nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Bruchgleichungen (quadr.) einfach

Beispiel:

Bestimme erst die maximale Definitionsmenge D. Löse dann die Bruchgleichung:

- 6 x -1 = -3x

Lösung einblenden

Um die Definitionlücken (und damit die maximale Definitionsmenge) zu bestimmen, müssen wir einfach nach den Nullstellen der Nenner schauen: Hier erkennt man schnell als Nullstelle(n) der Nenner: 1

D=R\{ 1 }

Wir multiplizieren den Nenner x -1 weg!

- 6 x -1 = -3x |⋅( x -1 )
- 6 x -1 · ( x -1 ) = -3x · ( x -1 )
-6 = -3 x ( x -1 )
-6 = -3 x 2 +3x
-6 = -3 x 2 +3x | +3 x 2 -3x
3 x 2 -3x -6 = 0 |:3

x 2 - x -2 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +1 ± ( -1 ) 2 -4 · 1 · ( -2 ) 21

x1,2 = +1 ± 1 +8 2

x1,2 = +1 ± 9 2

x1 = 1 + 9 2 = 1 +3 2 = 4 2 = 2

x2 = 1 - 9 2 = 1 -3 2 = -2 2 = -1

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 1 2 ) 2 - ( -2 ) = 1 4 + 2 = 1 4 + 8 4 = 9 4

x1,2 = 1 2 ± 9 4

x1 = 1 2 - 3 2 = - 2 2 = -1

x2 = 1 2 + 3 2 = 4 2 = 2

(Alle Lösungen sind auch in der Definitionsmenge).

L={ -1 ; 2 }

Bruchgleichung (quadr.) 1

Beispiel:

Bestimme erst die maximale Definitionsmenge D. Löse dann die Bruchgleichung:

11x -2 2x = x +3

Lösung einblenden

Um die Definitionlücken (und damit die maximale Definitionsmenge) zu bestimmen, müssen wir einfach nach den Nullstellen der Nenner schauen: Hier erkennt man schnell als Nullstelle(n) der Nenner: 0

D=R\{0}

Wir multiplizieren den Nenner 2x weg!

11x -2 2x = x +3 |⋅( 2x )
11x -2 2x · 2x = x · 2x + 3 · 2x
11x -2 = 2 x · x +6x
11x -2 = 2 x 2 +6x | -2 x 2 -6x

-2 x 2 +5x -2 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -5 ± 5 2 -4 · ( -2 ) · ( -2 ) 2( -2 )

x1,2 = -5 ± 25 -16 -4

x1,2 = -5 ± 9 -4

x1 = -5 + 9 -4 = -5 +3 -4 = -2 -4 = 0,5

x2 = -5 - 9 -4 = -5 -3 -4 = -8 -4 = 2

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-2 " teilen:

-2 x 2 +5x -2 = 0 |: -2

x 2 - 5 2 x +1 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 5 4 ) 2 - 1 = 25 16 - 1 = 25 16 - 16 16 = 9 16

x1,2 = 5 4 ± 9 16

x1 = 5 4 - 3 4 = 2 4 = 0.5

x2 = 5 4 + 3 4 = 8 4 = 2

(Alle Lösungen sind auch in der Definitionsmenge).

L={ 0,5 ; 2 }

Bruchgleichung (quadr.) 2

Beispiel:

Bestimme erst die maximale Definitionsmenge D. Löse dann die Bruchgleichung:

-2 x +5 + x = -4

Lösung einblenden

Um die Definitionlücken (und damit die maximale Definitionsmenge) zu bestimmen, müssen wir einfach nach den Nullstellen der Nenner schauen: Hier erkennt man schnell als Nullstelle(n) der Nenner: -5

D=R\{ -5 }

- 2 x +5 + x = -4

Wir multiplizieren den Nenner x +5 weg!

- 2 x +5 + x = -4 |⋅( x +5 )
- 2 x +5 · ( x +5 ) + x · ( x +5 ) = -4 · ( x +5 )
-2 + x ( x +5 ) = -4( x +5 )
-2 + ( x 2 +5x ) = -4( x +5 )
x 2 +5x -2 = -4x -20
x 2 +5x -2 = -4x -20 | +4x +20

x 2 +9x +18 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -9 ± 9 2 -4 · 1 · 18 21

x1,2 = -9 ± 81 -72 2

x1,2 = -9 ± 9 2

x1 = -9 + 9 2 = -9 +3 2 = -6 2 = -3

x2 = -9 - 9 2 = -9 -3 2 = -12 2 = -6

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 9 2 ) 2 - 18 = 81 4 - 18 = 81 4 - 72 4 = 9 4

x1,2 = - 9 2 ± 9 4

x1 = - 9 2 - 3 2 = - 12 2 = -6

x2 = - 9 2 + 3 2 = - 6 2 = -3

(Alle Lösungen sind auch in der Definitionsmenge).

L={ -6 ; -3 }

doppelte Bruchgl. (quadr.)

Beispiel:

Löse die folgende Gleichung:

-74 3x +12 +2x = - x 3x +12

Lösung einblenden

D=R\{ -4 }

- 74 3x +12 +2x = -x 3x +12
- 74 3( x +4 ) +2x = -x 3( x +4 ) |(Nenner faktorisiert)

Wir multiplizieren den Nenner 3( x +4 ) weg!

- 74 3( x +4 ) +2x = -x 3( x +4 ) |⋅( 3( x +4 ) )
- 74 3( x +4 ) · ( 3( x +4 ) ) + 2x · ( 3( x +4 ) ) = -x 3( x +4 ) · ( 3( x +4 ) )
-74 +6 x ( x +4 ) = -x
-74 + ( 6 x 2 +24x ) = -x
6 x 2 +24x -74 = -x
6 x 2 +24x -74 = -x | + x

6 x 2 +25x -74 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -25 ± 25 2 -4 · 6 · ( -74 ) 26

x1,2 = -25 ± 625 +1776 12

x1,2 = -25 ± 2401 12

x1 = -25 + 2401 12 = -25 +49 12 = 24 12 = 2

x2 = -25 - 2401 12 = -25 -49 12 = -74 12 = - 37 6

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "6 " teilen:

6 x 2 +25x -74 = 0 |: 6

x 2 + 25 6 x - 37 3 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 25 12 ) 2 - ( - 37 3 ) = 625 144 + 37 3 = 625 144 + 1776 144 = 2401 144

x1,2 = - 25 12 ± 2401 144

x1 = - 25 12 - 49 12 = - 74 12 = -6.1666666666667

x2 = - 25 12 + 49 12 = 24 12 = 2

(Alle Lösungen sind auch in der Definitionsmenge).

L={ - 37 6 ; 2 }

Bruchgl. mit x-Potenzen

Beispiel:

Löse die folgende Gleichung:

x -42 x 4 = - 1 x 2

Lösung einblenden

D=R\{0}

Wir multiplizieren den Nenner x 4 weg!

x -42 x 4 = - 1 x 2 |⋅( x 4 )
x -42 x 4 · x 4 = - 1 x 2 · x 4
x -42 = - x 2
x -42 = - x 2 | + x 2

x 2 + x -42 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -1 ± 1 2 -4 · 1 · ( -42 ) 21

x1,2 = -1 ± 1 +168 2

x1,2 = -1 ± 169 2

x1 = -1 + 169 2 = -1 +13 2 = 12 2 = 6

x2 = -1 - 169 2 = -1 -13 2 = -14 2 = -7

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 1 2 ) 2 - ( -42 ) = 1 4 + 42 = 1 4 + 168 4 = 169 4

x1,2 = - 1 2 ± 169 4

x1 = - 1 2 - 13 2 = - 14 2 = -7

x2 = - 1 2 + 13 2 = 12 2 = 6

(Alle Lösungen sind auch in der Definitionsmenge).

L={ -7 ; 6 }

Bruchgleichung mit Parameter

Beispiel:

Für x ≠ 0 und a ∈ Z\{0} ist die folgende Gleichung gegeben:

- 18 x + x = - a

Bestimme a so, dass die Gleichung zwei (verschiedene) ganzzahlige Lösungen besitzt.

Lösung einblenden

D=R\{0}

- 18 x + x = - a

Wir multiplizieren den Nenner x weg:

- 18 x + x = - a |⋅x
- 18 x · x + x · x = - a · x
-18 + x 2 = - a x
-18 + x 2 + a x = 0
x 2 + a x -18 = 0

Um jetzt ein a zu finden, für das die quadratische Gleichung zwei ganzzahlige Lösungen hat, bezeichnen wir die beiden Lösungen einfach mal mit p und q und schreiben einen faktorisierten Term mit diesen Lösungen auf:

(x-p)⋅(x-q)

Wenn wir jetzt den faktorisierten Term ausmultiplizieren, erkennen wir, dass auch hier die 1 der Koeffizient vor dem x² ist.

= x² - px - qx + pq
= x² - (p+q)x + pq

Es muss somit gelten:

x 2 + a x -18 = x² - (p+q)x + pq

Wir müssen jetzt also nur noch zwei ganze Zahlen finden, deren Produkt -18 ist, also z.B.:

Mit p = 2 und q = -9 würde es funktionieren, denn 2 · ( -9 ) = -18

Genauso muss dann auch a = -(p+q) gelten, also a = -( 2 -9 ) = 7

Zur Probe können wir ja noch mit a = 7 die quadratische Gleichung lösen, um zu überprüfen, ob die Lösungen wirklich ganzzahlig sind:

x 2 +7x -18 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -7 ± 7 2 -4 · 1 · ( -18 ) 21

x1,2 = -7 ± 49 +72 2

x1,2 = -7 ± 121 2

x1 = -7 + 121 2 = -7 +11 2 = 4 2 = 2

x2 = -7 - 121 2 = -7 -11 2 = -18 2 = -9

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 7 2 ) 2 - ( -18 ) = 49 4 + 18 = 49 4 + 72 4 = 121 4

x1,2 = - 7 2 ± 121 4

x1 = - 7 2 - 11 2 = - 18 2 = -9

x2 = - 7 2 + 11 2 = 4 2 = 2

L={ -9 ; 2 }