nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Mitternachtsformel (alles links)

Beispiel:

Löse die folgende Gleichung:

x 2 +4x +4 = 0

Lösung einblenden

x 2 +4x +4 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -4 ± 4 2 -4 · 1 · 4 21

x1,2 = -4 ± 16 -16 2

x1,2 = -4 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = -4 2 = -2

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 2 2 - 4 = 4 - 4 = 0

Da die Diskriminante D = 0 ist, hat die quadratische Gleichung nur eine Lösunng.

x = -2 ± 0 = -2

L={ -2 }

-2 ist 2-fache Lösung!

quadr. Gleichung mit der p-q-Formel

Beispiel:

Löse die folgende Gleichung:

x 2 -7x +12 = 0

Lösung einblenden

x 2 -7x +12 = 0

D = ( - 7 2 ) 2 - 12 = 49 4 - 12 = 49 4 - 48 4 = 1 4

x1,2 = 7 2 ± 1 4

x1 = 7 2 - 1 2 = 6 2 = 3

x2 = 7 2 + 1 2 = 8 2 = 4

L = { 3 ; 4 }

Mitternachtsformel (erst sortieren)

Beispiel:

Löse die folgende Gleichung:

x 2 +1 = -2x

Lösung einblenden
x 2 +1 = -2x | +2x

x 2 +2x +1 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -2 ± 2 2 -4 · 1 · 1 21

x1,2 = -2 ± 4 -4 2

x1,2 = -2 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = -2 2 = -1

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 1 2 - 1 = 1 - 1 = 0

Da die Diskriminante D = 0 ist, hat die quadratische Gleichung nur eine Lösunng.

x = -1 ± 0 = -1

L={ -1 }

-1 ist 2-fache Lösung!

quadr. Gl. p-q-Formel (erst sortieren)

Beispiel:

Löse die folgende Gleichung:

4 + x 2 = 5x

Lösung einblenden

4 + x 2 = 5x | - ( 5x )

4 + x 2 -5x = 0

sortieren

x 2 -5x +4 = 0

D = ( - 5 2 ) 2 - 4 = 25 4 - 4 = 25 4 - 16 4 = 9 4

x1,2 = 5 2 ± 9 4

x1 = 5 2 - 3 2 = 2 2 = 1

x2 = 5 2 + 3 2 = 8 2 = 4

L = { 1 ; 4 }

Mitternachtsformel (mit Durchmult.)

Beispiel:

Löse die folgende Gleichung:

x 2 -3x -4 = 0

Lösung einblenden

x 2 -3x -4 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +3 ± ( -3 ) 2 -4 · 1 · ( -4 ) 21

x1,2 = +3 ± 9 +16 2

x1,2 = +3 ± 25 2

x1 = 3 + 25 2 = 3 +5 2 = 8 2 = 4

x2 = 3 - 25 2 = 3 -5 2 = -2 2 = -1

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 3 2 ) 2 - ( -4 ) = 9 4 + 4 = 9 4 + 16 4 = 25 4

x1,2 = 3 2 ± 25 4

x1 = 3 2 - 5 2 = - 2 2 = -1

x2 = 3 2 + 5 2 = 8 2 = 4

L={ -1 ; 4 }

Mitternachtsformel (mit vereinfachen)

Beispiel:

Löse die folgende Gleichung:

2 x 2 -7x +3 = ( x -9 ) ( x +8 ) -15x +55

Lösung einblenden
2 x 2 -7x +3 = ( x -9 ) ( x +8 ) -15x +55
2 x 2 -7x +3 = x 2 - x -72 -15x +55
2 x 2 -7x +3 = x 2 -16x -17 | - x 2 +16x +17

x 2 +9x +20 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -9 ± 9 2 -4 · 1 · 20 21

x1,2 = -9 ± 81 -80 2

x1,2 = -9 ± 1 2

x1 = -9 + 1 2 = -9 +1 2 = -8 2 = -4

x2 = -9 - 1 2 = -9 -1 2 = -10 2 = -5

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 9 2 ) 2 - 20 = 81 4 - 20 = 81 4 - 80 4 = 1 4

x1,2 = - 9 2 ± 1 4

x1 = - 9 2 - 1 2 = - 10 2 = -5

x2 = - 9 2 + 1 2 = - 8 2 = -4

L={ -5 ; -4 }

quadr. Gl. p-q-Formel (erst sortieren)

Beispiel:

Löse die folgende Gleichung:

25 + x 2 -10x = 0

Lösung einblenden

25 + x 2 -10x = 0

sortieren

x 2 -10x +25 = 0

D = ( -5 ) 2 - 25 = 25 - 25 = 0

Da die Diskriminante D = 0 ist, hat die quadratische Gleichung nur eine Lösunng.

x = 5 - 0 = 5

L ={ 5 }