nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Bruchgleichungen (quadr.) einfach

Beispiel:

Bestimme erst die maximale Definitionsmenge D. Löse dann die Bruchgleichung:

50 x = 2x

Lösung einblenden

Um die Definitionlücken (und damit die maximale Definitionsmenge) zu bestimmen, müssen wir einfach nach den Nullstellen der Nenner schauen: Hier erkennt man schnell als Nullstelle(n) der Nenner: 0

D=R\{0}

Wir multiplizieren den Nenner x weg!

50 x = 2x |⋅( x )
50 x · x = 2x · x
50 = 2 x · x
50 = 2 x 2
50 = 2 x 2 | -50 -2 x 2
-2 x 2 = -50 |: ( -2 )
x 2 = 25 | 2
x1 = - 25 = -5
x2 = 25 = 5

(Alle Lösungen sind auch in der Definitionsmenge).

L={ -5 ; 5 }

Bruchgleichung (quadr.) 1

Beispiel:

Bestimme erst die maximale Definitionsmenge D. Löse dann die Bruchgleichung:

-9 - 3 x = x -5

Lösung einblenden

Um die Definitionlücken (und damit die maximale Definitionsmenge) zu bestimmen, müssen wir einfach nach den Nullstellen der Nenner schauen: Hier erkennt man schnell als Nullstelle(n) der Nenner: 0

D=R\{0}

Wir multiplizieren den Nenner x weg!

-9 - 3 x = x -5 |⋅( x )
-9 · x - 3 x · x = x · x -5 · x
-9x -3 = x · x -5x
-9x -3 = x 2 -5x | - x 2 +5x

- x 2 -4x -3 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +4 ± ( -4 ) 2 -4 · ( -1 ) · ( -3 ) 2( -1 )

x1,2 = +4 ± 16 -12 -2

x1,2 = +4 ± 4 -2

x1 = 4 + 4 -2 = 4 +2 -2 = 6 -2 = -3

x2 = 4 - 4 -2 = 4 -2 -2 = 2 -2 = -1

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- x 2 -4x -3 = 0 |: -1

x 2 +4x +3 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 2 2 - 3 = 4 - 3 = 1

x1,2 = -2 ± 1

x1 = -2 - 1 = -3

x2 = -2 + 1 = -1

(Alle Lösungen sind auch in der Definitionsmenge).

L={ -3 ; -1 }

Bruchgleichung (quadr.) 2

Beispiel:

Bestimme erst die maximale Definitionsmenge D. Löse dann die Bruchgleichung:

2x x -2 + x +1 = 0

Lösung einblenden

Um die Definitionlücken (und damit die maximale Definitionsmenge) zu bestimmen, müssen wir einfach nach den Nullstellen der Nenner schauen: Hier erkennt man schnell als Nullstelle(n) der Nenner: 2

D=R\{ 2 }

Wir multiplizieren den Nenner x -2 weg!

2x x -2 + x +1 = 0 |⋅( x -2 )
2x x -2 · ( x -2 ) + x · ( x -2 ) + 1 · ( x -2 ) = 0
2x + x ( x -2 ) + x -2 = 0
2x + ( x 2 -2x ) + x -2 = 0
x 2 + x -2 = 0

x 2 + x -2 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -1 ± 1 2 -4 · 1 · ( -2 ) 21

x1,2 = -1 ± 1 +8 2

x1,2 = -1 ± 9 2

x1 = -1 + 9 2 = -1 +3 2 = 2 2 = 1

x2 = -1 - 9 2 = -1 -3 2 = -4 2 = -2

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 1 2 ) 2 - ( -2 ) = 1 4 + 2 = 1 4 + 8 4 = 9 4

x1,2 = - 1 2 ± 9 4

x1 = - 1 2 - 3 2 = - 4 2 = -2

x2 = - 1 2 + 3 2 = 2 2 = 1

(Alle Lösungen sind auch in der Definitionsmenge).

L={ -2 ; 1 }

doppelte Bruchgl. (quadr.)

Beispiel:

Löse die folgende Gleichung:

x 4x -12 + -29,5 x -3 +3x = 0

Lösung einblenden

D=R\{ 3 }

x 4x -12 - 29,5 x -3 +3x = 0
x 4( x -3 ) - 29,5 x -3 +3x = 0 |(Nenner faktorisiert)

Wir multiplizieren den Nenner 4( x -3 ) weg!

x 4( x -3 ) - 29,5 x -3 +3x = 0 |⋅( 4( x -3 ) )
x 4( x -3 ) · ( 4( x -3 ) ) + -29,5 x -3 · ( 4( x -3 ) ) + 3x · ( 4( x -3 ) ) = 0
x -118 +12 x ( x -3 ) = 0
x -118 + ( 12 x 2 -36x ) = 0
12 x 2 -35x -118 = 0

12 x 2 -35x -118 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +35 ± ( -35 ) 2 -4 · 12 · ( -118 ) 212

x1,2 = +35 ± 1225 +5664 24

x1,2 = +35 ± 6889 24

x1 = 35 + 6889 24 = 35 +83 24 = 118 24 = 59 12 ≈ 4.92

x2 = 35 - 6889 24 = 35 -83 24 = -48 24 = -2

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "12 " teilen:

12 x 2 -35x -118 = 0 |: 12

x 2 - 35 12 x - 59 6 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 35 24 ) 2 - ( - 59 6 ) = 1225 576 + 59 6 = 1225 576 + 5664 576 = 6889 576

x1,2 = 35 24 ± 6889 576

x1 = 35 24 - 83 24 = - 48 24 = -2

x2 = 35 24 + 83 24 = 118 24 = 4.9166666666667

(Alle Lösungen sind auch in der Definitionsmenge).

L={ -2 ; 59 12 }

Bruchgl. mit x-Potenzen

Beispiel:

Löse die folgende Gleichung:

1 x + 80 x 3 = 18 x 2

Lösung einblenden

D=R\{0}

Wir multiplizieren den Nenner x 3 weg!

1 x + 80 x 3 = 18 x 2 |⋅( x 3 )
1 x · x 3 + 80 x 3 · x 3 = 18 x 2 · x 3
x 2 +80 = 18x
x 2 +80 = 18x | -18x

x 2 -18x +80 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +18 ± ( -18 ) 2 -4 · 1 · 80 21

x1,2 = +18 ± 324 -320 2

x1,2 = +18 ± 4 2

x1 = 18 + 4 2 = 18 +2 2 = 20 2 = 10

x2 = 18 - 4 2 = 18 -2 2 = 16 2 = 8

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -9 ) 2 - 80 = 81 - 80 = 1

x1,2 = 9 ± 1

x1 = 9 - 1 = 8

x2 = 9 + 1 = 10

(Alle Lösungen sind auch in der Definitionsmenge).

L={ 8 ; 10 }

Bruchgleichung mit Parameter

Beispiel:

Für x ≠ 0 und a ∈ Z\{0} ist die folgende Gleichung gegeben:

x + a x = 2

Bestimme a so, dass die Gleichung zwei (verschiedene) ganzzahlige Lösungen besitzt.

Lösung einblenden

D=R\{0}

x + a x = 2

Wir multiplizieren den Nenner x weg:

x + a x = 2 |⋅x
x · x + a x · x = 2 · x
x 2 + a = 2x
x 2 + a -2x = 0
x 2 -2x + a = 0

Um jetzt ein a zu finden, für das die quadratische Gleichung zwei ganzzahlige Lösungen hat, bezeichnen wir die beiden Lösungen einfach mal mit p und q und schreiben einen faktorisierten Term mit diesen Lösungen auf:

(x-p)⋅(x-q)

Wenn wir jetzt den faktorisierten Term ausmultiplizieren, erkennen wir, dass auch hier die 1 der Koeffizient vor dem x² ist.

= x² - px - qx + pq
= x² - (p+q)x + pq

Es muss somit gelten:

x 2 -2x + a = x² - (p+q)x + pq

Wir müssen jetzt also nur noch zwei ganze Zahlen finden, deren Summe das Negative von -2 ist, also z.B.:

Mit p = 3 und q = -1 würde es funktionieren, denn -( 3 -1 ) = -2

Genauso muss dann auch a = p⋅q gelten, also a = 3 · ( -1 ) = -3

Zur Probe können wir ja noch mit a = -3 die quadratische Gleichung lösen, um zu überprüfen, ob die Lösungen wirklich ganzzahlig sind:

x 2 -2x -3 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +2 ± ( -2 ) 2 -4 · 1 · ( -3 ) 21

x1,2 = +2 ± 4 +12 2

x1,2 = +2 ± 16 2

x1 = 2 + 16 2 = 2 +4 2 = 6 2 = 3

x2 = 2 - 16 2 = 2 -4 2 = -2 2 = -1

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -1 ) 2 - ( -3 ) = 1+ 3 = 4

x1,2 = 1 ± 4

x1 = 1 - 2 = -1

x2 = 1 + 2 = 3

L={ -1 ; 3 }