine Gleichung auf, so dass der Erwartungswert des Gewinns gleich null ist:

E(Y) = 0

8 20 · ( -22 ) + 4 20 · 13 + 3 20 · 53 + 5 20 ( x -27 ) = 0

- 44 5 + 13 5 + 159 20 + 1 4 · x + 1 4 · ( -27 ) = 0

- 44 5 + 13 5 + 159 20 + 1 4 · x + 1 4 · ( -27 ) = 0
- 44 5 + 13 5 + 159 20 + 1 4 x - 27 4 = 0
1 4 x -5 = 0 |⋅ 4
4( 1 4 x -5 ) = 0
x -20 = 0 | +20
x = 20

In beiden Fällen ist also der gesuchte Betrag: 20

Erwartungswert ganz offen

Beispiel:

Eine Klasse möchte beim Schulfest ein Glücksrad mit Spielgeld anbieten. Dabei soll das Glücksrad in Sektoren aufgeteilt werden, in denen der Auszahlungsbetrag (z.B. 3€) drin steht. Nach langer Diskussion einigt man sich auf folgende Punkte:• Das Spiel mit dem Glücksrad muss fair sein • Der Einsatz soll 3€ betragen• Der minimale Auszahlungsbetrag soll 2€ sein• Der maximale Auszahlungsbetrag soll soll 7€ sein• Es sollen genau 4 Sektoren mit verschiedenen Auszahlungsbeträgen auf dem Glücksrad seinFinde eine Möglichkeit für solch ein Glücksrad und trage diese in die Tabelle ein.

Lösung einblenden

Eine (von vielen möglichen) Lösungen:

Als erstes schreiben wir mal die Vorgaben in die Tabelle rein.

  Feld1 Feld2 Feld3 Feld4
X (z.B. Auszahlung) 2 7
Y Gewinn (Ausz. - Einsatz) -1 4
P(X) = P(Y)
Y ⋅ P(Y)

Jetzt setzen wir die Wahrscheinlichkeiten so, dass der negative Beitrag vom minimalen Betrag zum Erwartungswert den gleichen Betrag hat wie der positve vom maximalen Betrag.(dazu einfach jeweils den Gewinn in den Nenner der Wahrscheinlichkeit)

  Feld1 Feld2 Feld3 Feld4
X (z.B. Auszahlung) 2 7
Y Gewinn (Ausz. - Einsatz) -1 4
P(X) = P(Y) 1 2 1 8
Y ⋅ P(Y) - 1 2 1 2

Die bisherigen Optionen vereinen eine Wahrscheinlichkeit von 1 2 + 1 8 = 5 8
Als Restwahrscheinlichkeit für die verbleibenden Beträge bleibt nun also 1- 5 8 = 3 8 .
Diese wird auf die beiden verbleibenden Optionen verteilt:

  Feld1 Feld2 Feld3 Feld4
X (z.B. Auszahlung) 2 7
Y Gewinn (Ausz. - Einsatz) -1 4
P(X) = P(Y) 1 2 3 16 3 16 1 8
Y ⋅ P(Y) - 1 2 1 2

Damit nun der Erwartungswert =0 wird, müssen sich die beiden noch verbleibenden Anteile daran gegenseitig aufheben. Dies erreicht man, in dem man den Gewinn jeweils gleich 'weit vom Einsatz weg' (nämlich 1 2 ) setzt.

  Feld1 Feld2 Feld3 Feld4
X (z.B. Auszahlung) 2 2.5 3.5 7
Y Gewinn (Ausz. - Einsatz) -1 -0.5 0.5 4
P(X) = P(Y) 1 2 3 16 3 16 1 8
Winkel 180° 67.5° 67.5° 45°
Y ⋅ P(Y) - 1 2 - 3 32 3 32 1 2

Wenn man nun den Erwartungswert berechnet, kommt der gesuchte heraus:

E(Y)= -1⋅ 1 2 + -0.5⋅ 3 16 + 0.5⋅ 3 16 + 4⋅ 1 8

= - 1 2 - 3 32 + 3 32 + 1 2
= - 16 32 - 3 32 + 3 32 + 16 32
= 0 32
= 0

Erwartungswerte bei 'Ziehen bis erstmals ...'

Beispiel:

Aus einem Kartenstapel mit 8 Karten der Farbe Herz und 4 weiteren Karten soll solange eine Karte gezogen werden, bis eine Herz-Karte erscheint. Bestimme den Erwartungswert für die Anzahl der Ziehungen, bis das erste Herz erscheint.
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Wahrscheinlichkeiten für die verschiedenen Ausgänge

Die Wahrscheinlichkeit für ein 'Herz' im 1-ten Versuch st: 2 3

Die Wahrscheinlichkeit für ein 'Herz' im 2-ten Versuch st: 8 33

Die Wahrscheinlichkeit für ein 'Herz' im 3-ten Versuch st: 4 55

Die Wahrscheinlichkeit für ein 'Herz' im 4-ten Versuch st: 8 495

Die Wahrscheinlichkeit für ein 'Herz' im 5-ten Versuch st: 1 495

Die Zufallsgröße X beschreibt die Anzahl der Ziehungen. bis das erste Herz gekommen ist.

Erwartungswert der Zufallsgröße X

Ereignis 1 2 3 4 5
Zufallsgröße xi 1 2 3 4 5
P(X=xi) 2 3 8 33 4 55 8 495 1 495
xi ⋅ P(X=xi) 2 3 16 33 12 55 32 495 1 99

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 1⋅ 2 3 + 2⋅ 8 33 + 3⋅ 4 55 + 4⋅ 8 495 + 5⋅ 1 495

= 2 3 + 16 33 + 12 55 + 32 495 + 1 99
= 330 495 + 240 495 + 108 495 + 32 495 + 5 495
= 715 495
= 13 9

1.44

Erwartungswerte mit gesuchten Anzahlen im WS-Baum

Beispiel:

Auf einen Schüleraustausch bewerben sich 15 Mädchen und 11 Jungs. Weil aber leider weniger Plätze zur Verfügung stehen, muss gelost werden. Wie viele Mädchen kann man bei den ersten 3 verlosten Plätzen erwarten?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Wahrscheinlichkeiten für die verschiedenen Ausgänge

EreignisP
Mädchen -> Mädchen -> Mädchen 7 40
Mädchen -> Mädchen -> Jungs 77 520
Mädchen -> Jungs -> Mädchen 77 520
Mädchen -> Jungs -> Jungs 11 104
Jungs -> Mädchen -> Mädchen 77 520
Jungs -> Mädchen -> Jungs 11 104
Jungs -> Jungs -> Mädchen 11 104
Jungs -> Jungs -> Jungs 33 520

Die Wahrscheinlichkeit für 0 mal 'Mädchen' ist: 33 520

Die Wahrscheinlichkeit für 1 mal 'Mädchen' ist: 11 104 + 11 104 + 11 104 = 33 104

Die Wahrscheinlichkeit für 2 mal 'Mädchen' ist: 77 520 + 77 520 + 77 520 = 231 520

Die Wahrscheinlichkeit für 3 mal 'Mädchen' ist: 7 40

Die Zufallsgröße X beschreibt die Anzahl an Mädchen unter den drei verlosten Plätzen.

Erwartungswert der Zufallsgröße X

Ereignis 0 1 2 3
Zufallsgröße xi 0 1 2 3
P(X=xi) 33 520 33 104 231 520 7 40
xi ⋅ P(X=xi) 0 33 104 231 260 21 40

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 0⋅ 33 520 + 1⋅ 33 104 + 2⋅ 231 520 + 3⋅ 7 40

= 0+ 33 104 + 231 260 + 21 40
= 0 520 + 165 520 + 462 520 + 273 520
= 900 520
= 45 26

1.73

Erwartungswerte mit best. Optionen im WS-Baum

Beispiel:

In einem Stapel Karten mit 6 Asse, 5 Könige, 10 Damen und 3 Buben werden 2 Karten gezogen. Dabei zählen 2 Asse 1000, 2 Könige 400, 2 Damen 160 und 2 Buben 50 Punkte. Außerdem gibt es für ein Paar aus Dame und König 30 Punkte. Wie viele Punkte kann man bei diesem Spiel erwarten?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Wahrscheinlichkeiten für die verschiedenen Ausgänge

EreignisP
As -> As 5 92
As -> König 5 92
As -> Dame 5 46
As -> Bube 3 92
König -> As 5 92
König -> König 5 138
König -> Dame 25 276
König -> Bube 5 184
Dame -> As 5 46
Dame -> König 25 276
Dame -> Dame 15 92
Dame -> Bube 5 92
Bube -> As 3 92
Bube -> König 5 184
Bube -> Dame 5 92
Bube -> Bube 1 92

Die Wahrscheinlichkeit für '2 Asse' ist:

P('As'-'As')
= 5 92

Die Wahrscheinlichkeit für '2 Könige' ist:

P('König'-'König')
= 5 138

Die Wahrscheinlichkeit für '2 Damen' ist:

P('Dame'-'Dame')
= 15 92

Die Wahrscheinlichkeit für '2 Buben' ist:

P('Bube'-'Bube')
= 1 92

Die Wahrscheinlichkeit für 'Paar (D&K)' ist:

P('König'-'Dame') + P('Dame'-'König')
= 25 276 + 25 276 = 25 138

Die Zufallsgröße X beschreibt die gewonnenen Punkte.

Erwartungswert der Zufallsgröße X

Ereignis 2 Asse 2 Könige 2 Damen 2 Buben Paar (D&K)
Zufallsgröße xi 1000 400 160 50 30
P(X=xi) 5 92 5 138 15 92 1 92 25 138
xi ⋅ P(X=xi) 1250 23 1000 69 600 23 25 46 125 23

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 1000⋅ 5 92 + 400⋅ 5 138 + 160⋅ 15 92 + 50⋅ 1 92 + 30⋅ 25 138

= 1250 23 + 1000 69 + 600 23 + 25 46 + 125 23
= 7500 138 + 2000 138 + 3600 138 + 75 138 + 750 138
= 13925 138

100.91