nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Zweisatz rückwärts

Beispiel:

Beim Karls Lieblingsobsthändler bekommt man für 10,00 € 5 kg Birnen.

Wie viel kostet 1 kg Birnen?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:

5 kg Birnen10,00 €
1 kg Birnen?

Um von 5 kg Birnen in der ersten Zeile auf 1 kg Birnen in der zweiten Zeile zu kommen, müssen wir durch 5 teilen. Somit müssen wir auch die 10 € durch 5 teilen, um auf den Wert zu kommen, der den 1 kg Birnen entspricht:

: 5
5 kg Birnen10,00 €
1 kg Birnen?
: 5
: 5
5 kg Birnen10,00 €
1 kg Birnen2,00 €
: 5

Damit haben wir nun den gesuchten Wert, der den 1 kg Birnen entspricht: 2,00 €

Einfacher Dreisatz

Beispiel:

Beim Bäcker Allesfresh kosten 7 Brezeln immer 4,90 €.

Wie viel kosten 6 Brezeln?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:


7 Brezeln4,90 €
??
6 Brezeln?

Wir suchen einen möglichst großen Zwischenwert für die Brezeln in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 7 Brezeln teilen müssen.) Diese Zahl sollte ein Teiler von 7 und von 6 sein, also der ggT(7,6) = 1.

Wir suchen deswegen erst den entsprechenden Wert für 1 Brezeln:


7 Brezeln4,90 €
1 Brezel?
6 Brezeln?

Um von 7 Brezeln in der ersten Zeile auf 1 Brezeln in der zweiten Zeile zu kommen, müssen wir durch 7 teilen. Somit müssen wir auch die 4,9 € durch 7 teilen, um auf den Wert zu kommen, der den 1 Brezeln entspricht:

: 7

7 Brezeln4,90 €
1 Brezel?
6 Brezeln?

: 7
: 7

7 Brezeln4,90 €
1 Brezel0,70 €
6 Brezeln?

: 7

Jetzt müssen wir ja wieder die 1 Brezeln in der mittleren Zeile mit 6 multiplizieren, um auf die 6 Brezeln in der dritten Zeile zu kommen.

: 7
⋅ 6

7 Brezeln4,90 €
1 Brezel0,70 €
6 Brezeln?

: 7
⋅ 6

Wir müssen somit auch rechts die 0,70 € in der mittleren Zeile mit 6 multiplizieren:

: 7
⋅ 6

7 Brezeln4,90 €
1 Brezel0,70 €
6 Brezeln4,20 €

: 7
⋅ 6

Damit haben wir nun den gesuchten Wert, der den 6 Brezeln entspricht: 4,20 €

Proportionaler Term

Beispiel:

Bei zwei propotionalen Größen A und B hat die Größe A den Wert 4 wenn die Größe B den Wert 14 hat.
Bestimme die Zuordnungsvorschrift, mit der man jedem Wert der Größe A einen Wert der Größe B zuordnen kann.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Um den Proportionalitätsfaktor zu finden, muss man lediglich den Wert von 'Größe B', nämlich 14 durch den Wert von 'Größe A' (4) teilen. Schließlich gilt bei proportionalen Größen, dass der Wert bei 1 gerade 1 4 des Wertes bei 4 sein muss.
Also: m= 14 4 =3,5
Zuordnungsvorschrift: y = 3,5 ⋅ x

Proportionaler Term Anwendung

Beispiel:

Im Winter schneit es 1 Stunde lang total gleichmäßig. Dabei fallen in 5 Minuten 18,5 cm. Bestimme die Zuordnungsvorschrift mit der man jedem Minuten-Wert eine Schneehöhe in cm zuordnen kann.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Um den Proportionalitätsfaktor zu finden, muss man lediglich den Wert von 'Schneehöhe', nämlich 18.5 durch den Wert von 'Zeit' (5) teilen. Schließlich gilt bei proportionalen Größen, dass der Wert bei 1 gerade 1 5 des Wertes bei 5 sein muss.
Also: m= 18.5 5 =3,7
Zuordnungsvorschrift: y = 3,7 ⋅ x

Wert bei Proportionalität finden

Beispiel:

Bei zwei proportionalen Größen A und B hat die Größe A den Wert 5, wenn die Größe B den Wert 18 hat.
Bestimme Zuordnungsvorschrift mit der man Werte der Größe A, Werte der Größe B zuordnen kann.

  1. Welchen Wert nimmt Größe B ein, wenn die Größe A den Wert 2 hat?
  2. Welchen Wert nimmt die Größe A ein, wenn die Größe B den Wert 23.4 hat?

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Da es sich hier um eine proportionale Zuordnung handelt, ist die Zuordnungsvorschrift y=m⋅x. Wenn man die Werte aus der Aufgabe einsetzt, so erhält man: 18 = m⋅5.

Um den Proportionalitätsfaktor m zu finden, muss man also lediglich den Wert von Größe B, nämlich 18 durch den Wert von Größe A (5) teilen. Schließlich gilt bei proportionalen Größen, dass der Wert bei 1 gerade 1 5 des Wertes bei 5 sein muss.
Also: m= 18 5 =3,6
Zuordnungsvorschrift: y = 3,6 ⋅ x

  1. y-Wert bei x = 2

    Da der/die Größe A den Wert 2 hat, muss man einfach 2 für x in den Proportionalitäts-Term einsetzen, um als y den zugehörigen Wert von Größe B zu erhalten:
    y=3,6 ⋅ 2 = 7.2

    .
  2. x-Wert bei y = 23.4

    Da der/die Größe B den Wert 23.4 hat, muss man 23.4 für y in den Proportionalitäts-Term einsetzen, um als x den zugehörigen Wert von Größe A zu erhalten:
    23.4 = 3,6 ⋅ x.
    Das klappt mit x = 23.4 3.6 , weil dann 23.4 = 3,6 23.4 3.6 .
    Somit gilt für x (Größe A) = 23.4 3.6 = 6.5.

Wert bei Proportionalität (Anwendungen)

Beispiel:

Die Lernmittelbücherei hat 120 neue gleiche Bücher bekommen. Jeweils 8 Bücher wiegen zusammen 0,8kg. Bestimme die Zuordnungsvorschrift mit der man die Anzahl der Bücher dem Gewicht in kg zuordnen kann.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Da es sich hier um eine proportionale Zuordnung handelt, ist die Zuordnungsvorschrift y=m⋅x. Wenn man die Werte aus der Aufgabe einsetzt, so erhält man: 0.8 = m⋅8.

Um den Proportionalitätsfaktor m zu finden, muss man also lediglich den Wert von Gesamtgewicht, nämlich 0.8 durch den Wert von Bücheranzahl (8) teilen. Schließlich gilt bei proportionalen Größen, dass der Wert bei 1 gerade 1 8 des Wertes bei 8 sein muss.
Also: m= 0.8 8 =0,1
Zuordnungsvorschrift: y = 0,1 ⋅ x

x-Wert bei y = 0.75

Da der/die Gesamtgewicht den Wert 0.75 hat, muss man 0.75 für y in den Proportionalitäts-Term einsetzen, um als x den zugehörigen Wert von Bücheranzahl zu erhalten:
0.75 = 0,1 ⋅ x.
Das klappt mit x = 0.75 0.1 , weil dann 0.75 = 0,1 0.75 0.1 .
Somit gilt für x (Bücheranzahl) = 0.75 0.1 = 7.5.