Klasse 5
Klasse 6
Klasse 7
Klasse 8
Klasse 9
Klasse 10
Fit für die Oberstufe
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Zweisatz rückwärts
Beispiel:
Ein Käseaufschnitt wiegt insgesamt 360 g. Er besteht aus 9 gleichen Scheiben.
Wie schwer ist dann 1 Scheibe Käse?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Um von 9 Scheiben Käse in der ersten Zeile auf 1 Scheiben Käse in der zweiten Zeile zu kommen, müssen wir durch 9 teilen. Somit müssen wir auch die 360 g durch 9 teilen, um auf den Wert zu kommen, der den 1 Scheiben Käse entspricht:
: 9
|
![]() |
|
![]() |
: 9
|
: 9
|
![]() |
|
![]() |
: 9
|
Damit haben wir nun den gesuchten Wert, der den 1 Scheiben Käse entspricht: 40 g
Einfacher Dreisatz
Beispiel:
Der Hersteller eines Powerdrinks wirbt damit, das 3600 g Protein in dessen 12kg-Großpackung drin sind.
Wie viel g Protein sind in 18 kg Powerdrink?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Wir suchen einen möglichst großen Zwischenwert für die kg Powerdrink in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 12 kg Powerdrink teilen müssen.) Diese Zahl sollte ein Teiler von 12 und von 18 sein, also der ggT(12,18) = 6.
Wir suchen deswegen erst den entsprechenden Wert für 6 kg Powerdrink:
|
Um von 12 kg Powerdrink in der ersten Zeile auf 6 kg Powerdrink in der zweiten Zeile zu kommen, müssen wir durch 2 teilen. Somit müssen wir auch die 3600 g Protein durch 2 teilen, um auf den Wert zu kommen, der den 6 kg Powerdrink entspricht:
: 2
|
![]() |
|
![]() |
: 2
|
: 2
|
![]() |
|
![]() |
: 2
|
Jetzt müssen wir ja wieder die 6 kg Powerdrink in der mittleren Zeile mit 3 multiplizieren, um auf die 18 kg Powerdrink in der dritten Zeile zu kommen.
: 2
⋅ 3
|
![]() ![]() |
|
![]() ![]() |
: 2
⋅ 3
|
Wir müssen somit auch rechts die 1800 g Protein in der mittleren Zeile mit 3 multiplizieren:
: 2
⋅ 3
|
![]() ![]() |
|
![]() ![]() |
: 2
⋅ 3
|
Damit haben wir nun den gesuchten Wert, der den 18 kg Powerdrink entspricht: 5400 g Protein
Proportionaler Term
Beispiel:
Bei zwei propotionalen Größen A und B hat die Größe A den Wert 6 wenn die Größe B den Wert 26.4 hat.
Bestimme die Zuordnungsvorschrift, mit der man jedem Wert der Größe A einen Wert der Größe B zuordnen kann.
Um den Proportionalitätsfaktor zu finden, muss man lediglich den Wert von 'Größe B', nämlich 26.4 durch den Wert
von 'Größe A' (6) teilen. Schließlich gilt bei proportionalen Größen, dass der Wert bei 1 gerade
des Wertes bei 6 sein muss.
Also: m==
Zuordnungsvorschrift: y = ⋅ x
Proportionaler Term Anwendung
Beispiel:
Ein Boiler erhitzt Wasser. Dabei wird in 6 Minuten das Wasser um 21,6°C erhitzt. Bestimme die Zuordnungsvorschrift, mit der man jedem Minuten-Wert einen Wert der Wassererhitzung in °C zuordnen kann.
Um den Proportionalitätsfaktor zu finden, muss man lediglich den Wert von 'Temperaturänderung', nämlich 21.6 durch den Wert
von 'Erhitzungsszeit' (6) teilen. Schließlich gilt bei proportionalen Größen, dass der Wert bei 1 gerade
des Wertes bei 6 sein muss.
Also: m==
Zuordnungsvorschrift: y = ⋅ x
Wert bei Proportionalität finden
Beispiel:
Bei zwei proportionalen Größen A und B hat die Größe A den Wert 2, wenn die Größe B den Wert 9.4 hat.
Bestimme Zuordnungsvorschrift mit der man Werte der Größe A, Werte der Größe B zuordnen kann.
Welchen Wert nimmt Größe B ein, wenn die Größe A den Wert 5.5 hat?
Da es sich hier um eine proportionale Zuordnung handelt, ist die Zuordnungsvorschrift y=m⋅x. Wenn man die Werte aus der Aufgabe einsetzt, so erhält man: 9.4 = m⋅2.
Um den Proportionalitätsfaktor m zu finden, muss man also lediglich den Wert von Größe B, nämlich 9.4 durch den Wert
von Größe A (2) teilen. Schließlich gilt bei proportionalen Größen, dass der Wert bei 1 gerade
des Wertes bei 2 sein muss.
Also: m==
Zuordnungsvorschrift: y = ⋅ x
y-Wert bei x = 5.5
Da der/die Größe A den Wert 5.5 hat, muss man einfach 5.5 für x in den Proportionalitäts-Term einsetzen,
um als y den zugehörigen Wert von Größe B zu erhalten:
y= ⋅ 5.5 = 25.85
Wert bei Proportionalität (Anwendungen)
Beispiel:
Die Lernmittelbücherei hat 120 neue gleiche Bücher bekommen. Jeweils 8 Bücher wiegen zusammen 9,6kg. Bestimme die Zuordnungsvorschrift mit der man die Anzahl der Bücher dem Gewicht in kg zuordnen kann.
Da es sich hier um eine proportionale Zuordnung handelt, ist die Zuordnungsvorschrift y=m⋅x. Wenn man die Werte aus der Aufgabe einsetzt, so erhält man: 9.6 = m⋅8.
Um den Proportionalitätsfaktor m zu finden, muss man also lediglich den Wert von Gesamtgewicht, nämlich 9.6 durch den Wert
von Bücheranzahl (8) teilen. Schließlich gilt bei proportionalen Größen, dass der Wert bei 1 gerade
des Wertes bei 8 sein muss.
Also: m==
Zuordnungsvorschrift: y = ⋅ x
y-Wert bei x = 5.5
Da der/die Bücheranzahl den Wert 5.5 hat, muss man einfach 5.5 für x in den Proportionalitäts-Term einsetzen,
um als y den zugehörigen Wert von Gesamtgewicht zu erhalten:
y= ⋅ 5.5 = 6.6