nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Mitternachtsformel (alles links)

Beispiel:

Löse die folgende Gleichung:

4 x 2 +36x +81 = 0

Lösung einblenden

4 x 2 +36x +81 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -36 ± 36 2 -4 · 4 · 81 24

x1,2 = -36 ± 1296 -1296 8

x1,2 = -36 ± 0 8

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = -36 8 = - 9 2

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "4 " teilen:

4 x 2 +36x +81 = 0 |: 4

x 2 +9x + 81 4 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 9 2 ) 2 - ( 81 4 ) = 81 4 - 81 4 = 0 4 = 0

Da die Diskriminante D = 0 ist, hat die quadratische Gleichung nur eine Lösunng.

x = - 9 2 ± 0 = - 9 2

L={ - 9 2 }

- 9 2 ist 2-fache Lösung!

quadr. Gleichung mit der p-q-Formel

Beispiel:

Löse die folgende Gleichung:

x 2 +6x -40 = 0

Lösung einblenden

x 2 +6x -40 = 0

D = 3 2 - ( -40 ) = 9+ 40 = 49

x1,2 = -3 ± 49

x1 = -3 - 7 = -10

x2 = -3 + 7 = 4

L = { -10 ; 4 }

Mitternachtsformel (erst sortieren)

Beispiel:

Löse die folgende Gleichung:

2 x 2 +12x = 32

Lösung einblenden
2 x 2 +12x = 32 | -32
2 x 2 +12x -32 = 0 |:2

x 2 +6x -16 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -6 ± 6 2 -4 · 1 · ( -16 ) 21

x1,2 = -6 ± 36 +64 2

x1,2 = -6 ± 100 2

x1 = -6 + 100 2 = -6 +10 2 = 4 2 = 2

x2 = -6 - 100 2 = -6 -10 2 = -16 2 = -8

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 3 2 - ( -16 ) = 9+ 16 = 25

x1,2 = -3 ± 25

x1 = -3 - 5 = -8

x2 = -3 + 5 = 2

L={ -8 ; 2 }

quadr. Gl. p-q-Formel (erst sortieren)

Beispiel:

Löse die folgende Gleichung:

6x -40 + x 2 = 0

Lösung einblenden

6x -40 + x 2 = 0

sortieren

x 2 +6x -40 = 0

D = 3 2 - ( -40 ) = 9+ 40 = 49

x1,2 = -3 ± 49

x1 = -3 - 7 = -10

x2 = -3 + 7 = 4

L = { -10 ; 4 }

Mitternachtsformel (mit Durchmult.)

Beispiel:

Löse die folgende Gleichung:

3 x 2 -9x +6 = 0

Lösung einblenden
3 x 2 -9x +6 = 0 |:3

x 2 -3x +2 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +3 ± ( -3 ) 2 -4 · 1 · 2 21

x1,2 = +3 ± 9 -8 2

x1,2 = +3 ± 1 2

x1 = 3 + 1 2 = 3 +1 2 = 4 2 = 2

x2 = 3 - 1 2 = 3 -1 2 = 2 2 = 1

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 3 2 ) 2 - 2 = 9 4 - 2 = 9 4 - 8 4 = 1 4

x1,2 = 3 2 ± 1 4

x1 = 3 2 - 1 2 = 2 2 = 1

x2 = 3 2 + 1 2 = 4 2 = 2

L={ 1 ; 2 }

Mitternachtsformel (mit vereinfachen)

Beispiel:

Löse die folgende Gleichung:

-8 x 2 + x -1 = ( -9x +9 ) ( x -9 ) -88x +100

Lösung einblenden
-8 x 2 + x -1 = ( -9x +9 ) ( x -9 ) -88x +100
-8 x 2 + x -1 = -9 x 2 +90x -81 -88x +100
-8 x 2 + x -1 = -9 x 2 +2x +19 | +9 x 2 -2x -19

x 2 - x -20 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +1 ± ( -1 ) 2 -4 · 1 · ( -20 ) 21

x1,2 = +1 ± 1 +80 2

x1,2 = +1 ± 81 2

x1 = 1 + 81 2 = 1 +9 2 = 10 2 = 5

x2 = 1 - 81 2 = 1 -9 2 = -8 2 = -4

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 1 2 ) 2 - ( -20 ) = 1 4 + 20 = 1 4 + 80 4 = 81 4

x1,2 = 1 2 ± 81 4

x1 = 1 2 - 9 2 = - 8 2 = -4

x2 = 1 2 + 9 2 = 10 2 = 5

L={ -4 ; 5 }

quadr. Gl. p-q-Formel (erst sortieren)

Beispiel:

Löse die folgende Gleichung:

-12x +35 + x 2 = 0

Lösung einblenden

-12x +35 + x 2 = 0

sortieren

x 2 -12x +35 = 0

D = ( -6 ) 2 - 35 = 36 - 35 = 1

x1,2 = 6 ± 1

x1 = 6 - 1 = 5

x2 = 6 + 1 = 7

L = { 5 ; 7 }