Klasse 5
Klasse 6
Klasse 7
Klasse 8
Klasse 9
Klasse 10
Fit für die Oberstufe
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Zweisatz
Beispiel:
Beim Karls Lieblingsobsthändler bekommt man für 3,50 € 1 kg Birnen.
Wie viel kosten 3 kg Birnen?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Um von 1 kg Birnen in der ersten Zeile auf 3 kg Birnen in der zweiten Zeile zu kommen, müssen wir mit 3 multiplizieren. Somit müssen wir auch die 3.5 € mit 3 multiplizieren, um auf den Wert zu kommen, der den 3 kg Birnen entspricht:
⋅ 3
|
![]() |
|
![]() |
⋅ 3
|
⋅ 3
|
![]() |
|
![]() |
⋅ 3
|
Damit haben wir nun den gesuchten Wert, der den 3 kg Birnen entspricht: 10,50 €
Dreisatz-Tabelle (andere Zwischengröße)
Beispiel:
Die Tabelle zeigt Werte von zwei Größen mit einem proportionalen Zusammenhang. Übertrage die Tabelle in dein Heft und berechne mit dem Dreisatz die fehlende Größen.
30 Minuten telefonieren | 750 ct |
? | ? |
36 Minuten telefonieren | ? |
Wir suchen einen möglichst großen Zwischenwert für die Minuten telefonieren in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 30 Minuten telefonieren teilen müssen.) Diese Zahl sollte ein Teiler von 30 und von 36 sein, also der ggT(30,36) = 6.
Wir suchen deswegen erst den entsprechenden Wert für 6 Minuten telefonieren:
|
Um von 30 Minuten telefonieren in der ersten Zeile auf 6 Minuten telefonieren in der zweiten Zeile zu kommen, müssen wir durch 5 teilen. Somit müssen wir auch die 750 ct durch 5 teilen, um auf den Wert zu kommen, der den 6 Minuten telefonieren entspricht:
: 5
|
![]() |
|
![]() |
: 5
|
(Beim Teilen durch 5 kann man einfach erst verdoppeln und dann durch 10 teilen.)
: 5
|
![]() |
|
![]() |
: 5
|
Jetzt müssen wir ja wieder die 6 Minuten telefonieren in der mittleren Zeile mit 6 multiplizieren, um auf die 36 Minuten telefonieren in der dritten Zeile zu kommen.
: 5
⋅ 6
|
![]() ![]() |
|
![]() ![]() |
: 5
⋅ 6
|
Wir müssen somit auch rechts die 150 ct in der mittleren Zeile mit 6 multiplizieren:
: 5
⋅ 6
|
![]() ![]() |
|
![]() ![]() |
: 5
⋅ 6
|
Damit haben wir nun den gesuchten Wert, der den 36 Minuten telefonieren entspricht: 900 ct
Proportionaler Term
Beispiel:
Bei zwei propotionalen Größen A und B hat die Größe A den Wert 7 wenn die Größe B den Wert 9.8 hat.
Bestimme die Zuordnungsvorschrift, mit der man jedem Wert der Größe A einen Wert der Größe B zuordnen kann.
Um den Proportionalitätsfaktor zu finden, muss man lediglich den Wert von 'Größe B', nämlich 9.8 durch den Wert
von 'Größe A' (7) teilen. Schließlich gilt bei proportionalen Größen, dass der Wert bei 1 gerade
des Wertes bei 7 sein muss.
Also: m==
Zuordnungsvorschrift: y = ⋅ x
Proportionaler Term Anwendung
Beispiel:
Eine Verpackungsmachine kann in 4 Minuten 1,2 Kartons verpacken. Bestimme die Zuordnungsvorschrift, mit der man jedem Minuten-Wert eine Anzahl der verpackten Kartons zuordnen kann.
Um den Proportionalitätsfaktor zu finden, muss man lediglich den Wert von 'Kartonanzahl', nämlich 1.2 durch den Wert
von 'Verpackungszeit' (4) teilen. Schließlich gilt bei proportionalen Größen, dass der Wert bei 1 gerade
des Wertes bei 4 sein muss.
Also: m==
Zuordnungsvorschrift: y = ⋅ x
Wert bei Proportionalität finden
Beispiel:
Bei zwei proportionalen Größen A und B hat die Größe A den Wert 3, wenn die Größe B den Wert 11.1 hat.
Bestimme Zuordnungsvorschrift mit der man Werte der Größe A, Werte der Größe B zuordnen kann.
Welchen Wert nimmt die Größe A ein, wenn die Größe B den Wert 14.8 hat?
Da es sich hier um eine proportionale Zuordnung handelt, ist die Zuordnungsvorschrift y=m⋅x. Wenn man die Werte aus der Aufgabe einsetzt, so erhält man: 11.1 = m⋅3.
Um den Proportionalitätsfaktor m zu finden, muss man also lediglich den Wert von Größe B, nämlich 11.1 durch den Wert
von Größe A (3) teilen. Schließlich gilt bei proportionalen Größen, dass der Wert bei 1 gerade
des Wertes bei 3 sein muss.
Also: m==
Zuordnungsvorschrift: y = ⋅ x
x-Wert bei y = 14.8
Da der/die Größe B den Wert 14.8 hat, muss man 14.8 für y in den Proportionalitäts-Term einsetzen,
um als x den zugehörigen Wert von Größe A zu erhalten:
14.8 = ⋅ x.
Das klappt mit x = , weil dann 14.8 = ⋅ .
Somit gilt für x (Größe A) = = 4.
Wert bei Proportionalität (Anwendungen)
Beispiel:
Ein Prepaid-Anbieter verlangt immer den gleichen Preis pro Minute Telefonieren mit dem Handy. Auf einem Werbeplakat steht, dass 5 Minuten nur 30ct kosten. Bestimme die Zuordnungsvorschrift mit der man den telefonierten Minuten den Preis in Cent zuordnen kann.
Da es sich hier um eine proportionale Zuordnung handelt, ist die Zuordnungsvorschrift y=m⋅x. Wenn man die Werte aus der Aufgabe einsetzt, so erhält man: 30 = m⋅5.
Um den Proportionalitätsfaktor m zu finden, muss man also lediglich den Wert von Preis, nämlich 30 durch den Wert
von Minuten (5) teilen. Schließlich gilt bei proportionalen Größen, dass der Wert bei 1 gerade
des Wertes bei 5 sein muss.
Also: m==
Zuordnungsvorschrift: y = ⋅ x
x-Wert bei y = 9
Da der/die Preis den Wert 9 hat, muss man 9 für y in den Proportionalitäts-Term einsetzen,
um als x den zugehörigen Wert von Minuten zu erhalten:
9 = ⋅ x.
Das klappt mit x = , weil dann 9 = ⋅ .
Somit gilt für x (Minuten) = = 1.5.