nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Zufallsgröße (ohne Wahrscheinlichkeit)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(
Ein Würfel mit nebenstehendem Netz wird 2 mal geworfen. Die Zufallsgröße X beschreibt die Differenz: Augenzahl beim ersten Wurf - Augenzahl beim zweiten Wurf. Gib alle Werte an, die die Zufallsgröße X annehmen kann.

Lösung einblenden

Für die Zufallsgröße X: 'Differenz Würfel1 - Würfel2' sind folgende Werte möglich:

Zufallsgröße X-3-2-10123
zugehörige
Ereignisse
3 - 63 - 55 - 63 - 3
5 - 5
6 - 6
6 - 55 - 36 - 3

Zufallsgröße WS-Verteilung

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Zwei gleiche Glücksräder wie rechts in der Abbildung werden gleichzeitig gedreht. Die Zufallsgröße X beschreibt die Differenz: Zahl des ersten Glücksrads - Zahl des zweiten Glücksrads. Stelle eine Wahrscheinlichkeitsverteilung für die Zufallsgröße X auf.

Lösung einblenden

Für die Zufallsgröße X: 'Differenz Glücksrad 1 - Glücksrad 2' sind folgende Werte möglich:

Zufallsgröße XX = -2X = -1X = 0X = 1X = 2
zugehörige
Ergebnisse
1 → 31 → 2
2 → 3
1 → 1
2 → 2
3 → 3
2 → 1
3 → 2
3 → 1
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(


Jetzt müssen die Wahrscheinlichkeiten der einzelnen Ereignisse erst mal (mit Hilfe eines Baums) berechnet werden.


Und somit können wir dann auch die Wahrscheinlichkeiten für die einzelnen Werte der Zufallsgröße berechnen.

Zufallsgröße XX = -2X = -1X = 0X = 1X = 2
zugehörige
Wahrscheinlichkeit P(X)
3 8 1 4 3 8 3 8
+ 3 8 1 4
3 8 3 8
+ 3 8 3 8
+ 1 4 1 4
3 8 3 8
+ 1 4 3 8
1 4 3 8
  = 3 32 9 64 + 3 32 9 64 + 9 64 + 1 16 9 64 + 3 32 3 32



Hiermit ergibt sich die gesuchte Wahrscheinlichkeitsverteilung für die Zufallsgröße X:

Zufallsgröße X-2-1012
P(X=k) 3 32 15 64 11 32 15 64 3 32

Zufallsgr. WS-Vert. (auch ohne zur.)

Beispiel:

In einer Urne sind zwei Kugeln, die mit der Zahl 3 beschriftet sind und zwei Kugeln, die mit der Zahl 9 beschriftet sind. Es werden zwei Kugeln ohne Zurücklegen gezogen. Die Zufallsgröße X beschreibt die Summe der Zahlen der beiden gezogenen Kugeln. Stelle eine Wahrscheinlichkeitsverteilung für die Zufallsgröße X auf.

Lösung einblenden

Für die Zufallsgröße X: 'Summe der beiden Kugeln' sind folgende Werte möglich:

Zufallsgröße XX = 6X = 12X = 18
zugehörige
Ergebnisse
3 → 33 → 9
9 → 3
9 → 9
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(


Jetzt müssen die Wahrscheinlichkeiten der einzelnen Ereignisse erst mal (mit Hilfe eines Baums) berechnet werden.


Und somit können wir dann auch die Wahrscheinlichkeiten für die einzelnen Werte der Zufallsgröße berechnen.

Zufallsgröße XX = 6X = 12X = 18
zugehörige
Wahrscheinlichkeit P(X)
1 2 1 3 1 2 2 3
+ 1 2 2 3
1 2 1 3
  = 1 6 1 3 + 1 3 1 6



Hiermit ergibt sich die gesuchte Wahrscheinlichkeitsverteilung für die Zufallsgröße X:

Zufallsgröße X61218
P(X=k) 1 6 2 3 1 6

Zufallsgr. WS-Vert. (ziehen bis erstmals ...)

Beispiel:

In einer Urne sind 3 rote und 4 blaue Kugeln. Es soll (ohne zurücklegen) solange gezogen werden, bis erstmals eine rote Kugel erscheint. Die Zufallsgröße X beschreibt dabei die Anzahl der Ziehungen, bis die erste rote Kugel gezogen worden ist. Stelle eine Wahrscheinlichkeitsverteilung für die Zufallsgröße X auf.
(Denk daran, die Brüche vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Da ja nur 4 Kugeln vom Typ 'blau' vorhanden sind, muss spätestens im 5-ten Versuch (wenn dann alle Kugeln vom Typ 'blau' bereits gezogen und damit weg sind) eine Kugel vom Typ 'rot' gezogen werden.

Das heißt die Zufallsgröße X kann nur Werte zwischen 1 und 5 annehmen.

Aus dem reduzierten Baumdiagramm rechts kann man nun die Wahrscheinlichkeitsverteilung der Zufallsgröße X übernehmen:

Zufallsgröße X12345
P(X=k) 3 7 2 7 6 35 3 35 1 35

Zufallsgröße rückwärts

Beispiel:

In einer Urne sind 12 Kugeln, die mit verschiedenen Zahlen beschriftet sind. Dabei gibt es nur die Zahlen 2, 4 und 9 als Beschriftung. Es werden zwei Kugeln mit Zurücklegen gezogen. Die Zufallsgröße X beschreibt die Summe der Zahlen der beiden gezogenen Kugeln. Bei der Wahrscheinlichkeitsverteilung von X sind nur der erste und der letzte Wert bekannt (siehe Tabelle). Wie viele Kugeln mit den oben genannten Zahlen als Beschriftung müssen jeweils in der Urne sein?

Zufallsgröße X468111318
P(X=k) 1 4 ???? 1 9

Lösung einblenden

Für X=4 gibt es nur das Ereignis: '2'-'2', also dass zwei mal hintereinander '2' kommt.

Wenn p1 die Wahrscheinlichkeit von '2' ist, dann muss also für die Wahrscheinlichkeit, dass zwei mal hintereinander '2' kommt, gelten: P(X=4) = p1 ⋅ p1 (siehe Baumdiagramm).

Aus der Tabelle können wir aber P(X=4) = 1 4 heraus lesen, also muss gelten:

p1 ⋅ p1 = (p1)2 = 1 4 und somit p1 = 1 2 .

Ebenso gibt es für X=18 nur das Ereignis: '9'-'9', also dass zwei mal hintereinander '9' kommt.

Wenn p3 die Wahrscheinlichkeit von '9' ist, dann muss also für die Wahrscheinlichkeit, dass zwei mal hintereinander '9' kommt, gelten: P(X=18) = p3 ⋅ p3 (siehe Baumdiagramm).

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Aus der Tabelle können wir aber P(X=18) = 1 9 heraus lesen, also muss gelten:

p3 ⋅ p3 = (p3)2 = 1 9 und somit p3 = 1 3 .

Da es aber nur drei Optionen gibt, muss p1 + p2 + p3 = 1 gelten, also

p2 = 1 - p1 - p3 = 1 - 1 2 - 1 3 = 6 6 - 3 6 - 2 6 = 1 6

Um nun noch die jeweilige Anzahl der Kugeln mit gleicher Zahl zu ermittlen, müssen wir einfach die Wahrscheinlichkeit mit 12 multiplizieren, weil ja für die Wahrscheinlichkeit für eine der n Kugeln mit einer bestimmten Zahl gilt: p = n 12

Somit erhalten wir:

n2 = 1 2 ⋅ 12 = 6

n4 = 1 6 ⋅ 12 = 2

n9 = 1 3 ⋅ 12 = 4

Erwartungswerte

Beispiel:

Ein Spieler darf einmal Würfeln. Bei einer 6 bekommt er 24€, bei einer 5 bekommt er 18€, bei einer 4 bekommt er 12€. Würfelt er eine 1, 2 oder 3 so bekommt er 6€. Wie hoch müsste der Einsatz sein, damit das Spiel fair ist?

Lösung einblenden

Die Zufallsgröße X beschreibt den Auszahlungsbetrag.

Erwartungswert der Zufallsgröße X

Ereignis 1-3 4 5 6
Zufallsgröße xi 6 12 18 24
P(X=xi) 1 2 1 6 1 6 1 6
xi ⋅ P(X=xi) 3 2 3 4

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 6⋅ 1 2 + 12⋅ 1 6 + 18⋅ 1 6 + 24⋅ 1 6

= 3+ 2+ 3+ 4
= 12

Einsatz für faires Spiel bestimmen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Bei einem Glücksrad wie rechts abgebildet soll das noch fehlende Feld mit einem Betrag so bestückt werden, dass das Spiel bei einem Einsatz von 10,5€ fair ist.

Lösung einblenden

Die Zufallsgröße X beschreibt die Auszahlung.

Die Zufallsgröße Y beschreibt den Gewinn, also Auszahlung - Einsatz.

Erwartungswerte der Zufallsgrößen X und Y

Ereignis 2 4 12 ?
Zufallsgröße xi 2 4 12 x
Zufallsgröße yi (Gewinn) -8.5 -6.5 1.5 x-10.5
P(X=xi) 4 8 2 8 1 8 1 8
xi ⋅ P(X=xi) 1 1 3 2 1 8 ⋅ x
yi ⋅ P(Y=yi) - 17 4 - 13 8 1.5 8 1 8 ⋅(x-10.5)

Um den gesuchten Auszahlungsbetrag zu berrechnen hat man zwei Möglichkeiten:

Entweder stellt man eine Gleichung auf, so dass der Erwartungswert des Auszahlungsbetrags gleich des Einsatzes ist ...

E(X) = 10.5

4 8 · 2 + 2 8 · 4 + 1 8 · 12 + 1 8 x = 10.5

1 +1 + 3 2 + 1 8 x = 10.5

1 +1 + 3 2 + 1 8 x = 10,5
1 8 x + 7 2 = 10,5 |⋅ 8
8( 1 8 x + 7 2 ) = 84
x +28 = 84 | -28
x = 56

... oder man stellt eine Gleichung auf, so dass der Erwartungswert des Gewinns gleich null ist:

E(Y) = 0

4 8 · ( -8,5 ) + 2 8 · ( -6,5 ) + 1 8 · 1,5 + 1 8 ( x -10,5 ) = 0

- 8,5 2 - 6,5 4 + 1,5 8 + 1 8 · x + 1 8 · ( -10,5 ) = 0

- 8,5 2 - 6,5 4 + 1,5 8 + 1 8 · x + 1 8 · ( -10,5 ) = 0
-4,25 -1,625 +0,1875 + 1 8 x -1,3125 = 0
1 8 x -7 = 0 |⋅ 8
8( 1 8 x -7 ) = 0
x -56 = 0 | +56
x = 56

In beiden Fällen ist also der gesuchte Betrag: 56

Erwartungswert ganz offen

Beispiel:

Ein Spielautomatenhersteller bekommt von einem Kunden den Auftrag einen Automaten zu entwickeln, der folgenden Bedingungen erfüllt.- Der Einsatz für ein Spiel soll 2€ betragen- auf lange Sicht soll er 10ct Gewinn pro Spiel für den Betreiber abwerfen- es sollen 5 verschiedene Felder (Kirsche, Zitrone, Apfel, Banane, Erdbeere) mit verschiedenen Auszahlungsbeträgen sein- bei einem Feld soll keine Auszahlung erfolgen- um Kunden zu locken soll bei einem Feld 42€ ausgezahlt werdenOrdne den 5 Optionen so Wahrscheinlichkeiten und Auszahlungsbeträge zu, dass diese Bedingungen erfüllt sind.

Lösung einblenden

Eine (von vielen möglichen) Lösungen:

Als erstes schreiben wir mal die Vorgaben in die Tabelle rein.

  Kirsche Zitrone Apfel Banane Erdbeere
X (z.B. Auszahlung) 0 42
Y Gewinn (Ausz. - Einsatz) -2 40
P(X) = P(Y)
Y ⋅ P(Y)

Jetzt setzen wir die Wahrscheinlichkeiten so, dass der negative Beitrag vom minimalen Betrag zum Erwartungswert den gleichen Betrag hat wie der positve vom maximalen Betrag.(dazu einfach jeweils den Gewinn in den Nenner der Wahrscheinlichkeit)

  Kirsche Zitrone Apfel Banane Erdbeere
X (z.B. Auszahlung) 0 42
Y Gewinn (Ausz. - Einsatz) -2 40
P(X) = P(Y) 1 2 1 40
Y ⋅ P(Y) -1 1

Bei der mittleren Option setzen wir den Betrag einfach gleich wie den Einsatz, so dass diese den Erwartungswert nicht verändert.
Als Wahrscheinlichkeit wählen wir einen Bruch so, dass die Restwahrscheinlichkeit für die verbleibenden zwei Optionen nicht allzu kompliziert wird.

  Kirsche Zitrone Apfel Banane Erdbeere
X (z.B. Auszahlung) 0 2 42
Y Gewinn (Ausz. - Einsatz) -2 0 40
P(X) = P(Y) 1 2 9 40 1 40
Y ⋅ P(Y) -1 0 1

Die bisherigen Optionen vereinen eine Wahrscheinlichkeit von 1 2 + 9 40 + 1 40 = 3 4
Als Restwahrscheinlichkeit für die verbleibenden Beträge bleibt nun also 1- 3 4 = 1 4 .
Diese wird auf die beiden verbleibenden Optionen verteilt:

  Kirsche Zitrone Apfel Banane Erdbeere
X (z.B. Auszahlung) 0 2 42
Y Gewinn (Ausz. - Einsatz) -2 0 40
P(X) = P(Y) 1 2 1 8 9 40 1 8 1 40
Y ⋅ P(Y) -1 0 1

Damit nun der Erwartungswert =0 wird, müssen sich die beiden noch verbleibenden Anteile daran gegenseitig aufheben. Dies erreicht man, in dem man den Gewinn jeweils gleich 'weit vom Einsatz weg' (nämlich 1) setzt.

  Kirsche Zitrone Apfel Banane Erdbeere
X (z.B. Auszahlung) 0 1 2 3 42
Y Gewinn (Ausz. - Einsatz) -2 -1 0 1 40
P(X) = P(Y) 1 2 1 8 9 40 1 8 1 40
Y ⋅ P(Y) -1 - 1 8 0 1 8 1

Weil der Erwartungswert ja aber nicht 0 sondern - 1 10 sein soll, müssen wir nun noch den Auszahlungsbetrag bei der 2. Option (betragsmäßig) vergrößern. Und zwar so, dass er mit der Wahrscheinlichkeit 1 8 multipliziert gerade um - 1 10 wächst.
Also x ⋅ 1 8 = - 1 10 => x= - 1 10 : 1 8 = - 4 5 = -0.8
Die neue Auszahlung für 'Zitrone' ist also 0.2

  Kirsche Zitrone Apfel Banane Erdbeere
X (z.B. Auszahlung) 0 0.2 2 3 42
Y Gewinn (Ausz. - Einsatz) -2 -1.8 0 1 40
P(X) = P(Y) 1 2 1 8 9 40 1 8 1 40
Y ⋅ P(Y) -1 - 9 40 0 1 8 1

Wenn man nun den Erwartungswert berechnet, kommt der gesuchte heraus:

E(Y)= -2⋅ 1 2 + -1.8⋅ 1 8 + 0⋅ 9 40 + 1⋅ 1 8 + 40⋅ 1 40

= -1 - 9 40 + 0+ 1 8 + 1
= - 40 40 - 9 40 + 0 40 + 5 40 + 40 40
= - 4 40
= - 1 10

-0.1

Erwartungswerte bei 'Ziehen bis erstmals ...'

Beispiel:

Eine Lehrerin sammelt die Hausaufgaben von einigen Schülern ein, um zu kontrollieren, ob diese auch ordentlich gemacht wurden. Aus Zeitgründen möchte sie aber nicht alle, sondern nur ein paar wenige einsammeln, welche durch ein Losverfahren ausgewählt werden. Aus (der unbegründeten) Angst ungerecht behandelt zu werden, bestehen die 3 Jungs darauf, dass unbedingt immer eine Hausaufgabe eines der 15 Mädchen der Klasse eingesammelt wird. Deswegen wird solange gelost, bis das erste Mädchen gezogen wird. Mit wie vielen Hausaufgabenüberprüfungen muss die Lehrerin im Durchschnitt rechnen?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Wahrscheinlichkeiten für die verschiedenen Ausgänge

Die Wahrscheinlichkeit für ein 'Mädchen' im 1-ten Versuch st: 5 6

Die Wahrscheinlichkeit für ein 'Mädchen' im 2-ten Versuch st: 5 34

Die Wahrscheinlichkeit für ein 'Mädchen' im 3-ten Versuch st: 5 272

Die Wahrscheinlichkeit für ein 'Mädchen' im 4-ten Versuch st: 1 816

Die Zufallsgröße X beschreibt Anzahl der eingesammelten Hausaufgaben bis das erste Mädchen gezogen wird.

Erwartungswert der Zufallsgröße X

Ereignis 1 2 3 4
Zufallsgröße xi 1 2 3 4
P(X=xi) 5 6 5 34 5 272 1 816
xi ⋅ P(X=xi) 5 6 5 17 15 272 1 204

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 1⋅ 5 6 + 2⋅ 5 34 + 3⋅ 5 272 + 4⋅ 1 816

= 5 6 + 5 17 + 15 272 + 1 204
= 680 816 + 240 816 + 45 816 + 4 816
= 969 816
= 19 16

1.19

Erwartungswerte mit gesuchten Anzahlen im WS-Baum

Beispiel:

In einem Kartenstapel befinden sich 4 Asse und 14 weitere Karten. Nachdem diese gut gemischt wurden, darf ein Spieler 3 Karten ziehen. Für jedes As, das unter den drei Karten ist, erhält er dabei 10€. Mit welchem Gewinn kann er rechnen?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Wahrscheinlichkeiten für die verschiedenen Ausgänge

EreignisP
As -> As -> As 1 204
As -> As -> andereKarte 7 204
As -> andereKarte -> As 7 204
As -> andereKarte -> andereKarte 91 612
andereKarte -> As -> As 7 204
andereKarte -> As -> andereKarte 91 612
andereKarte -> andereKarte -> As 91 612
andereKarte -> andereKarte -> andereKarte 91 204

Die Wahrscheinlichkeit für 0 mal 'As' ist: 91 204

Die Wahrscheinlichkeit für 1 mal 'As' ist: 91 612 + 91 612 + 91 612 = 91 204

Die Wahrscheinlichkeit für 2 mal 'As' ist: 7 204 + 7 204 + 7 204 = 7 68

Die Wahrscheinlichkeit für 3 mal 'As' ist: 1 204

Die Zufallsgröße X beschreibt den Gewinn für die 3 gezogenen Karten.

Erwartungswert der Zufallsgröße X

Ereignis 0 1 2 3
Zufallsgröße xi 0 10 20 30
P(X=xi) 91 204 91 204 7 68 1 204
xi ⋅ P(X=xi) 0 455 102 35 17 5 34

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 0⋅ 91 204 + 10⋅ 91 204 + 20⋅ 7 68 + 30⋅ 1 204

= 0+ 455 102 + 35 17 + 5 34
= 0 102 + 455 102 + 210 102 + 15 102
= 680 102
= 20 3

6.67

Erwartungswerte mit best. Optionen im WS-Baum

Beispiel:

In einem Stapel Karten mit 8 Asse, 10 Könige, 9 Damen und 3 Buben werden 2 Karten gezogen. Dabei zählen 2 Asse 1000, 2 Könige 400, 2 Damen 200 und 2 Buben 70 Punkte. Außerdem gibt es für ein Paar aus Dame und König 30 Punkte. Wie viele Punkte kann man bei diesem Spiel erwarten?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Wahrscheinlichkeiten für die verschiedenen Ausgänge

EreignisP
As -> As 28 435
As -> König 8 87
As -> Dame 12 145
As -> Bube 4 145
König -> As 8 87
König -> König 3 29
König -> Dame 3 29
König -> Bube 1 29
Dame -> As 12 145
Dame -> König 3 29
Dame -> Dame 12 145
Dame -> Bube 9 290
Bube -> As 4 145
Bube -> König 1 29
Bube -> Dame 9 290
Bube -> Bube 1 145

Die Wahrscheinlichkeit für '2 Asse' ist:

P('As'-'As')
= 28 435

Die Wahrscheinlichkeit für '2 Könige' ist:

P('König'-'König')
= 3 29

Die Wahrscheinlichkeit für '2 Damen' ist:

P('Dame'-'Dame')
= 12 145

Die Wahrscheinlichkeit für '2 Buben' ist:

P('Bube'-'Bube')
= 1 145

Die Wahrscheinlichkeit für 'Paar (D&K)' ist:

P('König'-'Dame') + P('Dame'-'König')
= 3 29 + 3 29 = 6 29

Die Zufallsgröße X beschreibt die gewonnenen Punkte.

Erwartungswert der Zufallsgröße X

Ereignis 2 Asse 2 Könige 2 Damen 2 Buben Paar (D&K)
Zufallsgröße xi 1000 400 200 70 30
P(X=xi) 28 435 3 29 12 145 1 145 6 29
xi ⋅ P(X=xi) 5600 87 1200 29 480 29 14 29 180 29

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 1000⋅ 28 435 + 400⋅ 3 29 + 200⋅ 12 145 + 70⋅ 1 145 + 30⋅ 6 29

= 5600 87 + 1200 29 + 480 29 + 14 29 + 180 29
= 5600 87 + 3600 87 + 1440 87 + 42 87 + 540 87
= 11222 87

128.99