nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Bruchgleichungen (quadr.) einfach

Beispiel:

Bestimme erst die maximale Definitionsmenge D. Löse dann die Bruchgleichung:

- 9 x -4 = 3x

Lösung einblenden

Um die Definitionlücken (und damit die maximale Definitionsmenge) zu bestimmen, müssen wir einfach nach den Nullstellen der Nenner schauen: Hier erkennt man schnell als Nullstelle(n) der Nenner: 4

D=R\{ 4 }

Wir multiplizieren den Nenner x -4 weg!

- 9 x -4 = 3x |⋅( x -4 )
- 9 x -4 · ( x -4 ) = 3x · ( x -4 )
-9 = 3 x ( x -4 )
-9 = 3 x 2 -12x
-9 = 3 x 2 -12x | -3 x 2 +12x
-3 x 2 +12x -9 = 0 |:3

- x 2 +4x -3 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -4 ± 4 2 -4 · ( -1 ) · ( -3 ) 2( -1 )

x1,2 = -4 ± 16 -12 -2

x1,2 = -4 ± 4 -2

x1 = -4 + 4 -2 = -4 +2 -2 = -2 -2 = 1

x2 = -4 - 4 -2 = -4 -2 -2 = -6 -2 = 3

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- x 2 +4x -3 = 0 |: -1

x 2 -4x +3 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -2 ) 2 - 3 = 4 - 3 = 1

x1,2 = 2 ± 1

x1 = 2 - 1 = 1

x2 = 2 + 1 = 3

(Alle Lösungen sind auch in der Definitionsmenge).

L={ 1 ; 3 }

Bruchgleichung (quadr.) 1

Beispiel:

Bestimme erst die maximale Definitionsmenge D. Löse dann die Bruchgleichung:

3 x = x +2

Lösung einblenden

Um die Definitionlücken (und damit die maximale Definitionsmenge) zu bestimmen, müssen wir einfach nach den Nullstellen der Nenner schauen: Hier erkennt man schnell als Nullstelle(n) der Nenner: 0

D=R\{0}

Wir multiplizieren den Nenner x weg!

3 x = x +2 |⋅( x )
3 x · x = x · x + 2 · x
3 = x · x +2x
3 = x 2 +2x | - x 2 -2x

- x 2 -2x +3 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +2 ± ( -2 ) 2 -4 · ( -1 ) · 3 2( -1 )

x1,2 = +2 ± 4 +12 -2

x1,2 = +2 ± 16 -2

x1 = 2 + 16 -2 = 2 +4 -2 = 6 -2 = -3

x2 = 2 - 16 -2 = 2 -4 -2 = -2 -2 = 1

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- x 2 -2x +3 = 0 |: -1

x 2 +2x -3 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 1 2 - ( -3 ) = 1+ 3 = 4

x1,2 = -1 ± 4

x1 = -1 - 2 = -3

x2 = -1 + 2 = 1

(Alle Lösungen sind auch in der Definitionsmenge).

L={ -3 ; 1 }

Bruchgleichung (quadr.) 2

Beispiel:

Bestimme erst die maximale Definitionsmenge D. Löse dann die Bruchgleichung:

0 = - 14x 3x +5 - x +4

Lösung einblenden

Um die Definitionlücken (und damit die maximale Definitionsmenge) zu bestimmen, müssen wir einfach nach den Nullstellen der Nenner schauen: Hier erkennt man schnell als Nullstelle(n) der Nenner: - 5 3

D=R\{ - 5 3 }

Wir multiplizieren den Nenner 3x +5 weg!

0 = - 14x 3x +5 - x +4 |⋅( 3x +5 )
0 = - 14x 3x +5 · ( 3x +5 ) -x · ( 3x +5 ) + 4 · ( 3x +5 )
0 = -14x - x ( 3x +5 ) +12x +20
0 = -3 x 2 -7x +20
0 = -3 x 2 -7x +20 | +3 x 2 +7x -20

3 x 2 +7x -20 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -7 ± 7 2 -4 · 3 · ( -20 ) 23

x1,2 = -7 ± 49 +240 6

x1,2 = -7 ± 289 6

x1 = -7 + 289 6 = -7 +17 6 = 10 6 = 5 3 ≈ 1.67

x2 = -7 - 289 6 = -7 -17 6 = -24 6 = -4

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "3 " teilen:

3 x 2 +7x -20 = 0 |: 3

x 2 + 7 3 x - 20 3 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 7 6 ) 2 - ( - 20 3 ) = 49 36 + 20 3 = 49 36 + 240 36 = 289 36

x1,2 = - 7 6 ± 289 36

x1 = - 7 6 - 17 6 = - 24 6 = -4

x2 = - 7 6 + 17 6 = 10 6 = 1.6666666666667

(Alle Lösungen sind auch in der Definitionsmenge).

L={ -4 ; 5 3 }

doppelte Bruchgl. (quadr.)

Beispiel:

Löse die folgende Gleichung:

-16 6x +18 = - x 3x +9 - x

Lösung einblenden

D=R\{ -3 }

- 16 6( x +3 ) = - x 3( x +3 ) - x |(Nenner faktorisiert)

Wir multiplizieren den Nenner 6( x +3 ) weg!

- 16 6( x +3 ) = - x 3( x +3 ) - x |⋅( 6( x +3 ) )
- 16 6( x +3 ) · ( 6( x +3 ) ) = - x 3( x +3 ) · ( 6( x +3 ) ) -x · ( 6( x +3 ) )
-16 = -2x -6 x ( x +3 )
-16 = -6 x 2 -20x
-16 = -6 x 2 -20x | +6 x 2 +20x
6 x 2 +20x -16 = 0 |:2

3 x 2 +10x -8 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -10 ± 10 2 -4 · 3 · ( -8 ) 23

x1,2 = -10 ± 100 +96 6

x1,2 = -10 ± 196 6

x1 = -10 + 196 6 = -10 +14 6 = 4 6 = 2 3 ≈ 0.67

x2 = -10 - 196 6 = -10 -14 6 = -24 6 = -4

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "3 " teilen:

3 x 2 +10x -8 = 0 |: 3

x 2 + 10 3 x - 8 3 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 5 3 ) 2 - ( - 8 3 ) = 25 9 + 8 3 = 25 9 + 24 9 = 49 9

x1,2 = - 5 3 ± 49 9

x1 = - 5 3 - 7 3 = - 12 3 = -4

x2 = - 5 3 + 7 3 = 2 3 = 0.66666666666667

(Alle Lösungen sind auch in der Definitionsmenge).

L={ -4 ; 2 3 }

Bruchgl. mit x-Potenzen

Beispiel:

Löse die folgende Gleichung:

1 + 20 x 2 = 9 x

Lösung einblenden

D=R\{0}

Wir multiplizieren den Nenner x 2 weg!

1 + 20 x 2 = 9 x |⋅( x 2 )
1 · x 2 + 20 x 2 · x 2 = 9 x · x 2
x 2 +20 = 9x
x 2 +20 = 9x | -9x

x 2 -9x +20 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +9 ± ( -9 ) 2 -4 · 1 · 20 21

x1,2 = +9 ± 81 -80 2

x1,2 = +9 ± 1 2

x1 = 9 + 1 2 = 9 +1 2 = 10 2 = 5

x2 = 9 - 1 2 = 9 -1 2 = 8 2 = 4

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 9 2 ) 2 - 20 = 81 4 - 20 = 81 4 - 80 4 = 1 4

x1,2 = 9 2 ± 1 4

x1 = 9 2 - 1 2 = 8 2 = 4

x2 = 9 2 + 1 2 = 10 2 = 5

(Alle Lösungen sind auch in der Definitionsmenge).

L={ 4 ; 5 }

Bruchgleichung mit Parameter

Beispiel:

Für x ≠ 0 und a ∈ Z\{0} ist die folgende Gleichung gegeben:

x +3 = - a x

Bestimme a so, dass die Gleichung zwei (verschiedene) ganzzahlige Lösungen besitzt.

Lösung einblenden

D=R\{0}

x +3 = - a x

Wir multiplizieren den Nenner x weg:

x +3 = - a x |⋅x
x · x + 3 · x = - a x · x
x 2 +3x = - a
x 2 +3x + a = 0
x 2 +3x + a = 0

Um jetzt ein a zu finden, für das die quadratische Gleichung zwei ganzzahlige Lösungen hat, bezeichnen wir die beiden Lösungen einfach mal mit p und q und schreiben einen faktorisierten Term mit diesen Lösungen auf:

(x-p)⋅(x-q)

Wenn wir jetzt den faktorisierten Term ausmultiplizieren, erkennen wir, dass auch hier die 1 der Koeffizient vor dem x² ist.

= x² - px - qx + pq
= x² - (p+q)x + pq

Es muss somit gelten:

x 2 +3x + a = x² - (p+q)x + pq

Wir müssen jetzt also nur noch zwei ganze Zahlen finden, deren Summe das Negative von 3 ist, also z.B.:

Mit p = 2 und q = -5 würde es funktionieren, denn -( 2 -5 ) = 3

Genauso muss dann auch a = p⋅q gelten, also a = 2 · ( -5 ) = -10

Zur Probe können wir ja noch mit a = -10 die quadratische Gleichung lösen, um zu überprüfen, ob die Lösungen wirklich ganzzahlig sind:

x 2 +3x -10 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -3 ± 3 2 -4 · 1 · ( -10 ) 21

x1,2 = -3 ± 9 +40 2

x1,2 = -3 ± 49 2

x1 = -3 + 49 2 = -3 +7 2 = 4 2 = 2

x2 = -3 - 49 2 = -3 -7 2 = -10 2 = -5

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 3 2 ) 2 - ( -10 ) = 9 4 + 10 = 9 4 + 40 4 = 49 4

x1,2 = - 3 2 ± 49 4

x1 = - 3 2 - 7 2 = - 10 2 = -5

x2 = - 3 2 + 7 2 = 4 2 = 2

L={ -5 ; 2 }