nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Bruchgleichungen (quadr.) einfach

Beispiel:

Bestimme erst die maximale Definitionsmenge D. Löse dann die Bruchgleichung:

4 x = x

Lösung einblenden

Um die Definitionlücken (und damit die maximale Definitionsmenge) zu bestimmen, müssen wir einfach nach den Nullstellen der Nenner schauen: Hier erkennt man schnell als Nullstelle(n) der Nenner: 0

D=R\{0}

Wir multiplizieren den Nenner x weg!

4 x = x |⋅( x )
4 x · x = x · x
4 = x · x
4 = x 2
4 = x 2 | -4 - x 2
- x 2 = -4 |: ( -1 )
x 2 = 4 | 2
x1 = - 4 = -2
x2 = 4 = 2

(Alle Lösungen sind auch in der Definitionsmenge).

L={ -2 ; 2 }

Bruchgleichung (quadr.) 1

Beispiel:

Bestimme erst die maximale Definitionsmenge D. Löse dann die Bruchgleichung:

-12 + 8 x = x -5

Lösung einblenden

Um die Definitionlücken (und damit die maximale Definitionsmenge) zu bestimmen, müssen wir einfach nach den Nullstellen der Nenner schauen: Hier erkennt man schnell als Nullstelle(n) der Nenner: 0

D=R\{0}

Wir multiplizieren den Nenner x weg!

-12 + 8 x = x -5 |⋅( x )
-12 · x + 8 x · x = x · x -5 · x
-12x +8 = x · x -5x
-12x +8 = x 2 -5x | - x 2 +5x

- x 2 -7x +8 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +7 ± ( -7 ) 2 -4 · ( -1 ) · 8 2( -1 )

x1,2 = +7 ± 49 +32 -2

x1,2 = +7 ± 81 -2

x1 = 7 + 81 -2 = 7 +9 -2 = 16 -2 = -8

x2 = 7 - 81 -2 = 7 -9 -2 = -2 -2 = 1

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- x 2 -7x +8 = 0 |: -1

x 2 +7x -8 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 7 2 ) 2 - ( -8 ) = 49 4 + 8 = 49 4 + 32 4 = 81 4

x1,2 = - 7 2 ± 81 4

x1 = - 7 2 - 9 2 = - 16 2 = -8

x2 = - 7 2 + 9 2 = 2 2 = 1

(Alle Lösungen sind auch in der Definitionsmenge).

L={ -8 ; 1 }

Bruchgleichung (quadr.) 2

Beispiel:

Bestimme erst die maximale Definitionsmenge D. Löse dann die Bruchgleichung:

3 x +5 + x = -1

Lösung einblenden

Um die Definitionlücken (und damit die maximale Definitionsmenge) zu bestimmen, müssen wir einfach nach den Nullstellen der Nenner schauen: Hier erkennt man schnell als Nullstelle(n) der Nenner: -5

D=R\{ -5 }

3 x +5 + x = -1

Wir multiplizieren den Nenner x +5 weg!

3 x +5 + x = -1 |⋅( x +5 )
3 x +5 · ( x +5 ) + x · ( x +5 ) = -1 · ( x +5 )
3 + x ( x +5 ) = -( x +5 )
3 + ( x 2 +5x ) = -( x +5 )
x 2 +5x +3 = -x -5
x 2 +5x +3 = -x -5 | + x +5

x 2 +6x +8 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -6 ± 6 2 -4 · 1 · 8 21

x1,2 = -6 ± 36 -32 2

x1,2 = -6 ± 4 2

x1 = -6 + 4 2 = -6 +2 2 = -4 2 = -2

x2 = -6 - 4 2 = -6 -2 2 = -8 2 = -4

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 3 2 - 8 = 9 - 8 = 1

x1,2 = -3 ± 1

x1 = -3 - 1 = -4

x2 = -3 + 1 = -2

(Alle Lösungen sind auch in der Definitionsmenge).

L={ -4 ; -2 }

doppelte Bruchgl. (quadr.)

Beispiel:

Löse die folgende Gleichung:

-7 x +1 +4x = - x 2x +2

Lösung einblenden

D=R\{ -1 }

- 7 x +1 +4x = -x 2x +2
- 7 x +1 +4x = -x 2( x +1 ) |(Nenner faktorisiert)

Wir multiplizieren den Nenner 2( x +1 ) weg!

- 7 x +1 +4x = -x 2( x +1 ) |⋅( 2( x +1 ) )
-7 x +1 · ( 2( x +1 ) ) + 4x · ( 2( x +1 ) ) = -x 2( x +1 ) · ( 2( x +1 ) )
-14 +8 x ( x +1 ) = -x
-14 + ( 8 x 2 +8x ) = -x
8 x 2 +8x -14 = -x
8 x 2 +8x -14 = -x | + x

8 x 2 +9x -14 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -9 ± 9 2 -4 · 8 · ( -14 ) 28

x1,2 = -9 ± 81 +448 16

x1,2 = -9 ± 529 16

x1 = -9 + 529 16 = -9 +23 16 = 14 16 = 0,875

x2 = -9 - 529 16 = -9 -23 16 = -32 16 = -2

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "8 " teilen:

8 x 2 +9x -14 = 0 |: 8

x 2 + 9 8 x - 7 4 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 9 16 ) 2 - ( - 7 4 ) = 81 256 + 7 4 = 81 256 + 448 256 = 529 256

x1,2 = - 9 16 ± 529 256

x1 = - 9 16 - 23 16 = - 32 16 = -2

x2 = - 9 16 + 23 16 = 14 16 = 0.875

(Alle Lösungen sind auch in der Definitionsmenge).

L={ -2 ; 0,875 }

Bruchgl. mit x-Potenzen

Beispiel:

Löse die folgende Gleichung:

1 + 9 x = - 18 x 2

Lösung einblenden

D=R\{0}

Wir multiplizieren den Nenner x 2 weg!

1 + 9 x = - 18 x 2 |⋅( x 2 )
1 · x 2 + 9 x · x 2 = - 18 x 2 · x 2
x 2 +9x = -18
x 2 +9x = -18 | +18

x 2 +9x +18 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -9 ± 9 2 -4 · 1 · 18 21

x1,2 = -9 ± 81 -72 2

x1,2 = -9 ± 9 2

x1 = -9 + 9 2 = -9 +3 2 = -6 2 = -3

x2 = -9 - 9 2 = -9 -3 2 = -12 2 = -6

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 9 2 ) 2 - 18 = 81 4 - 18 = 81 4 - 72 4 = 9 4

x1,2 = - 9 2 ± 9 4

x1 = - 9 2 - 3 2 = - 12 2 = -6

x2 = - 9 2 + 3 2 = - 6 2 = -3

(Alle Lösungen sind auch in der Definitionsmenge).

L={ -6 ; -3 }

Bruchgleichung mit Parameter

Beispiel:

Für x ≠ 0 und a ∈ Z\{0} ist die folgende Gleichung gegeben:

x + 30 x = - a

Bestimme a so, dass die Gleichung zwei (verschiedene) ganzzahlige Lösungen besitzt.

Lösung einblenden

D=R\{0}

x + 30 x = - a

Wir multiplizieren den Nenner x weg:

x + 30 x = - a |⋅x
x · x + 30 x · x = - a · x
x 2 +30 = - a x
x 2 +30 + a x = 0
x 2 + a x +30 = 0

Um jetzt ein a zu finden, für das die quadratische Gleichung zwei ganzzahlige Lösungen hat, bezeichnen wir die beiden Lösungen einfach mal mit p und q und schreiben einen faktorisierten Term mit diesen Lösungen auf:

(x-p)⋅(x-q)

Wenn wir jetzt den faktorisierten Term ausmultiplizieren, erkennen wir, dass auch hier die 1 der Koeffizient vor dem x² ist.

= x² - px - qx + pq
= x² - (p+q)x + pq

Es muss somit gelten:

x 2 + a x +30 = x² - (p+q)x + pq

Wir müssen jetzt also nur noch zwei ganze Zahlen finden, deren Produkt 30 ist, also z.B.:

Mit p = 2 und q = 15 würde es funktionieren, denn 2 · 15 = 30

Genauso muss dann auch a = -(p+q) gelten, also a = -( 2 +15 ) = -17

Zur Probe können wir ja noch mit a = -17 die quadratische Gleichung lösen, um zu überprüfen, ob die Lösungen wirklich ganzzahlig sind:

x 2 -17x +30 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +17 ± ( -17 ) 2 -4 · 1 · 30 21

x1,2 = +17 ± 289 -120 2

x1,2 = +17 ± 169 2

x1 = 17 + 169 2 = 17 +13 2 = 30 2 = 15

x2 = 17 - 169 2 = 17 -13 2 = 4 2 = 2

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 17 2 ) 2 - 30 = 289 4 - 30 = 289 4 - 120 4 = 169 4

x1,2 = 17 2 ± 169 4

x1 = 17 2 - 13 2 = 4 2 = 2

x2 = 17 2 + 13 2 = 30 2 = 15

L={ 2 ; 15 }