nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Bruchgleichungen (quadr.) einfach

Beispiel:

Bestimme erst die maximale Definitionsmenge D. Löse dann die Bruchgleichung:

- 3 x = -3x

Lösung einblenden

Um die Definitionlücken (und damit die maximale Definitionsmenge) zu bestimmen, müssen wir einfach nach den Nullstellen der Nenner schauen: Hier erkennt man schnell als Nullstelle(n) der Nenner: 0

D=R\{0}

Wir multiplizieren den Nenner x weg!

- 3 x = -3x |⋅( x )
- 3 x · x = -3x · x
-3 = -3 x · x
-3 = -3 x 2
-3 = -3 x 2 | +3 +3 x 2
3 x 2 = 3 |:3
x 2 = 1 | 2
x1 = - 1 = -1
x2 = 1 = 1

(Alle Lösungen sind auch in der Definitionsmenge).

L={ -1 ; 1 }

Bruchgleichung (quadr.) 1

Beispiel:

Bestimme erst die maximale Definitionsmenge D. Löse dann die Bruchgleichung:

-3 + 5 x = x +1

Lösung einblenden

Um die Definitionlücken (und damit die maximale Definitionsmenge) zu bestimmen, müssen wir einfach nach den Nullstellen der Nenner schauen: Hier erkennt man schnell als Nullstelle(n) der Nenner: 0

D=R\{0}

Wir multiplizieren den Nenner x weg!

-3 + 5 x = x +1 |⋅( x )
-3 · x + 5 x · x = x · x + 1 · x
-3x +5 = x · x + x
-3x +5 = x 2 + x | - x 2 - x

- x 2 -4x +5 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +4 ± ( -4 ) 2 -4 · ( -1 ) · 5 2( -1 )

x1,2 = +4 ± 16 +20 -2

x1,2 = +4 ± 36 -2

x1 = 4 + 36 -2 = 4 +6 -2 = 10 -2 = -5

x2 = 4 - 36 -2 = 4 -6 -2 = -2 -2 = 1

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- x 2 -4x +5 = 0 |: -1

x 2 +4x -5 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 2 2 - ( -5 ) = 4+ 5 = 9

x1,2 = -2 ± 9

x1 = -2 - 3 = -5

x2 = -2 + 3 = 1

(Alle Lösungen sind auch in der Definitionsmenge).

L={ -5 ; 1 }

Bruchgleichung (quadr.) 2

Beispiel:

Bestimme erst die maximale Definitionsmenge D. Löse dann die Bruchgleichung:

0 = - 15x x -2 - x +4

Lösung einblenden

Um die Definitionlücken (und damit die maximale Definitionsmenge) zu bestimmen, müssen wir einfach nach den Nullstellen der Nenner schauen: Hier erkennt man schnell als Nullstelle(n) der Nenner: 2

D=R\{ 2 }

Wir multiplizieren den Nenner x -2 weg!

0 = - 15x x -2 - x +4 |⋅( x -2 )
0 = - 15x x -2 · ( x -2 ) -x · ( x -2 ) + 4 · ( x -2 )
0 = -15x - x ( x -2 ) +4x -8
0 = - x 2 -9x -8
0 = - x 2 -9x -8 | + x 2 +9x +8

x 2 +9x +8 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -9 ± 9 2 -4 · 1 · 8 21

x1,2 = -9 ± 81 -32 2

x1,2 = -9 ± 49 2

x1 = -9 + 49 2 = -9 +7 2 = -2 2 = -1

x2 = -9 - 49 2 = -9 -7 2 = -16 2 = -8

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 9 2 ) 2 - 8 = 81 4 - 8 = 81 4 - 32 4 = 49 4

x1,2 = - 9 2 ± 49 4

x1 = - 9 2 - 7 2 = - 16 2 = -8

x2 = - 9 2 + 7 2 = - 2 2 = -1

(Alle Lösungen sind auch in der Definitionsmenge).

L={ -8 ; -1 }

doppelte Bruchgl. (quadr.)

Beispiel:

Löse die folgende Gleichung:

0 = - x 2x -4 - 3,5 x -2 -4x

Lösung einblenden

D=R\{ 2 }

0 = - x 2x -4 - 3,5 x -2 -4x
0 = - x 2( x -2 ) - 3,5 x -2 -4x |(Nenner faktorisiert)

Wir multiplizieren den Nenner 2( x -2 ) weg!

0 = - x 2( x -2 ) - 3,5 x -2 -4x |⋅( 2( x -2 ) )
0 = - x 2( x -2 ) · ( 2( x -2 ) ) + -3,5 x -2 · ( 2( x -2 ) ) -4x · ( 2( x -2 ) )
0 = -x -7 -8 x ( x -2 )
0 = -8 x 2 +15x -7
0 = -8 x 2 +15x -7 | +8 x 2 -15x +7

8 x 2 -15x +7 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +15 ± ( -15 ) 2 -4 · 8 · 7 28

x1,2 = +15 ± 225 -224 16

x1,2 = +15 ± 1 16

x1 = 15 + 1 16 = 15 +1 16 = 16 16 = 1

x2 = 15 - 1 16 = 15 -1 16 = 14 16 = 0,875

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "8 " teilen:

8 x 2 -15x +7 = 0 |: 8

x 2 - 15 8 x + 7 8 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 15 16 ) 2 - ( 7 8 ) = 225 256 - 7 8 = 225 256 - 224 256 = 1 256

x1,2 = 15 16 ± 1 256

x1 = 15 16 - 1 16 = 14 16 = 0.875

x2 = 15 16 + 1 16 = 16 16 = 1

(Alle Lösungen sind auch in der Definitionsmenge).

L={ 0,875 ; 1 }

Bruchgl. mit x-Potenzen

Beispiel:

Löse die folgende Gleichung:

- 12 x 2 = -1 + 1 x

Lösung einblenden

D=R\{0}

Wir multiplizieren den Nenner x 2 weg!

- 12 x 2 = -1 + 1 x |⋅( x 2 )
- 12 x 2 · x 2 = -1 · x 2 + 1 x · x 2
-12 = - x 2 + x
-12 = - x 2 + x | + x 2 - x

x 2 - x -12 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +1 ± ( -1 ) 2 -4 · 1 · ( -12 ) 21

x1,2 = +1 ± 1 +48 2

x1,2 = +1 ± 49 2

x1 = 1 + 49 2 = 1 +7 2 = 8 2 = 4

x2 = 1 - 49 2 = 1 -7 2 = -6 2 = -3

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 1 2 ) 2 - ( -12 ) = 1 4 + 12 = 1 4 + 48 4 = 49 4

x1,2 = 1 2 ± 49 4

x1 = 1 2 - 7 2 = - 6 2 = -3

x2 = 1 2 + 7 2 = 8 2 = 4

(Alle Lösungen sind auch in der Definitionsmenge).

L={ -3 ; 4 }

Bruchgleichung mit Parameter

Beispiel:

Für x ≠ 0 und a ∈ Z\{0} ist die folgende Gleichung gegeben:

x -1 = - a x

Bestimme a so, dass die Gleichung zwei (verschiedene) ganzzahlige Lösungen besitzt.

Lösung einblenden

D=R\{0}

x -1 = - a x

Wir multiplizieren den Nenner x weg:

x -1 = - a x |⋅x
x · x -1 · x = - a x · x
x 2 - x = - a
x 2 - x + a = 0
x 2 - x + a = 0

Um jetzt ein a zu finden, für das die quadratische Gleichung zwei ganzzahlige Lösungen hat, bezeichnen wir die beiden Lösungen einfach mal mit p und q und schreiben einen faktorisierten Term mit diesen Lösungen auf:

(x-p)⋅(x-q)

Wenn wir jetzt den faktorisierten Term ausmultiplizieren, erkennen wir, dass auch hier die 1 der Koeffizient vor dem x² ist.

= x² - px - qx + pq
= x² - (p+q)x + pq

Es muss somit gelten:

x 2 - x + a = x² - (p+q)x + pq

Wir müssen jetzt also nur noch zwei ganze Zahlen finden, deren Summe das Negative von -1 ist, also z.B.:

Mit p = 2 und q = -1 würde es funktionieren, denn -( 2 -1 ) = -1

Genauso muss dann auch a = p⋅q gelten, also a = 2 · ( -1 ) = -2

Zur Probe können wir ja noch mit a = -2 die quadratische Gleichung lösen, um zu überprüfen, ob die Lösungen wirklich ganzzahlig sind:

x 2 - x -2 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +1 ± ( -1 ) 2 -4 · 1 · ( -2 ) 21

x1,2 = +1 ± 1 +8 2

x1,2 = +1 ± 9 2

x1 = 1 + 9 2 = 1 +3 2 = 4 2 = 2

x2 = 1 - 9 2 = 1 -3 2 = -2 2 = -1

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 1 2 ) 2 - ( -2 ) = 1 4 + 2 = 1 4 + 8 4 = 9 4

x1,2 = 1 2 ± 9 4

x1 = 1 2 - 3 2 = - 2 2 = -1

x2 = 1 2 + 3 2 = 4 2 = 2

L={ -1 ; 2 }