Klasse 5
Klasse 6
Klasse 7
Klasse 8
Klasse 9
Klasse 10
Fit für die Oberstufe
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Zufallsgröße (ohne Wahrscheinlichkeit)
Beispiel:
(Alle Sektoren sind Vielfache
von Achtels-Kreisen)
Für die Zufallsgröße X: 'Differenz Glücksrad 1 - Glücksrad 2' sind folgende Werte möglich:
Zufallsgröße X | -2 | -1 | 0 | 1 | 2 |
zugehörige Ereignisse | 1 - 3 | 1 - 2 2 - 3 | 1 - 1 2 - 2 3 - 3 | 2 - 1 3 - 2 | 3 - 1 |
Zufallsgröße WS-Verteilung
Beispiel:
Eine (faire) Münze wird 3 mal geworfen. Die Zufallsgröße X beschreibt die Anzahl der Würfe, bei denen "Zahl" erscheint. Stelle eine Wahrscheinlichkeitsverteilung für die Zufallsgröße X auf.
Für die Zufallsgröße X: 'Anzahl von Zahl-Würfen' sind folgende Werte möglich:
Zufallsgröße X | X = 0 | X = 1 | X = 2 | X = 3 |
zugehörige Ergebnisse | 0 → 0 → 0 | 0 → 0 → 1 0 → 1 → 0 1 → 0 → 0 | 0 → 1 → 1 1 → 0 → 1 1 → 1 → 0 | 1 → 1 → 1 |
Jetzt müssen die Wahrscheinlichkeiten der einzelnen Ereignisse erst mal (mit Hilfe eines Baums) berechnet werden.
Und somit können wir dann auch die Wahrscheinlichkeiten für die einzelnen Werte der Zufallsgröße berechnen.
Zufallsgröße X | X = 0 | X = 1 | X = 2 | X = 3 |
zugehörige Wahrscheinlichkeit P(X) | ⋅ ⋅ | ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ | ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ | ⋅ ⋅ |
= | + + | + + |
Hiermit ergibt sich die gesuchte Wahrscheinlichkeitsverteilung für die Zufallsgröße X:
Zufallsgröße X | 0 | 1 | 2 | 3 |
P(X=k) |
Zufallsgr. WS-Vert. (auch ohne zur.)
Beispiel:
In einem Kartenstapel sind nur noch zwei Karten mit dem Wert 4, vier Karten mit dem Wert 6 und zwei 8er.Es werden zwei Karten ohne Zurücklegen gezogen. Die Zufallsgröße X beschreibt die Differenz zwischen dem größeren und dem kleineren Wert der beiden gezogenen Karten. Stelle eine Wahrscheinlichkeitsverteilung für die Zufallsgröße X auf.
Für die Zufallsgröße X: 'Differenz der beiden Karten' sind folgende Werte möglich:
Zufallsgröße X | X = 0 | X = 2 | X = 4 |
zugehörige Ergebnisse | 4 → 4 6 → 6 8 → 8 | 4 → 6 6 → 4 6 → 8 8 → 6 | 4 → 8 8 → 4 |
Jetzt müssen die Wahrscheinlichkeiten der einzelnen Ereignisse erst mal (mit Hilfe eines Baums) berechnet werden.
Und somit können wir dann auch die Wahrscheinlichkeiten für die einzelnen Werte der Zufallsgröße berechnen.
Zufallsgröße X | X = 0 | X = 2 | X = 4 |
zugehörige Wahrscheinlichkeit P(X) | ⋅ + ⋅ + ⋅ | ⋅ + ⋅ + ⋅ + ⋅ | ⋅ + ⋅ |
= | + + | + + + | + |
Hiermit ergibt sich die gesuchte Wahrscheinlichkeitsverteilung für die Zufallsgröße X:
Zufallsgröße X | 0 | 2 | 4 |
P(X=k) |
Zufallsgr. WS-Vert. (ziehen bis erstmals ...)
Beispiel:
Aus einem Kartenstapel mit 8 Karten der Farbe Herz und 3 weiteren Karten soll solange eine Karte gezogen werden, bis eine Herz-Karte erscheint. Die Zufallsgröße X beschreibt dabei die Anzahl der Ziehungen, bis die erste Herz-Karte gezogen worden ist. Stelle eine Wahrscheinlichkeitsverteilung für die Zufallsgröße X auf.
(Denk daran, die Brüche vollständig zu kürzen!)
Da ja nur 3 Karten vom Typ 'kein Herz' vorhanden sind, muss spätestens im 4-ten Versuch (wenn dann alle Karten vom Typ 'kein Herz' bereits gezogen und damit weg sind) eine Karte vom Typ 'Herz' gezogen werden.
Das heißt die Zufallsgröße X kann nur Werte zwischen 1 und 4 annehmen.
Aus dem reduzierten Baumdiagramm rechts kann man nun die Wahrscheinlichkeitsverteilung der Zufallsgröße X übernehmen:
Zufallsgröße X | 1 | 2 | 3 | 4 |
P(X=k) |
Zufallsgröße rückwärts
Beispiel:
Ein Glücksrad hat drei Sektoren, die mit den Zahlen 1, 2 und 3 beschriftet sind. Es wird zwei mal gedreht. Die Zufallsgröße X beschreibt dabei die Summe der Zahlen die bei den beiden Glücksraddrehungen erscheinen. Bei der Wahrscheinlichkeitsverteilung von X sind nur der erste und der letzte Wert bekannt (siehe Tabelle). Wie groß müssen jeweils die Winkel der Sektoren sein?
Zufallsgröße X | 2 | 3 | 4 | 5 | 6 |
P(X=k) | ? | ? | ? |
(Alle Sektoren sind Vielfache
von Achtels-Kreisen)
Für X=2 gibt es nur das Ereignis: '1'-'1', also dass zwei mal hintereinander '1' kommt.
Wenn p1 die Wahrscheinlichkeit von '1' ist, dann muss also für die Wahrscheinlichkeit, dass zwei mal hintereinander '1' kommt, gelten: P(X=2) = p1 ⋅ p1 (siehe Baumdiagramm).
Aus der Tabelle können wir aber P(X=2) = heraus lesen, also muss gelten:
p1 ⋅ p1 = (p1)2 = und somit p1 = .
Ebenso gibt es für X=6 nur das Ereignis: '3'-'3', also dass zwei mal hintereinander '3' kommt.
Wenn p3 die Wahrscheinlichkeit von '3' ist, dann muss also für die Wahrscheinlichkeit, dass zwei mal hintereinander '3' kommt, gelten: P(X=6) = p3 ⋅ p3 (siehe Baumdiagramm).
Aus der Tabelle können wir aber P(X=6) = heraus lesen, also muss gelten:
p3 ⋅ p3 = (p3)2 = und somit p3 = .
Da es aber nur drei Optionen gibt, muss p1 + p2 + p3 = 1 gelten, also
p2 = 1 - p1 - p3 = = =
Um nun noch die Mittelpunktswinkel der drei Sektoren zu ermittlen, müssen wir einfach die Wahrscheinlichkeit mit 360° multiplizieren, weil ja für die Wahrscheinlichkeit eines Sektors mit Mittelpunktswinkel α gilt: p =
Somit erhalten wir:
α1 = ⋅ 360° = 70°
α2 = ⋅ 360° = 10°
α3 = ⋅ 360° = 280°
Erwartungswerte
Beispiel:
Ein Spieler darf aus einer Urne mit 9 blauen, 9 roten, 9 grünen und 3 weißen Kugeln eine Kugel ziehen. Erwischt er eine blaue, so erhält er 10€. Bei rot erhält er 20€, bei grün erhält er 40€ und bei weiß erhält er 80€. Wieviel bringt ein Zug durchschnittlich ein?
Die Zufallsgröße X beschreibt den ausbezahlten €-Euro-Betrag.
Erwartungswert der Zufallsgröße X
Ereignis | blau | rot | grün | weiß |
Zufallsgröße xi | 10 | 20 | 40 | 80 |
P(X=xi) | ||||
xi ⋅ P(X=xi) |
Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:
E(X)= 10⋅ + 20⋅ + 40⋅ + 80⋅
=
=
Einsatz für faires Spiel bestimmen
Beispiel:
Ein Spieler darf aus einer Urne mit 5 blauen, 5 roten, 5 grünen und 5 weißen Kugeln eine Kugel ziehen. Erwischt er eine blaue, so erhält er 12€. Bei rot erhält er 8€ und bei grün erhält er 16€. Welchen Betrag muss er bei weiß erhalten damit das Spiel fair ist, wenn der Einsatz 17€ beträgt ?
Die Zufallsgröße X beschreibt die Auszahlung.
Die Zufallsgröße Y beschreibt den Gewinn, also Auszahlung - Einsatz.
Erwartungswerte der Zufallsgrößen X und Y
Ereignis | blau | rot | grün | weiß |
Zufallsgröße xi | 12 | 8 | 16 | x |
Zufallsgröße yi (Gewinn) | -5 | -9 | -1 | x-17 |
P(X=xi) | ||||
xi ⋅ P(X=xi) | ⋅ x | |||
yi ⋅ P(Y=yi) | ⋅(x-17) |
Um den gesuchten Auszahlungsbetrag zu berrechnen hat man zwei Möglichkeiten:
Entweder stellt man eine Gleichung auf, so dass der Erwartungswert des Auszahlungsbetrags gleich des Einsatzes ist ...
E(X) = 17
= 17
= 17= | |||
= | |⋅ 4 | ||
= | |||
= | | | ||
= |
... oder man stellt eine Gleichung auf, so dass der Erwartungswert des Gewinns gleich null ist:
E(Y) = 0
= 0 = 0= | |||
= | |||
= | |⋅ 4 | ||
= | |||
= | | | ||
= |
In beiden Fällen ist also der gesuchte Betrag: 32€
Erwartungswert ganz offen
Beispiel:
Ein Spielautomatenhersteller bekommt von einem Kunden den Auftrag einen Automaten zu entwickeln, der folgenden Bedingungen erfüllt.- Der Einsatz für ein Spiel soll 2€ betragen- auf lange Sicht soll er 10ct Gewinn pro Spiel für den Betreiber abwerfen- es sollen 5 verschiedene Felder (Kirsche, Zitrone, Apfel, Banane, Erdbeere) mit verschiedenen Auszahlungsbeträgen sein- bei einem Feld soll keine Auszahlung erfolgen- um Kunden zu locken soll bei einem Feld 34€ ausgezahlt werdenOrdne den 5 Optionen so Wahrscheinlichkeiten und Auszahlungsbeträge zu, dass diese Bedingungen erfüllt sind.
Eine (von vielen möglichen) Lösungen:
Als erstes schreiben wir mal die Vorgaben in die Tabelle rein.
Kirsche | Zitrone | Apfel | Banane | Erdbeere | |
X (z.B. Auszahlung) | 0 | 34 | |||
Y Gewinn (Ausz. - Einsatz) | -2 | 32 | |||
P(X) = P(Y) | |||||
Y ⋅ P(Y) |
Jetzt setzen wir die Wahrscheinlichkeiten so, dass der negative Beitrag vom minimalen Betrag zum Erwartungswert den gleichen Betrag hat wie der positve vom maximalen Betrag.(dazu einfach jeweils den Gewinn in den Nenner der Wahrscheinlichkeit)
Kirsche | Zitrone | Apfel | Banane | Erdbeere | |
X (z.B. Auszahlung) | 0 | 34 | |||
Y Gewinn (Ausz. - Einsatz) | -2 | 32 | |||
P(X) = P(Y) | |||||
Y ⋅ P(Y) |
Bei der mittleren Option setzen wir den Betrag einfach gleich wie den Einsatz, so dass diese den Erwartungswert nicht verändert.
Als Wahrscheinlichkeit wählen wir einen Bruch so, dass die Restwahrscheinlichkeit für die verbleibenden zwei Optionen nicht allzu kompliziert wird.
Kirsche | Zitrone | Apfel | Banane | Erdbeere | |
X (z.B. Auszahlung) | 0 | 2 | 34 | ||
Y Gewinn (Ausz. - Einsatz) | -2 | 0 | 32 | ||
P(X) = P(Y) | |||||
Y ⋅ P(Y) |
Die bisherigen Optionen vereinen eine Wahrscheinlichkeit von ++=
Als Restwahrscheinlichkeit für die verbleibenden Beträge bleibt nun also 1-
=.
Diese wird auf die beiden verbleibenden Optionen verteilt:
Kirsche | Zitrone | Apfel | Banane | Erdbeere | |
X (z.B. Auszahlung) | 0 | 2 | 34 | ||
Y Gewinn (Ausz. - Einsatz) | -2 | 0 | 32 | ||
P(X) = P(Y) | |||||
Y ⋅ P(Y) |
Damit nun der Erwartungswert =0 wird, müssen sich die beiden noch verbleibenden Anteile daran gegenseitig aufheben. Dies erreicht man, in dem man den Gewinn jeweils gleich 'weit vom Einsatz weg' (nämlich ) setzt.
Kirsche | Zitrone | Apfel | Banane | Erdbeere | |
X (z.B. Auszahlung) | 0 | 1 | 2 | 3 | 34 |
Y Gewinn (Ausz. - Einsatz) | -2 | -1 | 0 | 1 | 32 |
P(X) = P(Y) | |||||
Y ⋅ P(Y) |
Weil der Erwartungswert ja aber nicht 0 sondern sein soll, müssen wir nun noch den Auszahlungsbetrag
bei der 2. Option (betragsmäßig) vergrößern. Und zwar so, dass er mit der Wahrscheinlichkeit
multipliziert gerade um wächst.
Also x ⋅= => x=:
= = -0.8
Die neue Auszahlung für 'Zitrone' ist
also 0.2
Kirsche | Zitrone | Apfel | Banane | Erdbeere | |
X (z.B. Auszahlung) | 0 | 0.2 | 2 | 3 | 34 |
Y Gewinn (Ausz. - Einsatz) | -2 | -1.8 | 0 | 1 | 32 |
P(X) = P(Y) | |||||
Y ⋅ P(Y) |
Wenn man nun den Erwartungswert berechnet, kommt der gesuchte heraus:
E(Y)= -2⋅ + -1.8⋅ + 0⋅ + 1⋅ + 32⋅
=
=
=
=
≈ -0.1
Erwartungswerte bei 'Ziehen bis erstmals ...'
Beispiel:
In einer Urne sind 12 rote und 2 blaue Kugeln. Es soll (ohne zurücklegen) solange gezogen werden, bis erstmals eine rote Kugel erscheint. Bestimme den Erwartungswert für die Anzahl der Ziehungen, bis die erste rote Kugel gezogen ist.
(Denk daran, den Bruch vollständig zu kürzen!)
Wahrscheinlichkeiten für die verschiedenen Ausgänge
Die Wahrscheinlichkeit für ein 'rot' im 1-ten Versuch st:
Die Wahrscheinlichkeit für ein 'rot' im 2-ten Versuch st:
Die Wahrscheinlichkeit für ein 'rot' im 3-ten Versuch st:
Die Zufallsgröße X beschreibt die Anzahl der Ziehungen. bis die erste rote Kugel gezogen ist.
Erwartungswert der Zufallsgröße X
Ereignis | 1 | 2 | 3 |
Zufallsgröße xi | 1 | 2 | 3 |
P(X=xi) | |||
xi ⋅ P(X=xi) |
Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:
E(X)= 1⋅ + 2⋅ + 3⋅
=
=
=
=
≈ 1.15
Erwartungswerte mit gesuchten Anzahlen im WS-Baum
Beispiel:
Auf einen Schüleraustausch bewerben sich 21 Mädchen und 11 Jungs. Weil aber leider weniger Plätze zur Verfügung stehen, muss gelost werden. Wie viele Mädchen kann man bei den ersten 3 verlosten Plätzen erwarten?
(Denk daran, den Bruch vollständig zu kürzen!)
Wahrscheinlichkeiten für die verschiedenen Ausgänge
Ereignis | P |
---|---|
Mädchen -> Mädchen -> Mädchen | |
Mädchen -> Mädchen -> Jungs | |
Mädchen -> Jungs -> Mädchen | |
Mädchen -> Jungs -> Jungs | |
Jungs -> Mädchen -> Mädchen | |
Jungs -> Mädchen -> Jungs | |
Jungs -> Jungs -> Mädchen | |
Jungs -> Jungs -> Jungs |
Die Wahrscheinlichkeit für 0 mal 'Mädchen' ist:
Die Wahrscheinlichkeit für 1 mal 'Mädchen' ist: + + =
Die Wahrscheinlichkeit für 2 mal 'Mädchen' ist: + + =
Die Wahrscheinlichkeit für 3 mal 'Mädchen' ist:
Die Zufallsgröße X beschreibt die Anzahl an Mädchen unter den drei verlosten Plätzen.
Erwartungswert der Zufallsgröße X
Ereignis | 0 | 1 | 2 | 3 |
Zufallsgröße xi | 0 | 1 | 2 | 3 |
P(X=xi) | ||||
xi ⋅ P(X=xi) |
Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:
E(X)= 0⋅ + 1⋅ + 2⋅ + 3⋅
=
=
=
=
≈ 1.97
Erwartungswerte mit best. Optionen im WS-Baum
Beispiel:
Ein leidenschaftlicher Mäxle-Spieler möchte eine Mäxle-Spielautomat bauen. Wie beim richtigen Mäxle sollen auch hier zwei normale Würfel gleichzeitig geworfen werden (bzw. dies eben simuliert). Bei einem Mäxle (also eine 1 und eine 2) soll dann 18€ ausbezahlt werden, bei einem Pasch (also zwei gleiche Augenzahlen) 5€ und bei 61-65 also (also ein Würfel 6 und der andere keine 6) noch 3€. Wie groß müsste der Einsatz sein, damit das Spiel fair wird?
(Denk daran, den Bruch vollständig zu kürzen!)
Wahrscheinlichkeiten für die verschiedenen Ausgänge
Ereignis | P |
---|---|
1 -> 1 | |
1 -> 2 | |
1 -> 3 | |
1 -> 4 | |
1 -> 5 | |
1 -> 6 | |
2 -> 1 | |
2 -> 2 | |
2 -> 3 | |
2 -> 4 | |
2 -> 5 | |
2 -> 6 | |
3 -> 1 | |
3 -> 2 | |
3 -> 3 | |
3 -> 4 | |
3 -> 5 | |
3 -> 6 | |
4 -> 1 | |
4 -> 2 | |
4 -> 3 | |
4 -> 4 | |
4 -> 5 | |
4 -> 6 | |
5 -> 1 | |
5 -> 2 | |
5 -> 3 | |
5 -> 4 | |
5 -> 5 | |
5 -> 6 | |
6 -> 1 | |
6 -> 2 | |
6 -> 3 | |
6 -> 4 | |
6 -> 5 | |
6 -> 6 |
Die Wahrscheinlichkeit für 'Mäxle' ist:
P('1'-'2') + P('2'-'1')
= + =
Die Wahrscheinlichkeit für 'Pasch' ist:
P('1'-'1') + P('2'-'2') + P('3'-'3') + P('4'-'4') + P('5'-'5') + P('6'-'6')
= + + + + + =
Die Wahrscheinlichkeit für '60er' ist:
P('1'-'6') + P('2'-'6') + P('3'-'6') + P('4'-'6') + P('5'-'6') + P('6'-'1') + P('6'-'2') + P('6'-'3') + P('6'-'4') + P('6'-'5')
= + + + + + + + + + =
Die Zufallsgröße X beschreibt den durch die beiden Würfel ausbezahlten Euro-Betrag.
Erwartungswert der Zufallsgröße X
Ereignis | Mäxle | Pasch | 60er |
Zufallsgröße xi | 18 | 5 | 3 |
P(X=xi) | |||
xi ⋅ P(X=xi) |
Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:
E(X)= 18⋅ + 5⋅ + 3⋅
=
=
=
=
≈ 2.67