nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Bruchgleichungen (quadr.) einfach

Beispiel:

Bestimme erst die maximale Definitionsmenge D. Löse dann die Bruchgleichung:

- 20 x +3 = -2x

Lösung einblenden

Um die Definitionlücken (und damit die maximale Definitionsmenge) zu bestimmen, müssen wir einfach nach den Nullstellen der Nenner schauen: Hier erkennt man schnell als Nullstelle(n) der Nenner: -3

D=R\{ -3 }

Wir multiplizieren den Nenner x +3 weg!

- 20 x +3 = -2x |⋅( x +3 )
- 20 x +3 · ( x +3 ) = -2x · ( x +3 )
-20 = -2 x ( x +3 )
-20 = -2 x 2 -6x
-20 = -2 x 2 -6x | +2 x 2 +6x
2 x 2 +6x -20 = 0 |:2

x 2 +3x -10 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -3 ± 3 2 -4 · 1 · ( -10 ) 21

x1,2 = -3 ± 9 +40 2

x1,2 = -3 ± 49 2

x1 = -3 + 49 2 = -3 +7 2 = 4 2 = 2

x2 = -3 - 49 2 = -3 -7 2 = -10 2 = -5

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 3 2 ) 2 - ( -10 ) = 9 4 + 10 = 9 4 + 40 4 = 49 4

x1,2 = - 3 2 ± 49 4

x1 = - 3 2 - 7 2 = - 10 2 = -5

x2 = - 3 2 + 7 2 = 4 2 = 2

(Alle Lösungen sind auch in der Definitionsmenge).

L={ -5 ; 2 }

Bruchgleichung (quadr.) 1

Beispiel:

Bestimme erst die maximale Definitionsmenge D. Löse dann die Bruchgleichung:

3 + 6 x = x +2

Lösung einblenden

Um die Definitionlücken (und damit die maximale Definitionsmenge) zu bestimmen, müssen wir einfach nach den Nullstellen der Nenner schauen: Hier erkennt man schnell als Nullstelle(n) der Nenner: 0

D=R\{0}

Wir multiplizieren den Nenner x weg!

3 + 6 x = x +2 |⋅( x )
3 · x + 6 x · x = x · x + 2 · x
3x +6 = x · x +2x
3x +6 = x 2 +2x | - x 2 -2x

- x 2 + x +6 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -1 ± 1 2 -4 · ( -1 ) · 6 2( -1 )

x1,2 = -1 ± 1 +24 -2

x1,2 = -1 ± 25 -2

x1 = -1 + 25 -2 = -1 +5 -2 = 4 -2 = -2

x2 = -1 - 25 -2 = -1 -5 -2 = -6 -2 = 3

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- x 2 + x +6 = 0 |: -1

x 2 - x -6 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 1 2 ) 2 - ( -6 ) = 1 4 + 6 = 1 4 + 24 4 = 25 4

x1,2 = 1 2 ± 25 4

x1 = 1 2 - 5 2 = - 4 2 = -2

x2 = 1 2 + 5 2 = 6 2 = 3

(Alle Lösungen sind auch in der Definitionsmenge).

L={ -2 ; 3 }

Bruchgleichung (quadr.) 2

Beispiel:

Bestimme erst die maximale Definitionsmenge D. Löse dann die Bruchgleichung:

-3x x +1 +2x -2 = 0

Lösung einblenden

Um die Definitionlücken (und damit die maximale Definitionsmenge) zu bestimmen, müssen wir einfach nach den Nullstellen der Nenner schauen: Hier erkennt man schnell als Nullstelle(n) der Nenner: -1

D=R\{ -1 }

- 3x x +1 +2x -2 = 0

Wir multiplizieren den Nenner x +1 weg!

- 3x x +1 +2x -2 = 0 |⋅( x +1 )
- 3x x +1 · ( x +1 ) + 2x · ( x +1 ) -2 · ( x +1 ) = 0
-3x +2 x ( x +1 ) -2x -2 = 0
-3x + ( 2 x 2 +2x ) -2x -2 = 0
2 x 2 -3x -2 = 0

2 x 2 -3x -2 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +3 ± ( -3 ) 2 -4 · 2 · ( -2 ) 22

x1,2 = +3 ± 9 +16 4

x1,2 = +3 ± 25 4

x1 = 3 + 25 4 = 3 +5 4 = 8 4 = 2

x2 = 3 - 25 4 = 3 -5 4 = -2 4 = -0,5

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "2 " teilen:

2 x 2 -3x -2 = 0 |: 2

x 2 - 3 2 x -1 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 3 4 ) 2 - ( -1 ) = 9 16 + 1 = 9 16 + 16 16 = 25 16

x1,2 = 3 4 ± 25 16

x1 = 3 4 - 5 4 = - 2 4 = -0.5

x2 = 3 4 + 5 4 = 8 4 = 2

(Alle Lösungen sind auch in der Definitionsmenge).

L={ -0,5 ; 2 }

doppelte Bruchgl. (quadr.)

Beispiel:

Löse die folgende Gleichung:

0 = - x 5x +15 - -16,2 x +3 -4x

Lösung einblenden

D=R\{ -3 }

0 = - x 5x +15 + 16,2 x +3 -4x
0 = - x 5( x +3 ) + 16,2 x +3 -4x |(Nenner faktorisiert)

Wir multiplizieren den Nenner 5( x +3 ) weg!

0 = - x 5( x +3 ) + 16,2 x +3 -4x |⋅( 5( x +3 ) )
0 = - x 5( x +3 ) · ( 5( x +3 ) ) + 16,2 x +3 · ( 5( x +3 ) ) -4x · ( 5( x +3 ) )
0 = -x +81 -20 x ( x +3 )
0 = -20 x 2 -61x +81
0 = -20 x 2 -61x +81 | +20 x 2 +61x -81

20 x 2 +61x -81 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -61 ± 61 2 -4 · 20 · ( -81 ) 220

x1,2 = -61 ± 3721 +6480 40

x1,2 = -61 ± 10201 40

x1 = -61 + 10201 40 = -61 +101 40 = 40 40 = 1

x2 = -61 - 10201 40 = -61 -101 40 = -162 40 = -4,05

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "20 " teilen:

20 x 2 +61x -81 = 0 |: 20

x 2 + 61 20 x - 81 20 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 61 40 ) 2 - ( - 81 20 ) = 3721 1600 + 81 20 = 3721 1600 + 6480 1600 = 10201 1600

x1,2 = - 61 40 ± 10201 1600

x1 = - 61 40 - 101 40 = - 162 40 = -4.05

x2 = - 61 40 + 101 40 = 40 40 = 1

(Alle Lösungen sind auch in der Definitionsmenge).

L={ -4,05 ; 1 }

Bruchgl. mit x-Potenzen

Beispiel:

Löse die folgende Gleichung:

6 x 3 + 8 x 4 = - 1 x 2

Lösung einblenden

D=R\{0}

Wir multiplizieren den Nenner x 4 weg!

6 x 3 + 8 x 4 = - 1 x 2 |⋅( x 4 )
6 x 3 · x 4 + 8 x 4 · x 4 = - 1 x 2 · x 4
6x +8 = - x 2
6x +8 = - x 2 | + x 2

x 2 +6x +8 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -6 ± 6 2 -4 · 1 · 8 21

x1,2 = -6 ± 36 -32 2

x1,2 = -6 ± 4 2

x1 = -6 + 4 2 = -6 +2 2 = -4 2 = -2

x2 = -6 - 4 2 = -6 -2 2 = -8 2 = -4

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 3 2 - 8 = 9 - 8 = 1

x1,2 = -3 ± 1

x1 = -3 - 1 = -4

x2 = -3 + 1 = -2

(Alle Lösungen sind auch in der Definitionsmenge).

L={ -4 ; -2 }

Bruchgleichung mit Parameter

Beispiel:

Für x ≠ 0 und a ∈ Z\{0} ist die folgende Gleichung gegeben:

9 + a x = -x

Bestimme a so, dass die Gleichung zwei (verschiedene) ganzzahlige Lösungen besitzt.

Lösung einblenden

D=R\{0}

9 + a x = -x

Wir multiplizieren den Nenner x weg:

9 + a x = -x |⋅x
9 · x + a x · x = -x · x
9x + a = - x 2
9x + a + x 2 = 0
x 2 +9x + a = 0

Um jetzt ein a zu finden, für das die quadratische Gleichung zwei ganzzahlige Lösungen hat, bezeichnen wir die beiden Lösungen einfach mal mit p und q und schreiben einen faktorisierten Term mit diesen Lösungen auf:

(x-p)⋅(x-q)

Wenn wir jetzt den faktorisierten Term ausmultiplizieren, erkennen wir, dass auch hier die 1 der Koeffizient vor dem x² ist.

= x² - px - qx + pq
= x² - (p+q)x + pq

Es muss somit gelten:

x 2 +9x + a = x² - (p+q)x + pq

Wir müssen jetzt also nur noch zwei ganze Zahlen finden, deren Summe das Negative von 9 ist, also z.B.:

Mit p = 2 und q = -11 würde es funktionieren, denn -( 2 -11 ) = 9

Genauso muss dann auch a = p⋅q gelten, also a = 2 · ( -11 ) = -22

Zur Probe können wir ja noch mit a = -22 die quadratische Gleichung lösen, um zu überprüfen, ob die Lösungen wirklich ganzzahlig sind:

x 2 +9x -22 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -9 ± 9 2 -4 · 1 · ( -22 ) 21

x1,2 = -9 ± 81 +88 2

x1,2 = -9 ± 169 2

x1 = -9 + 169 2 = -9 +13 2 = 4 2 = 2

x2 = -9 - 169 2 = -9 -13 2 = -22 2 = -11

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 9 2 ) 2 - ( -22 ) = 81 4 + 22 = 81 4 + 88 4 = 169 4

x1,2 = - 9 2 ± 169 4

x1 = - 9 2 - 13 2 = - 22 2 = -11

x2 = - 9 2 + 13 2 = 4 2 = 2

L={ -11 ; 2 }