nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

einfache Bruchgl. (quadr.)

Beispiel:

Bestimme erst die maximale Definitionsmenge D. Löse dann die Bruchgleichung:

- 2 x = -2x

Lösung einblenden

Um die Definitionlücken (und damit die maximale Definitionsmenge) zu bestimmen, müssen wir einfach nach den Nullstellen der Nenner schauen: Hier erkennt man schnell als Nullstelle(n) der Nenner: 0

D=R\{0}

Wir multiplizieren den Nenner x weg!

- 2 x = -2x |⋅( x )
- 2 x · x = -2x · x
-2 = -2 x · x
-2 = -2 x 2
-2 = -2 x 2 | +2 +2 x 2
2 x 2 = 2 |:2
x 2 = 1 | 2
x1 = - 1 = -1
x2 = 1 = 1

(Alle Lösungen sind auch in der Definitionsmenge).

L={ -1 ; 1 }

Bruchgleichung (quadr.) 1

Beispiel:

Bestimme erst die maximale Definitionsmenge D. Löse dann die Bruchgleichung:

8 - 8 x = x +2

Lösung einblenden

Um die Definitionlücken (und damit die maximale Definitionsmenge) zu bestimmen, müssen wir einfach nach den Nullstellen der Nenner schauen: Hier erkennt man schnell als Nullstelle(n) der Nenner: 0

D=R\{0}

Wir multiplizieren den Nenner x weg!

8 - 8 x = x +2 |⋅( x )
8 · x - 8 x · x = x · x + 2 · x
8x -8 = x · x +2x
8x -8 = x 2 +2x | - x 2 -2x

- x 2 +6x -8 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -6 ± 6 2 -4 · ( -1 ) · ( -8 ) 2( -1 )

x1,2 = -6 ± 36 -32 -2

x1,2 = -6 ± 4 -2

x1 = -6 + 4 -2 = -6 +2 -2 = -4 -2 = 2

x2 = -6 - 4 -2 = -6 -2 -2 = -8 -2 = 4

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- x 2 +6x -8 = 0 |: -1

x 2 -6x +8 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -3 ) 2 - 8 = 9 - 8 = 1

x1,2 = 3 ± 1

x1 = 3 - 1 = 2

x2 = 3 + 1 = 4

(Alle Lösungen sind auch in der Definitionsmenge).

L={ 2 ; 4 }

Bruchgleichung (quadr.) 2

Beispiel:

Bestimme erst die maximale Definitionsmenge D. Löse dann die Bruchgleichung:

x = - -3x x +2 +2

Lösung einblenden

Um die Definitionlücken (und damit die maximale Definitionsmenge) zu bestimmen, müssen wir einfach nach den Nullstellen der Nenner schauen: Hier erkennt man schnell als Nullstelle(n) der Nenner: -2

D=R\{ -2 }

x = 3x x +2 +2

Wir multiplizieren den Nenner x +2 weg!

x = 3x x +2 +2 |⋅( x +2 )
x · ( x +2 ) = 3x x +2 · ( x +2 ) + 2 · ( x +2 )
x ( x +2 ) = 3x +2x +4
x · x + x · 2 = 3x +2x +4
x · x +2x = 3x +2x +4
x 2 +2x = 5x +4
x 2 +2x = 5x +4 | -5x -4

x 2 -3x -4 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +3 ± ( -3 ) 2 -4 · 1 · ( -4 ) 21

x1,2 = +3 ± 9 +16 2

x1,2 = +3 ± 25 2

x1 = 3 + 25 2 = 3 +5 2 = 8 2 = 4

x2 = 3 - 25 2 = 3 -5 2 = -2 2 = -1

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 3 2 ) 2 - ( -4 ) = 9 4 + 4 = 9 4 + 16 4 = 25 4

x1,2 = 3 2 ± 25 4

x1 = 3 2 - 5 2 = - 2 2 = -1

x2 = 3 2 + 5 2 = 8 2 = 4

(Alle Lösungen sind auch in der Definitionsmenge).

L={ -1 ; 4 }

doppelte Bruchgl. (quadr.)

Beispiel:

Löse die folgende Gleichung:

x 3x +3 + 1 3x +3 - x = 0

Lösung einblenden

D=R\{ -1 }

x 3( x +1 ) + 1 3( x +1 ) - x = 0 |(Nenner faktorisiert)

Wir multiplizieren den Nenner 3( x +1 ) weg!

x 3( x +1 ) + 1 3( x +1 ) - x = 0 |⋅( 3( x +1 ) )
x 3( x +1 ) · ( 3( x +1 ) ) + 1 3( x +1 ) · ( 3( x +1 ) ) -x · ( 3( x +1 ) ) = 0
x +1 -3 x ( x +1 ) = 0
x +1 + ( -3 x 2 -3x ) = 0
-3 x 2 -2x +1 = 0

-3 x 2 -2x +1 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +2 ± ( -2 ) 2 -4 · ( -3 ) · 1 2( -3 )

x1,2 = +2 ± 4 +12 -6

x1,2 = +2 ± 16 -6

x1 = 2 + 16 -6 = 2 +4 -6 = 6 -6 = -1

x2 = 2 - 16 -6 = 2 -4 -6 = -2 -6 = 1 3

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-3 " teilen:

-3 x 2 -2x +1 = 0 |: -3

x 2 + 2 3 x - 1 3 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 1 3 ) 2 - ( - 1 3 ) = 1 9 + 1 3 = 1 9 + 3 9 = 4 9

x1,2 = - 1 3 ± 4 9

x1 = - 1 3 - 2 3 = - 3 3 = -1

x2 = - 1 3 + 2 3 = 1 3 = 0.33333333333333

Lösung x= -1 ist nicht in der Definitionsmenge!

L={ 1 3 }

Bruchgl. mit x-Potenzen

Beispiel:

Löse die folgende Gleichung:

1 x 2 = 12 x 3 - 36 x 4

Lösung einblenden

D=R\{0}

Wir multiplizieren den Nenner x 4 weg!

1 x 2 = 12 x 3 - 36 x 4 |⋅( x 4 )
1 x 2 · x 4 = 12 x 3 · x 4 - 36 x 4 · x 4
x 2 = 12x -36
x 2 = 12x -36 | -12x +36

x 2 -12x +36 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +12 ± ( -12 ) 2 -4 · 1 · 36 21

x1,2 = +12 ± 144 -144 2

x1,2 = +12 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = 12 2 = 6

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -6 ) 2 - 36 = 36 - 36 = 0

Da die Diskriminante D = 0 ist, hat die quadratische Gleichung nur eine Lösunng.

x = 6 ± 0 = 6

(Alle Lösungen sind auch in der Definitionsmenge).

L={ 6 }

Bruchgleichung mit Parameter

Beispiel:

Für x ≠ 0 und a ∈ Z\{0} ist die folgende Gleichung gegeben:

a - 30 x = -x

Bestimme a so, dass die Gleichung zwei (verschiedene) ganzzahlige Lösungen besitzt.

Lösung einblenden

D=R\{0}

a - 30 x = -x

Wir multiplizieren den Nenner x weg:

a - 30 x = -x |⋅x
a · x - 30 x · x = -x · x
a x -30 = - x 2
a x -30 + x 2 = 0
x 2 + a x -30 = 0

Um jetzt ein a zu finden, für das die quadratische Gleichung zwei ganzzahlige Lösungen hat, bezeichnen wir die beiden Lösungen einfach mal mit p und q und schreiben einen faktorisierten Term mit diesen Lösungen auf:

(x-p)⋅(x-q)

Wenn wir jetzt den faktorisierten Term ausmultiplizieren, erkennen wir, dass auch hier die 1 der Koeffizient vor dem x² ist.

= x² - px - qx + pq
= x² - (p+q)x + pq

Es muss somit gelten:

x 2 + a x -30 = x² - (p+q)x + pq

Wir müssen jetzt also nur noch zwei ganze Zahlen finden, deren Produkt -30 ist, also z.B.:

Mit p = 2 und q = -15 würde es funktionieren, denn 2 · ( -15 ) = -30

Genauso muss dann auch a = -(p+q) gelten, also a = -( 2 -15 ) = 13

Zur Probe können wir ja noch mit a = 13 die quadratische Gleichung lösen, um zu überprüfen, ob die Lösungen wirklich ganzzahlig sind:

x 2 +13x -30 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -13 ± 13 2 -4 · 1 · ( -30 ) 21

x1,2 = -13 ± 169 +120 2

x1,2 = -13 ± 289 2

x1 = -13 + 289 2 = -13 +17 2 = 4 2 = 2

x2 = -13 - 289 2 = -13 -17 2 = -30 2 = -15

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 13 2 ) 2 - ( -30 ) = 169 4 + 30 = 169 4 + 120 4 = 289 4

x1,2 = - 13 2 ± 289 4

x1 = - 13 2 - 17 2 = - 30 2 = -15

x2 = - 13 2 + 17 2 = 4 2 = 2

L={ -15 ; 2 }