nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Bruchgleichungen (quadr.) einfach

Beispiel:

Bestimme erst die maximale Definitionsmenge D. Löse dann die Bruchgleichung:

- 18 x = -2x

Lösung einblenden

Um die Definitionlücken (und damit die maximale Definitionsmenge) zu bestimmen, müssen wir einfach nach den Nullstellen der Nenner schauen: Hier erkennt man schnell als Nullstelle(n) der Nenner: 0

D=R\{0}

Wir multiplizieren den Nenner x weg!

- 18 x = -2x |⋅( x )
- 18 x · x = -2x · x
-18 = -2 x · x
-18 = -2 x 2
-18 = -2 x 2 | +18 +2 x 2
2 x 2 = 18 |:2
x 2 = 9 | 2
x1 = - 9 = -3
x2 = 9 = 3

(Alle Lösungen sind auch in der Definitionsmenge).

L={ -3 ; 3 }

Bruchgleichung (quadr.) 1

Beispiel:

Bestimme erst die maximale Definitionsmenge D. Löse dann die Bruchgleichung:

x +3 = -5 - 15 x

Lösung einblenden

Um die Definitionlücken (und damit die maximale Definitionsmenge) zu bestimmen, müssen wir einfach nach den Nullstellen der Nenner schauen: Hier erkennt man schnell als Nullstelle(n) der Nenner: 0

D=R\{0}

Wir multiplizieren den Nenner x weg!

x +3 = -5 - 15 x |⋅( x )
x · x + 3 · x = -5 · x - 15 x · x
x · x +3x = -5x -15
x 2 +3x = -5x -15
x 2 +3x = -5x -15 | +5x +15

x 2 +8x +15 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -8 ± 8 2 -4 · 1 · 15 21

x1,2 = -8 ± 64 -60 2

x1,2 = -8 ± 4 2

x1 = -8 + 4 2 = -8 +2 2 = -6 2 = -3

x2 = -8 - 4 2 = -8 -2 2 = -10 2 = -5

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 4 2 - 15 = 16 - 15 = 1

x1,2 = -4 ± 1

x1 = -4 - 1 = -5

x2 = -4 + 1 = -3

(Alle Lösungen sind auch in der Definitionsmenge).

L={ -5 ; -3 }

Bruchgleichung (quadr.) 2

Beispiel:

Bestimme erst die maximale Definitionsmenge D. Löse dann die Bruchgleichung:

16x 2x -4 = -x +2

Lösung einblenden

Um die Definitionlücken (und damit die maximale Definitionsmenge) zu bestimmen, müssen wir einfach nach den Nullstellen der Nenner schauen: Hier erkennt man schnell als Nullstelle(n) der Nenner: 2

D=R\{ 2 }

16x 2( x -2 ) = -x +2 |(Nenner faktorisiert)

Wir multiplizieren den Nenner 2( x -2 ) weg!

16x 2( x -2 ) = -x +2 |⋅( 2( x -2 ) )
16x 2( x -2 ) · ( 2( x -2 ) ) = -x · ( 2( x -2 ) ) + 2 · ( 2( x -2 ) )
2 8x 1 = -2 x ( x -2 ) +4x -8
16x = -2 x ( x -2 ) +4x -8
16x = -2 x 2 +8x -8
16x = -2 x 2 +8x -8 | +2 x 2 -8x +8
2 x 2 +8x +8 = 0 |:2

x 2 +4x +4 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -4 ± 4 2 -4 · 1 · 4 21

x1,2 = -4 ± 16 -16 2

x1,2 = -4 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = -4 2 = -2

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 2 2 - 4 = 4 - 4 = 0

Da die Diskriminante D = 0 ist, hat die quadratische Gleichung nur eine Lösunng.

x = -2 ± 0 = -2

(Alle Lösungen sind auch in der Definitionsmenge).

L={ -2 }

doppelte Bruchgl. (quadr.)

Beispiel:

Löse die folgende Gleichung:

20,2 x -4 -4x = - x 5x -20

Lösung einblenden

D=R\{ 4 }

20,2 x -4 -4x = -x 5x -20
20,2 x -4 -4x = -x 5( x -4 ) |(Nenner faktorisiert)

Wir multiplizieren den Nenner 5( x -4 ) weg!

20,2 x -4 -4x = -x 5( x -4 ) |⋅( 5( x -4 ) )
20,2 x -4 · ( 5( x -4 ) ) -4x · ( 5( x -4 ) ) = -x 5( x -4 ) · ( 5( x -4 ) )
101 -20 x ( x -4 ) = -x
101 + ( -20 x 2 +80x ) = -x
-20 x 2 +80x +101 = -x
-20 x 2 +80x +101 = -x | + x

-20 x 2 +81x +101 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -81 ± 81 2 -4 · ( -20 ) · 101 2( -20 )

x1,2 = -81 ± 6561 +8080 -40

x1,2 = -81 ± 14641 -40

x1 = -81 + 14641 -40 = -81 +121 -40 = 40 -40 = -1

x2 = -81 - 14641 -40 = -81 -121 -40 = -202 -40 = 5,05

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-20 " teilen:

-20 x 2 +81x +101 = 0 |: -20

x 2 - 81 20 x - 101 20 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 81 40 ) 2 - ( - 101 20 ) = 6561 1600 + 101 20 = 6561 1600 + 8080 1600 = 14641 1600

x1,2 = 81 40 ± 14641 1600

x1 = 81 40 - 121 40 = - 40 40 = -1

x2 = 81 40 + 121 40 = 202 40 = 5.05

(Alle Lösungen sind auch in der Definitionsmenge).

L={ -1 ; 5,05 }

Bruchgl. mit x-Potenzen

Beispiel:

Löse die folgende Gleichung:

16 x 2 = -1 + 10 x

Lösung einblenden

D=R\{0}

Wir multiplizieren den Nenner x 2 weg!

16 x 2 = -1 + 10 x |⋅( x 2 )
16 x 2 · x 2 = -1 · x 2 + 10 x · x 2
16 = - x 2 +10x
16 = - x 2 +10x | + x 2 -10x

x 2 -10x +16 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +10 ± ( -10 ) 2 -4 · 1 · 16 21

x1,2 = +10 ± 100 -64 2

x1,2 = +10 ± 36 2

x1 = 10 + 36 2 = 10 +6 2 = 16 2 = 8

x2 = 10 - 36 2 = 10 -6 2 = 4 2 = 2

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -5 ) 2 - 16 = 25 - 16 = 9

x1,2 = 5 ± 9

x1 = 5 - 3 = 2

x2 = 5 + 3 = 8

(Alle Lösungen sind auch in der Definitionsmenge).

L={ 2 ; 8 }

Bruchgleichung mit Parameter

Beispiel:

Für x ≠ 0 und a ∈ Z\{0} ist die folgende Gleichung gegeben:

3 + a x = -x

Bestimme a so, dass die Gleichung zwei (verschiedene) ganzzahlige Lösungen besitzt.

Lösung einblenden

D=R\{0}

3 + a x = -x

Wir multiplizieren den Nenner x weg:

3 + a x = -x |⋅x
3 · x + a x · x = -x · x
3x + a = - x 2
3x + a + x 2 = 0
x 2 +3x + a = 0

Um jetzt ein a zu finden, für das die quadratische Gleichung zwei ganzzahlige Lösungen hat, bezeichnen wir die beiden Lösungen einfach mal mit p und q und schreiben einen faktorisierten Term mit diesen Lösungen auf:

(x-p)⋅(x-q)

Wenn wir jetzt den faktorisierten Term ausmultiplizieren, erkennen wir, dass auch hier die 1 der Koeffizient vor dem x² ist.

= x² - px - qx + pq
= x² - (p+q)x + pq

Es muss somit gelten:

x 2 +3x + a = x² - (p+q)x + pq

Wir müssen jetzt also nur noch zwei ganze Zahlen finden, deren Summe das Negative von 3 ist, also z.B.:

Mit p = 2 und q = -5 würde es funktionieren, denn -( 2 -5 ) = 3

Genauso muss dann auch a = p⋅q gelten, also a = 2 · ( -5 ) = -10

Zur Probe können wir ja noch mit a = -10 die quadratische Gleichung lösen, um zu überprüfen, ob die Lösungen wirklich ganzzahlig sind:

x 2 +3x -10 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -3 ± 3 2 -4 · 1 · ( -10 ) 21

x1,2 = -3 ± 9 +40 2

x1,2 = -3 ± 49 2

x1 = -3 + 49 2 = -3 +7 2 = 4 2 = 2

x2 = -3 - 49 2 = -3 -7 2 = -10 2 = -5

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 3 2 ) 2 - ( -10 ) = 9 4 + 10 = 9 4 + 40 4 = 49 4

x1,2 = - 3 2 ± 49 4

x1 = - 3 2 - 7 2 = - 10 2 = -5

x2 = - 3 2 + 7 2 = 4 2 = 2

L={ -5 ; 2 }