nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Zufallsgröße (ohne Wahrscheinlichkeit)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Zwei gleiche Glücksräder wie rechts in der Abbildung werden gleichzeitig gedreht. Die Zufallsgröße X beschreibt das Produkt der Zahlen die bei den beiden Glücksräder erscheinen. Gib alle Werte an, die die Zufallsgröße X annehmen kann.

Lösung einblenden

Für die Zufallsgröße X: 'Produkt der beiden Glücksräder' sind folgende Werte möglich:

Zufallsgröße X123469
zugehörige
Ereignisse
1 - 11 - 2
2 - 1
1 - 3
3 - 1
2 - 22 - 3
3 - 2
3 - 3

Zufallsgröße WS-Verteilung

Beispiel:

In einer Urne sind zwei Kugeln, die mit der Zahl 3 beschriftet sind, drei Kugeln, die mit der Zahl 6 beschriftet sind und drei Kugeln, die mit der Zahl 7 beschriftet sind. Es werden zwei Kugeln mit Zurücklegen gezogen.Die Zufallsgröße X beschreibt die Differenz zwischen der größeren Zahl und der kleineren Zahl (bzw. der beiden gleichgroßen Zahlen) der beiden gezogenen Kugeln. Stelle eine Wahrscheinlichkeitsverteilung für die Zufallsgröße X auf.

Lösung einblenden

Für die Zufallsgröße X: 'Differenz der beiden Kugeln' sind folgende Werte möglich:

Zufallsgröße XX = 0X = 1X = 3X = 4
zugehörige
Ergebnisse
3 → 3
6 → 6
7 → 7
6 → 7
7 → 6
3 → 6
6 → 3
3 → 7
7 → 3
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(


Jetzt müssen die Wahrscheinlichkeiten der einzelnen Ereignisse erst mal (mit Hilfe eines Baums) berechnet werden.


Und somit können wir dann auch die Wahrscheinlichkeiten für die einzelnen Werte der Zufallsgröße berechnen.

Zufallsgröße XX = 0X = 1X = 3X = 4
zugehörige
Wahrscheinlichkeit P(X)
1 4 1 4
+ 3 8 3 8
+ 3 8 3 8
3 8 3 8
+ 3 8 3 8
1 4 3 8
+ 3 8 1 4
1 4 3 8
+ 3 8 1 4
  = 1 16 + 9 64 + 9 64 9 64 + 9 64 3 32 + 3 32 3 32 + 3 32



Hiermit ergibt sich die gesuchte Wahrscheinlichkeitsverteilung für die Zufallsgröße X:

Zufallsgröße X0134
P(X=k) 11 32 9 32 3 16 3 16

Zufallsgr. WS-Vert. (auch ohne zur.)

Beispiel:

In einer Urne sind vier Kugeln, die mit der Zahl 3 beschriftet, vier Kugeln, die mit der Zahl 6 sind, und sechs Kugeln, die mit der Zahl 7 beschriftet sind. Es werden zwei Kugeln ohne Zurücklegen gezogen. Die Zufallsgröße X beschreibt die Differenz zwischen der größten und der anderen Zahl der beiden gezogenen Kugeln. Stelle eine Wahrscheinlichkeitsverteilung für die Zufallsgröße X auf.

Lösung einblenden

Für die Zufallsgröße X: 'Differenz der beiden Kugeln' sind folgende Werte möglich:

Zufallsgröße XX = 0X = 1X = 3X = 4
zugehörige
Ergebnisse
3 → 3
6 → 6
7 → 7
6 → 7
7 → 6
3 → 6
6 → 3
3 → 7
7 → 3
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(


Jetzt müssen die Wahrscheinlichkeiten der einzelnen Ereignisse erst mal (mit Hilfe eines Baums) berechnet werden.


Und somit können wir dann auch die Wahrscheinlichkeiten für die einzelnen Werte der Zufallsgröße berechnen.

Zufallsgröße XX = 0X = 1X = 3X = 4
zugehörige
Wahrscheinlichkeit P(X)
2 7 3 13
+ 2 7 3 13
+ 3 7 5 13
2 7 6 13
+ 3 7 4 13
2 7 4 13
+ 2 7 4 13
2 7 6 13
+ 3 7 4 13
  = 6 91 + 6 91 + 15 91 12 91 + 12 91 8 91 + 8 91 12 91 + 12 91



Hiermit ergibt sich die gesuchte Wahrscheinlichkeitsverteilung für die Zufallsgröße X:

Zufallsgröße X0134
P(X=k) 27 91 24 91 16 91 24 91

Zufallsgr. WS-Vert. (ziehen bis erstmals ...)

Beispiel:

In einer Urne sind 9 rote und 2 blaue Kugeln. Es soll (ohne zurücklegen) solange gezogen werden, bis erstmals eine rote Kugel erscheint. Die Zufallsgröße X beschreibt dabei die Anzahl der Ziehungen, bis die erste rote Kugel gezogen worden ist. Stelle eine Wahrscheinlichkeitsverteilung für die Zufallsgröße X auf.
(Denk daran, die Brüche vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Da ja nur 2 Kugeln vom Typ 'blau' vorhanden sind, muss spätestens im 3-ten Versuch (wenn dann alle Kugeln vom Typ 'blau' bereits gezogen und damit weg sind) eine Kugel vom Typ 'rot' gezogen werden.

Das heißt die Zufallsgröße X kann nur Werte zwischen 1 und 3 annehmen.

Aus dem reduzierten Baumdiagramm rechts kann man nun die Wahrscheinlichkeitsverteilung der Zufallsgröße X übernehmen:

Zufallsgröße X123
P(X=k) 9 11 9 55 1 55

Zufallsgröße rückwärts

Beispiel:

Ein Glücksrad hat drei Sektoren, die mit den Zahlen 1, 2 und 3 beschriftet sind. Es wird zwei mal gedreht. Die Zufallsgröße X beschreibt dabei die Summe der Zahlen die bei den beiden Glücksraddrehungen erscheinen. Bei der Wahrscheinlichkeitsverteilung von X sind nur der erste und der letzte Wert bekannt (siehe Tabelle). Wie groß müssen jeweils die Winkel der Sektoren sein?

Zufallsgröße X23456
P(X=k) 1 36 ??? 1 324

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Für X=2 gibt es nur das Ereignis: '1'-'1', also dass zwei mal hintereinander '1' kommt.

Wenn p1 die Wahrscheinlichkeit von '1' ist, dann muss also für die Wahrscheinlichkeit, dass zwei mal hintereinander '1' kommt, gelten: P(X=2) = p1 ⋅ p1 (siehe Baumdiagramm).

Aus der Tabelle können wir aber P(X=2) = 1 36 heraus lesen, also muss gelten:

p1 ⋅ p1 = (p1)2 = 1 36 und somit p1 = 1 6 .

Ebenso gibt es für X=6 nur das Ereignis: '3'-'3', also dass zwei mal hintereinander '3' kommt.

Wenn p3 die Wahrscheinlichkeit von '3' ist, dann muss also für die Wahrscheinlichkeit, dass zwei mal hintereinander '3' kommt, gelten: P(X=6) = p3 ⋅ p3 (siehe Baumdiagramm).

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Aus der Tabelle können wir aber P(X=6) = 1 324 heraus lesen, also muss gelten:

p3 ⋅ p3 = (p3)2 = 1 324 und somit p3 = 1 18 .

Da es aber nur drei Optionen gibt, muss p1 + p2 + p3 = 1 gelten, also

p2 = 1 - p1 - p3 = 1 - 1 6 - 1 18 = 18 18 - 3 18 - 1 18 = 14 18 = 7 9

Um nun noch die Mittelpunktswinkel der drei Sektoren zu ermittlen, müssen wir einfach die Wahrscheinlichkeit mit 360° multiplizieren, weil ja für die Wahrscheinlichkeit eines Sektors mit Mittelpunktswinkel α gilt: p = α 360°

Somit erhalten wir:

α1 = 1 6 ⋅ 360° = 60°

α2 = 7 9 ⋅ 360° = 280°

α3 = 1 18 ⋅ 360° = 20°

Erwartungswerte

Beispiel:

Ein Spieler darf aus einer Urne mit 5 blauen, 4 roten, 7 grünen und 4 weißen Kugeln eine Kugel ziehen. Erwischt er eine blaue, so erhält er 16€. Bei rot erhält er 15€, bei grün erhält er 20€ und bei weiß erhält er 25€. Wieviel bringt ein Zug durchschnittlich ein?

Lösung einblenden

Die Zufallsgröße X beschreibt den ausbezahlten €-Euro-Betrag.

Erwartungswert der Zufallsgröße X

Ereignis blau rot grün weiß
Zufallsgröße xi 16 15 20 25
P(X=xi) 5 20 4 20 7 20 4 20
xi ⋅ P(X=xi) 4 3 7 5

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 16⋅ 5 20 + 15⋅ 4 20 + 20⋅ 7 20 + 25⋅ 4 20

= 4+ 3+ 7+ 5
= 19

Einsatz für faires Spiel bestimmen

Beispiel:

In einer Urne sind 10 Kugeln, die mit 10€ beschriftet sind, 3 Kugeln, die mit 20€ und 7 Kugeln, die mit 26€ beschriftet sind. Bei dem Spiel bekommt man den Betrag, der auf der Kugel steht, ausbezahlt. Außerdem sind noch weitere 4 Kugeln in der Urne. Mit welchem Betrag müsste man diese beschriften, damit das Spiel bei einem Einsatz von 20,92€ fair wäre?

Lösung einblenden

Die Zufallsgröße X beschreibt die Auszahlung.

Die Zufallsgröße Y beschreibt den Gewinn, also Auszahlung - Einsatz.

Erwartungswerte der Zufallsgrößen X und Y

Ereignis 10 20 26 ?
Zufallsgröße xi 10 20 26 x
Zufallsgröße yi (Gewinn) -10.92 -0.92 5.08 x-20.92
P(X=xi) 10 24 3 24 7 24 4 24
xi ⋅ P(X=xi) 25 6 5 2 91 12 4 24 ⋅ x
yi ⋅ P(Y=yi) - 109.2 24 - 2.76 24 35.56 24 4 24 ⋅(x-20.92)

Um den gesuchten Auszahlungsbetrag zu berrechnen hat man zwei Möglichkeiten:

Entweder stellt man eine Gleichung auf, so dass der Erwartungswert des Auszahlungsbetrags gleich des Einsatzes ist ...

E(X) = 20.92

10 24 · 10 + 3 24 · 20 + 7 24 · 26 + 4 24 x = 20.92

25 6 + 5 2 + 91 12 + 4 24 x = 20.92

25 6 + 5 2 + 91 12 + 1 6 x = 20,92
1 6 x + 57 4 = 20,92 |⋅ 12
12( 1 6 x + 57 4 ) = 251,04
2x +171 = 251,04 | -171
2x = 80,04 |:2
x = 40,02

... oder man stellt eine Gleichung auf, so dass der Erwartungswert des Gewinns gleich null ist:

E(Y) = 0

10 24 · ( -10,92 ) + 3 24 · ( -0,92 ) + 7 24 · 5,08 + 4 24 ( x -20,92 ) = 0

- 54,6 12 - 0,92 8 + 35,56 24 + 1 6 · x + 1 6 · ( -20,92 ) = 0

- 54,6 12 - 0,92 8 + 35,56 24 + 1 6 · x + 1 6 · ( -20,92 ) = 0
-4,55 -0,115 +1,4817 + 1 6 x -3,4867 = 0
1 6 x -6,67 = 0 |⋅ 6
6( 1 6 x -6,67 ) = 0
x -40,02 = 0 | +40,02
x = 40,02

In beiden Fällen ist also der gesuchte Betrag: 40

Erwartungswert ganz offen

Beispiel:

Ein Spielautomatenhersteller bekommt von einem Kunden den Auftrag einen Automaten zu entwickeln, der folgenden Bedingungen erfüllt.- Der Einsatz für ein Spiel soll 2€ betragen- auf lange Sicht soll er 10ct Gewinn pro Spiel für den Betreiber abwerfen- es sollen 5 verschiedene Felder (Kirsche, Zitrone, Apfel, Banane, Erdbeere) mit verschiedenen Auszahlungsbeträgen sein- bei einem Feld soll keine Auszahlung erfolgen- um Kunden zu locken soll bei einem Feld 24€ ausgezahlt werdenOrdne den 5 Optionen so Wahrscheinlichkeiten und Auszahlungsbeträge zu, dass diese Bedingungen erfüllt sind.

Lösung einblenden

Eine (von vielen möglichen) Lösungen:

Als erstes schreiben wir mal die Vorgaben in die Tabelle rein.

  Kirsche Zitrone Apfel Banane Erdbeere
X (z.B. Auszahlung) 0 24
Y Gewinn (Ausz. - Einsatz) -2 22
P(X) = P(Y)
Y ⋅ P(Y)

Jetzt setzen wir die Wahrscheinlichkeiten so, dass der negative Beitrag vom minimalen Betrag zum Erwartungswert den gleichen Betrag hat wie der positve vom maximalen Betrag.(dazu einfach jeweils den Gewinn in den Nenner der Wahrscheinlichkeit)

  Kirsche Zitrone Apfel Banane Erdbeere
X (z.B. Auszahlung) 0 24
Y Gewinn (Ausz. - Einsatz) -2 22
P(X) = P(Y) 1 2 1 22
Y ⋅ P(Y) -1 1

Bei der mittleren Option setzen wir den Betrag einfach gleich wie den Einsatz, so dass diese den Erwartungswert nicht verändert.
Als Wahrscheinlichkeit wählen wir einen Bruch so, dass die Restwahrscheinlichkeit für die verbleibenden zwei Optionen nicht allzu kompliziert wird.

  Kirsche Zitrone Apfel Banane Erdbeere
X (z.B. Auszahlung) 0 2 24
Y Gewinn (Ausz. - Einsatz) -2 0 22
P(X) = P(Y) 1 2 9 44 1 22
Y ⋅ P(Y) -1 0 1

Die bisherigen Optionen vereinen eine Wahrscheinlichkeit von 1 2 + 9 44 + 1 22 = 3 4
Als Restwahrscheinlichkeit für die verbleibenden Beträge bleibt nun also 1- 3 4 = 1 4 .
Diese wird auf die beiden verbleibenden Optionen verteilt:

  Kirsche Zitrone Apfel Banane Erdbeere
X (z.B. Auszahlung) 0 2 24
Y Gewinn (Ausz. - Einsatz) -2 0 22
P(X) = P(Y) 1 2 1 8 9 44 1 8 1 22
Y ⋅ P(Y) -1 0 1

Damit nun der Erwartungswert =0 wird, müssen sich die beiden noch verbleibenden Anteile daran gegenseitig aufheben. Dies erreicht man, in dem man den Gewinn jeweils gleich 'weit vom Einsatz weg' (nämlich 1) setzt.

  Kirsche Zitrone Apfel Banane Erdbeere
X (z.B. Auszahlung) 0 1 2 3 24
Y Gewinn (Ausz. - Einsatz) -2 -1 0 1 22
P(X) = P(Y) 1 2 1 8 9 44 1 8 1 22
Y ⋅ P(Y) -1 - 1 8 0 1 8 1

Weil der Erwartungswert ja aber nicht 0 sondern - 1 10 sein soll, müssen wir nun noch den Auszahlungsbetrag bei der 2. Option (betragsmäßig) vergrößern. Und zwar so, dass er mit der Wahrscheinlichkeit 1 8 multipliziert gerade um - 1 10 wächst.
Also x ⋅ 1 8 = - 1 10 => x= - 1 10 : 1 8 = - 4 5 = -0.8
Die neue Auszahlung für 'Zitrone' ist also 0.2

  Kirsche Zitrone Apfel Banane Erdbeere
X (z.B. Auszahlung) 0 0.2 2 3 24
Y Gewinn (Ausz. - Einsatz) -2 -1.8 0 1 22
P(X) = P(Y) 1 2 1 8 9 44 1 8 1 22
Y ⋅ P(Y) -1 - 9 40 0 1 8 1

Wenn man nun den Erwartungswert berechnet, kommt der gesuchte heraus:

E(Y)= -2⋅ 1 2 + -1.8⋅ 1 8 + 0⋅ 9 44 + 1⋅ 1 8 + 22⋅ 1 22

= -1 - 9 40 + 0+ 1 8 + 1
= - 40 40 - 9 40 + 0 40 + 5 40 + 40 40
= - 4 40
= - 1 10

-0.1

Erwartungswerte bei 'Ziehen bis erstmals ...'

Beispiel:

In einer Urne sind 11 rote und 2 blaue Kugeln. Es soll (ohne zurücklegen) solange gezogen werden, bis erstmals eine rote Kugel erscheint. Bestimme den Erwartungswert für die Anzahl der Ziehungen, bis die erste rote Kugel gezogen ist.
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Wahrscheinlichkeiten für die verschiedenen Ausgänge

Die Wahrscheinlichkeit für ein 'rot' im 1-ten Versuch st: 11 13

Die Wahrscheinlichkeit für ein 'rot' im 2-ten Versuch st: 11 78

Die Wahrscheinlichkeit für ein 'rot' im 3-ten Versuch st: 1 78

Die Zufallsgröße X beschreibt die Anzahl der Ziehungen. bis die erste rote Kugel gezogen ist.

Erwartungswert der Zufallsgröße X

Ereignis 1 2 3
Zufallsgröße xi 1 2 3
P(X=xi) 11 13 11 78 1 78
xi ⋅ P(X=xi) 11 13 11 39 1 26

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 1⋅ 11 13 + 2⋅ 11 78 + 3⋅ 1 78

= 11 13 + 11 39 + 1 26
= 66 78 + 22 78 + 3 78
= 91 78
= 7 6

1.17

Erwartungswerte mit gesuchten Anzahlen im WS-Baum

Beispiel:

In einem Kartenstapel befinden sich 4 Asse und 12 weitere Karten. Nachdem diese gut gemischt wurden, darf ein Spieler 3 Karten ziehen. Für jedes As, das unter den drei Karten ist, erhält er dabei 10€. Mit welchem Gewinn kann er rechnen?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Wahrscheinlichkeiten für die verschiedenen Ausgänge

EreignisP
As -> As -> As 1 140
As -> As -> andereKarte 3 70
As -> andereKarte -> As 3 70
As -> andereKarte -> andereKarte 11 70
andereKarte -> As -> As 3 70
andereKarte -> As -> andereKarte 11 70
andereKarte -> andereKarte -> As 11 70
andereKarte -> andereKarte -> andereKarte 11 28

Die Wahrscheinlichkeit für 0 mal 'As' ist: 11 28

Die Wahrscheinlichkeit für 1 mal 'As' ist: 11 70 + 11 70 + 11 70 = 33 70

Die Wahrscheinlichkeit für 2 mal 'As' ist: 3 70 + 3 70 + 3 70 = 9 70

Die Wahrscheinlichkeit für 3 mal 'As' ist: 1 140

Die Zufallsgröße X beschreibt den Gewinn für die 3 gezogenen Karten.

Erwartungswert der Zufallsgröße X

Ereignis 0 1 2 3
Zufallsgröße xi 0 10 20 30
P(X=xi) 11 28 33 70 9 70 1 140
xi ⋅ P(X=xi) 0 33 7 18 7 3 14

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 0⋅ 11 28 + 10⋅ 33 70 + 20⋅ 9 70 + 30⋅ 1 140

= 0+ 33 7 + 18 7 + 3 14
= 0 14 + 66 14 + 36 14 + 3 14
= 105 14
= 15 2

7.5

Erwartungswerte mit best. Optionen im WS-Baum

Beispiel:

In einem Stapel Karten mit 3 Asse, 7 Könige, 8 Damen und 6 Buben werden 2 Karten gezogen. Dabei zählen 2 Asse 500, 2 Könige 300, 2 Damen 160 und 2 Buben 80 Punkte. Außerdem gibt es für ein Paar aus Dame und König 40 Punkte. Wie viele Punkte kann man bei diesem Spiel erwarten?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Wahrscheinlichkeiten für die verschiedenen Ausgänge

EreignisP
As -> As 1 92
As -> König 7 184
As -> Dame 1 23
As -> Bube 3 92
König -> As 7 184
König -> König 7 92
König -> Dame 7 69
König -> Bube 7 92
Dame -> As 1 23
Dame -> König 7 69
Dame -> Dame 7 69
Dame -> Bube 2 23
Bube -> As 3 92
Bube -> König 7 92
Bube -> Dame 2 23
Bube -> Bube 5 92

Die Wahrscheinlichkeit für '2 Asse' ist:

P('As'-'As')
= 1 92

Die Wahrscheinlichkeit für '2 Könige' ist:

P('König'-'König')
= 7 92

Die Wahrscheinlichkeit für '2 Damen' ist:

P('Dame'-'Dame')
= 7 69

Die Wahrscheinlichkeit für '2 Buben' ist:

P('Bube'-'Bube')
= 5 92

Die Wahrscheinlichkeit für 'Paar (D&K)' ist:

P('König'-'Dame') + P('Dame'-'König')
= 7 69 + 7 69 = 14 69

Die Zufallsgröße X beschreibt die gewonnenen Punkte.

Erwartungswert der Zufallsgröße X

Ereignis 2 Asse 2 Könige 2 Damen 2 Buben Paar (D&K)
Zufallsgröße xi 500 300 160 80 40
P(X=xi) 1 92 7 92 7 69 5 92 14 69
xi ⋅ P(X=xi) 125 23 525 23 1120 69 100 23 560 69

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 500⋅ 1 92 + 300⋅ 7 92 + 160⋅ 7 69 + 80⋅ 5 92 + 40⋅ 14 69

= 125 23 + 525 23 + 1120 69 + 100 23 + 560 69
= 375 69 + 1575 69 + 1120 69 + 300 69 + 560 69
= 3930 69
= 1310 23

56.96