nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Bruchgleichungen (quadr.) einfach

Beispiel:

Bestimme erst die maximale Definitionsmenge D. Löse dann die Bruchgleichung:

- 9 x +2 = -3x

Lösung einblenden

Um die Definitionlücken (und damit die maximale Definitionsmenge) zu bestimmen, müssen wir einfach nach den Nullstellen der Nenner schauen: Hier erkennt man schnell als Nullstelle(n) der Nenner: -2

D=R\{ -2 }

Wir multiplizieren den Nenner x +2 weg!

- 9 x +2 = -3x |⋅( x +2 )
- 9 x +2 · ( x +2 ) = -3x · ( x +2 )
-9 = -3 x ( x +2 )
-9 = -3 x 2 -6x
-9 = -3 x 2 -6x | +3 x 2 +6x
3 x 2 +6x -9 = 0 |:3

x 2 +2x -3 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -2 ± 2 2 -4 · 1 · ( -3 ) 21

x1,2 = -2 ± 4 +12 2

x1,2 = -2 ± 16 2

x1 = -2 + 16 2 = -2 +4 2 = 2 2 = 1

x2 = -2 - 16 2 = -2 -4 2 = -6 2 = -3

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 1 2 - ( -3 ) = 1+ 3 = 4

x1,2 = -1 ± 4

x1 = -1 - 2 = -3

x2 = -1 + 2 = 1

(Alle Lösungen sind auch in der Definitionsmenge).

L={ -3 ; 1 }

Bruchgleichung (quadr.) 1

Beispiel:

Bestimme erst die maximale Definitionsmenge D. Löse dann die Bruchgleichung:

x -4 = 1 - 4 x

Lösung einblenden

Um die Definitionlücken (und damit die maximale Definitionsmenge) zu bestimmen, müssen wir einfach nach den Nullstellen der Nenner schauen: Hier erkennt man schnell als Nullstelle(n) der Nenner: 0

D=R\{0}

Wir multiplizieren den Nenner x weg!

x -4 = 1 - 4 x |⋅( x )
x · x -4 · x = 1 · x - 4 x · x
x · x -4x = x -4
x 2 -4x = x -4
x 2 -4x = x -4 | - x +4

x 2 -5x +4 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +5 ± ( -5 ) 2 -4 · 1 · 4 21

x1,2 = +5 ± 25 -16 2

x1,2 = +5 ± 9 2

x1 = 5 + 9 2 = 5 +3 2 = 8 2 = 4

x2 = 5 - 9 2 = 5 -3 2 = 2 2 = 1

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 5 2 ) 2 - 4 = 25 4 - 4 = 25 4 - 16 4 = 9 4

x1,2 = 5 2 ± 9 4

x1 = 5 2 - 3 2 = 2 2 = 1

x2 = 5 2 + 3 2 = 8 2 = 4

(Alle Lösungen sind auch in der Definitionsmenge).

L={ 1 ; 4 }

Bruchgleichung (quadr.) 2

Beispiel:

Bestimme erst die maximale Definitionsmenge D. Löse dann die Bruchgleichung:

-16 x +1 + x = -1

Lösung einblenden

Um die Definitionlücken (und damit die maximale Definitionsmenge) zu bestimmen, müssen wir einfach nach den Nullstellen der Nenner schauen: Hier erkennt man schnell als Nullstelle(n) der Nenner: -1

D=R\{ -1 }

- 16 x +1 + x = -1

Wir multiplizieren den Nenner x +1 weg!

- 16 x +1 + x = -1 |⋅( x +1 )
- 16 x +1 · ( x +1 ) + x · ( x +1 ) = -1 · ( x +1 )
-16 + x ( x +1 ) = -( x +1 )
-16 + ( x 2 + x ) = -( x +1 )
x 2 + x -16 = -x -1
x 2 + x -16 = -x -1 | + x +1

x 2 +2x -15 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -2 ± 2 2 -4 · 1 · ( -15 ) 21

x1,2 = -2 ± 4 +60 2

x1,2 = -2 ± 64 2

x1 = -2 + 64 2 = -2 +8 2 = 6 2 = 3

x2 = -2 - 64 2 = -2 -8 2 = -10 2 = -5

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 1 2 - ( -15 ) = 1+ 15 = 16

x1,2 = -1 ± 16

x1 = -1 - 4 = -5

x2 = -1 + 4 = 3

(Alle Lösungen sind auch in der Definitionsmenge).

L={ -5 ; 3 }

doppelte Bruchgl. (quadr.)

Beispiel:

Löse die folgende Gleichung:

x 4x +4 = - 23,25 x +1 +2x

Lösung einblenden

D=R\{ -1 }

x 4x +4 = - 23,25 x +1 +2x
x 4( x +1 ) = - 23,25 x +1 +2x |(Nenner faktorisiert)

Wir multiplizieren den Nenner 4( x +1 ) weg!

x 4( x +1 ) = - 23,25 x +1 +2x |⋅( 4( x +1 ) )
x 4( x +1 ) · ( 4( x +1 ) ) = -23,25 x +1 · ( 4( x +1 ) ) + 2x · ( 4( x +1 ) )
x = -93 +8 x ( x +1 )
x = 8 x 2 +8x -93
x = 8 x 2 +8x -93 | -8 x 2 -8x +93

-8 x 2 -7x +93 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +7 ± ( -7 ) 2 -4 · ( -8 ) · 93 2( -8 )

x1,2 = +7 ± 49 +2976 -16

x1,2 = +7 ± 3025 -16

x1 = 7 + 3025 -16 = 7 +55 -16 = 62 -16 = -3,875

x2 = 7 - 3025 -16 = 7 -55 -16 = -48 -16 = 3

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-8 " teilen:

-8 x 2 -7x +93 = 0 |: -8

x 2 + 7 8 x - 93 8 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 7 16 ) 2 - ( - 93 8 ) = 49 256 + 93 8 = 49 256 + 2976 256 = 3025 256

x1,2 = - 7 16 ± 3025 256

x1 = - 7 16 - 55 16 = - 62 16 = -3.875

x2 = - 7 16 + 55 16 = 48 16 = 3

(Alle Lösungen sind auch in der Definitionsmenge).

L={ -3,875 ; 3 }

Bruchgl. mit x-Potenzen

Beispiel:

Löse die folgende Gleichung:

0 = - 1 x 2 + 4 x 3 - 3 x 4

Lösung einblenden

D=R\{0}

Wir multiplizieren den Nenner x 4 weg!

0 = - 1 x 2 + 4 x 3 - 3 x 4 |⋅( x 4 )
0 = - 1 x 2 · x 4 + 4 x 3 · x 4 - 3 x 4 · x 4
0 = - x 2 +4x -3
0 = - x 2 +4x -3 | + x 2 -4x +3

x 2 -4x +3 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +4 ± ( -4 ) 2 -4 · 1 · 3 21

x1,2 = +4 ± 16 -12 2

x1,2 = +4 ± 4 2

x1 = 4 + 4 2 = 4 +2 2 = 6 2 = 3

x2 = 4 - 4 2 = 4 -2 2 = 2 2 = 1

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -2 ) 2 - 3 = 4 - 3 = 1

x1,2 = 2 ± 1

x1 = 2 - 1 = 1

x2 = 2 + 1 = 3

(Alle Lösungen sind auch in der Definitionsmenge).

L={ 1 ; 3 }

Bruchgleichung mit Parameter

Beispiel:

Für x ≠ 0 und a ∈ Z\{0} ist die folgende Gleichung gegeben:

a x +10 = -x

Bestimme a so, dass die Gleichung zwei (verschiedene) ganzzahlige Lösungen besitzt.

Lösung einblenden

D=R\{0}

a x +10 = -x

Wir multiplizieren den Nenner x weg:

a x +10 = -x |⋅x
a x · x + 10 · x = -x · x
a +10x = - x 2
a +10x + x 2 = 0
x 2 +10x + a = 0

Um jetzt ein a zu finden, für das die quadratische Gleichung zwei ganzzahlige Lösungen hat, bezeichnen wir die beiden Lösungen einfach mal mit p und q und schreiben einen faktorisierten Term mit diesen Lösungen auf:

(x-p)⋅(x-q)

Wenn wir jetzt den faktorisierten Term ausmultiplizieren, erkennen wir, dass auch hier die 1 der Koeffizient vor dem x² ist.

= x² - px - qx + pq
= x² - (p+q)x + pq

Es muss somit gelten:

x 2 +10x + a = x² - (p+q)x + pq

Wir müssen jetzt also nur noch zwei ganze Zahlen finden, deren Summe das Negative von 10 ist, also z.B.:

Mit p = 2 und q = -12 würde es funktionieren, denn -( 2 -12 ) = 10

Genauso muss dann auch a = p⋅q gelten, also a = 2 · ( -12 ) = -24

Zur Probe können wir ja noch mit a = -24 die quadratische Gleichung lösen, um zu überprüfen, ob die Lösungen wirklich ganzzahlig sind:

x 2 +10x -24 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -10 ± 10 2 -4 · 1 · ( -24 ) 21

x1,2 = -10 ± 100 +96 2

x1,2 = -10 ± 196 2

x1 = -10 + 196 2 = -10 +14 2 = 4 2 = 2

x2 = -10 - 196 2 = -10 -14 2 = -24 2 = -12

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 5 2 - ( -24 ) = 25+ 24 = 49

x1,2 = -5 ± 49

x1 = -5 - 7 = -12

x2 = -5 + 7 = 2

L={ -12 ; 2 }