nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Mengen-Operationen elementar

Beispiel:

Gegeben ist die Ergebnismenge S={1; 2; 3; 4; 5; 6; 7; 8; 9; 10} und die Mengen A = {1; 4; 8; 10} und B = {2; 3; 4; 6; 10}. Bestimme A B .

Lösung einblenden

Gegeben sind ja die Ergebnismenge S={1; 2; 3; 4; 5; 6; 7; 8; 9; 10} und die Mengen A = {1; 4; 8; 10} und B = {2; 3; 4; 6; 10}.

Die Menge A B umfasst alle Elemente der Ergebnismenge S={1; 2; 3; 4; 5; 6; 7; 8; 9; 10}, die in der Menge A={1; 4; 8; 10} oder in der Menge B={2; 3; 4; 6; 10} sind,
also A B = {1; 2; 3; 4; 6; 8; 10}

Mengen-Operationen (allg.)

Beispiel:

Gegeben ist die Ergebnismenge S={1; 2; 3; 4; 5; 6; 7; 8; 9; 10} und die Menge B = {1; 3; 4; 5; 8; 10}. Bestimme B .

Lösung einblenden

Gegeben sind ja die Ergebnismenge S={1; 2; 3; 4; 5; 6; 7; 8; 9; 10} und die Menge B = {1; 3; 4; 5; 8; 10}.

Die Menge B umfasst alle Elemente der Ergebnismenge S={1; 2; 3; 4; 5; 6; 7; 8; 9; 10}, die nicht in der Menge B={1; 3; 4; 5; 8; 10} sind,
also B = {2; 6; 7; 9}

Mengen-Operationen Wahrscheinlichkeit

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Ein Glücksrad wie rechts abgebildet wird einmal gedreht. Bestimme die Wahrscheinlichkeit, dass die Zahl des gewählten Sektors durch 5 teilbar ist oder der Hintergrund dieses Sektors eingefärbt ist.

Lösung einblenden

Gegeben sind ja die Ergebnismenge S={1; 2; 3; 4; 5; 6; 7; 8} und die Mengen A = {1; 2; 6; 7} und B = {5}.

Die Menge A B umfasst alle Elemente der Ergebnismenge S={1; 2; 3; 4; 5; 6; 7; 8}, die in der Menge A={1; 2; 6; 7} oder in der Menge B={5} sind,
also A B = {1; 2; 5; 6; 7}

Da alle Elemente aus S gleich wahrscheinlich sind, kann man nun die gesuchte Wahrscheinlichkeit über die Anzahl der Elemente der Mengen bestimmen:

P( A B ) = | A B | |S| = 5 8

Mengen-Operationen Anwendungen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Bestimme alle Sektoren, deren Zahl durch 3 teilbar ist und deren Hintergrund eingefärbt ist.

Lösung einblenden

Gegeben sind ja die Ergebnismenge S={1; 2; 3; 4; 5; 6; 7} und die Mengen A = {3; 7} und B = {3; 6}.

Die Menge A B umfasst alle Elemente der Ergebnismenge S={1; 2; 3; 4; 5; 6; 7}, die sowohl in der Menge A={3; 7}, als auch in der Menge B={3; 6} sind,
also A B = {3}

Vierfeldertafel mit Anzahlen

Beispiel:

In der angezeigten Vierfeldertafel sind in jeder Zelle Anzahlen. Vervollständige die Vierfeldertafel.

Lösung einblenden

In der 2. Zeile sind bereits zwei Werte bekannt, und da wir wissen, dass die weiße Zelle rechts immer die Summe der beiden inneren Zellen ist, können wir folgende Gleichung aufstellen:

54 + H( A B ) = 166

Somit gilt: H( A B ) = 166 - 54 = 112

  B B  
A 25  
A 54112166
  193 

In der 1. Spalte sind bereits zwei Werte bekannt, und da wir wissen, dass die weiße Zelle unten immer die Summe der beiden inneren Zellen darüber ist, können wir folgende Gleichung aufstellen:

25 + 54 = H(B)

Somit gilt: H(B) = 25 + 54 = 79

  B B  
A 25  
A 54112166
 79193 

In der 2. Spalte sind bereits zwei Werte bekannt, und da wir wissen, dass die weiße Zelle unten immer die Summe der beiden inneren Zellen darüber ist, können wir folgende Gleichung aufstellen:

H(A ∩ B ) + 112 = 193

Somit gilt: H(A ∩ B ) = 193 - 112 = 81

  B B  
A 2581 
A 54112166
 79193 

In der 1. Zeile sind bereits zwei Werte bekannt, und da wir wissen, dass die weiße Zelle rechts immer die Summe der beiden inneren Zellen ist, können wir folgende Gleichung aufstellen:

25 + 81 = H(A)

Somit gilt: H(A) = 25 + 81 = 106

  B B  
A 2581106
A 54112166
 79193 

In der 3. Zeile sind bereits zwei Werte bekannt, und da wir wissen, dass die weiße Zelle rechts immer die Summe der beiden inneren Zellen ist, können wir folgende Gleichung aufstellen:

79 + 193 = H(B + B )

Somit gilt: H(B + B ) = 79 + 193 = 272

  B B  
A 2581106
A 54112166
 79193272

Somit ist die Vierfeldertafel komplett ausgefüllt.

Vierfeldertafel mit Wahrscheinlichkeiten

Beispiel:

In der angezeigten Vierfeldertafel stehen in jeder Zelle Wahrscheinlichkeiten. Vervollständige die Vierfeldertafel.

Lösung einblenden

Als erstes tragen wir rechts unten die Summe P(A)+P( A ) = P(B)+P( B ) = 1 ein, schließlich ist die Wahrscheinlichkeit, dass A gilt oder dass A gilt 100%.

  B B  
A  0,20,23
A  0,4 
   1

In der 1. Zeile sind bereits zwei Werte bekannt, und da wir wissen, dass die weiße Zelle rechts immer die Summe der beiden inneren Zellen ist, können wir folgende Gleichung aufstellen:

P(A ∩ B) + 0.2 = 0.23

Somit gilt: P(A ∩ B) = 0.23 - 0.2 = 0.03

  B B  
A 0,030,20,23
A  0,4 
   1

In der 2. Spalte sind bereits zwei Werte bekannt, und da wir wissen, dass die weiße Zelle unten immer die Summe der beiden inneren Zellen darüber ist, können wir folgende Gleichung aufstellen:

0.2 + 0.4 = P( B )

Somit gilt: P( B ) = 0.2 + 0.4 = 0.6

  B B  
A 0,030,20,23
A  0,4 
  0,61

In der 3. Spalte sind bereits zwei Werte bekannt, und da wir wissen, dass die weiße Zelle unten immer die Summe der beiden inneren Zellen darüber ist, können wir folgende Gleichung aufstellen:

0.23 + P( A ) = 1

Somit gilt: P( A ) = 1 - 0.23 = 0.77

  B B  
A 0,030,20,23
A  0,40,77
  0,61

In der 2. Zeile sind bereits zwei Werte bekannt, und da wir wissen, dass die weiße Zelle rechts immer die Summe der beiden inneren Zellen ist, können wir folgende Gleichung aufstellen:

P( A ∩ B) + 0.4 = 0.77

Somit gilt: P( A ∩ B) = 0.77 - 0.4 = 0.37

  B B  
A 0,030,20,23
A 0,370,40,77
  0,61

In der 3. Zeile sind bereits zwei Werte bekannt, und da wir wissen, dass die weiße Zelle rechts immer die Summe der beiden inneren Zellen ist, können wir folgende Gleichung aufstellen:

P(B) + 0.6 = 1

Somit gilt: P(B) = 1 - 0.6 = 0.4

  B B  
A 0,030,20,23
A 0,370,40,77
 0,40,61

Somit ist die Vierfeldertafel komplett ausgefüllt.

VFT Anwend. Häufigkeiten

Beispiel:

In einem Monat mit 30 Tagen gab es 15 Tage, an denen keine Schule war. Dummerweise gab es 9 Tage an denen Schule und schönes Wetter war und 6 Tage an denen keine Schule und kein schönes Wetter war. Wieviele schulfreie Tage mit schönem Wetter gab es?

Lösung einblenden

Um die Aufgabe mit einer Vierfeldertafel lösen zu können, müssen wir erst unsere Ergebnisse A und B definieren:

A : Schule

A : nicht Schule, also schulfrei

B : schönes Wetter

B : nicht schönes Wetter, also schlechtes Wetter

Hiermit ergibt sich folgende Vierfeldertafel:

  B
(schönes Wetter)
B
(schlechtes Wetter)
 
A
(Schule)
9  
A
(schulfrei)
 615
   30

Diese müssen wir nun vollends ausfüllen:


Rechenweg zum Ausfüllen der Vierfeldertafel einblenden

  B
(schönes Wetter)
B
(schlechtes Wetter)
 
A
(Schule)
9615
A
(schulfrei)
9615
 181230

Der gesuchte Wert, Anzahl schulfreie schöne Tage, ist also 9.

VFT Anwend. prozentual (leichter)

Beispiel:

Mit der Arbeit des Regierungschefs eines Staates sind von den Anhängern seiner eigenen Partei, deren Anteil 28% der Bevölkerung ausmacht, 54% zufrieden. Bei denen, die aber keine Anhängern dessen Partei sind, liegen die Zustimmungswerte nur bei 21%. Wie viel Prozent der Bevölkerung sind insgesamt mit der Arbeit des Regierungschefs zufrieden?

Lösung einblenden

Um die Aufgabe mit einer Vierfeldertafel lösen zu können, müssen wir erst unsere Ergebnisse A und B definieren:

A : eigene Partei

A : nicht eigene Partei, also andere Partei

B : zufrieden

B : nicht zufrieden, also unzufrieden

Hiermit ergibt sich folgende Vierfeldertafel:

  B
(zufrieden)
B
(unzufrieden)
 
A
(eigene Partei)
  0,28
A
(andere Partei)
   
    

Diese müssen wir nun vollends ausfüllen:


Als erstes tragen wir rechts unten die Summe P ( A ) + P ( A ) = P ( B ) + P ( B ) = 1 ein, schließlich ist die Wahrscheinlichkeit, dass A gilt oder dass A gilt 100%.

Dann tragen wir alle direkt aus dem Text entnehmbaren und die dadurch berechenbaren Wahrscheinlichkeiten in die Vierfeldertafel ein.

  B
(zufrieden)
B
(unzufrieden)
 
A
(eigene Partei)
  0,28
A
(andere Partei)
  0,72
   1

Aus der Information von der Teilgruppe mit "eigene Partei" sind es 54% kann man die Wahrscheinlichkeit
P ( A B ) = 0,28 0,54 = 0,1512 berechnen.

  B
(zufrieden)
B
(unzufrieden)
 
A
(eigene Partei)
0,1512 0,28
A
(andere Partei)
  0,72
   1

Aus der Information von der Teilgruppe mit "andere Partei" sind es 21% kann man die Wahrscheinlichkeit
P ( A B ) = 0,72 0,21 = 0,1512 berechnen.

  B
(zufrieden)
B
(unzufrieden)
 
A
(eigene Partei)
0,1512 0,28
A
(andere Partei)
0,1512 0,72
   1

Jetzt können wir wieder die restlichen Wahrscheinlichkeiten einfach mit der Vierfeldertafel berechnen:

  B
(zufrieden)
B
(unzufrieden)
 
A
(eigene Partei)
0,15120,12880,28
A
(andere Partei)
0,15120,56880,72
 0,30240,69761

Der gesuchte Wert, Zustimmungsquote insgesamt, ist also 0.3024 = 30.24%.

VFT Anwend. prozentual (schwerer)

Beispiel:

In einer groß angelegten Umfrage bezeichneten sich 17% als Fußballfans. Weibliche Fußballfans waren nur 4,59% der Befragten. 38% der Befragten, die keine Fußballfans waren, waren männlich. Wie hoch ist der Prozentsatz der weiblichen Befragten unter allen Befragten?

Lösung einblenden

Um die Aufgabe mit einer Vierfeldertafel lösen zu können, müssen wir erst unsere Ergebnisse A und B definieren:

A : Fußballfan

A : nicht Fußballfan, also kein Fan

B : weiblich

B : nicht weiblich, also männlich

Hiermit ergibt sich folgende Vierfeldertafel:

  B
(weiblich)
B
(männlich)
 
A
(Fußballfan)
0,0459 0,17
A
(kein Fan)
   
    

Diese müssen wir nun vollends ausfüllen:


Als erstes tragen wir rechts unten die Summe P ( A ) + P ( A ) = P ( B ) + P ( B ) = 1 ein, schließlich ist die Wahrscheinlichkeit, dass A gilt oder dass A gilt 100%.

Dann tragen wir alle direkt aus dem Text entnehmbaren und die dadurch berechenbaren Wahrscheinlichkeiten in die Vierfeldertafel ein.

  B
(weiblich)
B
(männlich)
 
A
(Fußballfan)
0,04590,12410,17
A
(kein Fan)
  0,83
   1

Aus der Information von der Teilgruppe mit "kein Fan" sind es 38% kann man die Wahrscheinlichkeit
P ( A B ) = 0,83 0,38 = 0,3154 berechnen.

  B
(weiblich)
B
(männlich)
 
A
(Fußballfan)
0,04590,12410,17
A
(kein Fan)
 0,31540,83
   1

Jetzt können wir wieder die restlichen Wahrscheinlichkeiten einfach mit der Vierfeldertafel berechnen:

  B
(weiblich)
B
(männlich)
 
A
(Fußballfan)
0,04590,12410,17
A
(kein Fan)
0,51460,31540,83
 0,56050,43951

Der gesuchte Wert, der Prozentsatz weiblicher Befragter, ist also 0.5605 = 56.05%.

bedingte Wahrsch. (nur Zahlen)

Beispiel:

Gegeben ist die vollständige Vierfeldertafel. Berechne die bedingte Wahrscheinlichkeit P B ( A ) .

  B B  
A 32159191
A 74174248
 106333439

Lösung einblenden

P B ( A ) bedeutet die Wahrscheinlichkeit für A unter der Vorraussetzung, dass B bereits eingetroffen ist.

Wir müssen also beim Baumdiagramm zuerst ( - also links - ) die Wahrscheinlichkeiten, ob B gilt oder nicht, abtragen:

(Danach geht's dann ja - je nach Ausgang von B - mit unterschiedlichen bedingten Wahrscheinlichkeiten für A weiter.)

= 106 439
= 333 439
=x
= 32 439
= 74 439
= 159 439
= 174 439

Wenn man die bekannten Werte der Vierfeldertafel ins Baumdiagramm einträgt, so erkennt man folgende Gleichung:
P ( B ) P B ( A ) = P ( B A ) | : P ( B )

P B ( A ) = P( B A ) P( B )

oder hier im speziellen:
106 439 x = 74 439 = |:106 ⋅439
also
P B ( A ) = x = 74 106 ≈ 0,6981

bedingte Wahrsch. (nur Prozente)

Beispiel:

Gegeben ist die vollständige Vierfeldertafel. Berechne die bedingte Wahrscheinlichkeit P A ( B ) .

  B B  
A 0,550,040,59
A 0,240,170,41
 0,790,211

Lösung einblenden

P A ( B ) bedeutet die Wahrscheinlichkeit für B unter der Vorraussetzung, dass A bereits eingetroffen ist.

Wir müssen also beim Baumdiagramm zuerst ( - also links - ) die Wahrscheinlichkeiten, ob A gilt oder nicht, abtragen:

(Danach geht's dann ja - je nach Ausgang von A - mit unterschiedlichen bedingten Wahrscheinlichkeiten für B weiter.)

=0,59
=0,41
=x
=0,55
=0,04
=0,24
=0,17

Wenn man die bekannten Werte der Vierfeldertafel ins Baumdiagramm einträgt, so erkennt man folgende Gleichung:
P ( A ) P A ( B ) = P ( A B ) | : P ( A )

P A ( B ) = P( A B ) P( A )

oder hier im speziellen:
0,59x = 0,04 = |:0,59
also
P A ( B ) = x = 0,04 0,59 ≈ 0,0678

bedingte Wahrsch. Anwendungen

Beispiel:

Ein Marktforschungsinstitut untersucht die Verbreitung einer Handy-App und kommt dabei zu folgenden Ergebnissen. Insgesamt ist die App auf 38,74% aller Smartphones installiert. Auf den iPhones ist sie sogar auf 46% der Geräte installiert. Bei der Untersuchung waren 34% aller Smartphones iPhones. Ein Bekannter erzählt, dass er die App installiert hat. Wie groß ist dann die Wahrscheinlichkeit, dass dieser ein iPhones hat?

Lösung einblenden

Um die Aufgabe mit einer Vierfeldertafel lösen zu können, müssen wir erst unsere Ergebnisse A und B definieren:

A : iPhone

A : nicht iPhone, also anderes Smartphone

B : installiert

B : nicht installiert, also nicht installiert

Hiermit ergibt sich folgende Vierfeldertafel:

  B
(installiert)
B
(nicht installiert)
 
A
(iPhone)
  0,34
A
(anderes Smartphone)
   
 0,3874  

Diese müssen wir nun vollends ausfüllen:


Als erstes tragen wir rechts unten die Summe P ( A ) + P ( A ) = P ( B ) + P ( B ) = 1 ein, schließlich ist die Wahrscheinlichkeit, dass A gilt oder dass A gilt 100%.

Dann tragen wir alle direkt aus dem Text entnehmbaren und die dadurch berechenbaren Wahrscheinlichkeiten in die Vierfeldertafel ein.

  B
(installiert)
B
(nicht installiert)
 
A
(iPhone)
  0,34
A
(anderes Smartphone)
  0,66
 0,38740,61261
=0,34
iPhone
=0,66
anderes Smartphone
=0,46
installiert
nicht installiert
installiert
nicht installiert
=0,1564

Mit Hilfe des Baumdiagramms kann man aus der Information
von der Teilgruppe mit "iPhone" sind es 46%, also P A ( B ) ,
die Wahrscheinlichkeit
P ( A B ) = P ( A ) P A ( B ) = 0,34 0,46 = 0,1564
berechnen.

  B
(installiert)
B
(nicht installiert)
 
A
(iPhone)
0,1564 0,34
A
(anderes Smartphone)
  0,66
 0,38740,61261

Jetzt können wir wieder die restlichen Wahrscheinlichkeiten einfach mit der Vierfeldertafel berechnen:

  B
(installiert)
B
(nicht installiert)
 
A
(iPhone)
0,15640,18360,34
A
(anderes Smartphone)
0,2310,4290,66
 0,38740,61261

Gesucht ist ja "die Wahrscheinlichkeit. dass ein Handy mit der App ein iPhone ist", also die Wahrscheinlichkeit für A (iPhone) unter der Vorraussetzung, dass B (installiert) bereits eingetroffen ist - kurz P B ( A ) .

Um diese Wahrscheinlichkeit (bzw. prozentualer Anteil) zu bestimmmen, müssen wir nun das Baumdiagramm anders rum zeichnen. Das ist ja aber kein Problem, weil wir bereits die fertige Vierfeldertafel ausgefüllt haben.

Wir müssen also beim Baumdiagramm zuerst ( - also links - ) die Wahrscheinlichkeiten, ob B (installiert) gilt oder nicht, abtragen:

(Danach geht's dann ja - je nach Ausgang von B (installiert) - mit unterschiedlichen bedingten Wahrscheinlichkeiten für A (iPhone) weiter.)

=0,3874
installiert
=0,6126
nicht installiert
=x
iPhone
anderes Smartphone
iPhone
anderes Smartphone
=0,1564
=0,231
=0,1836
=0,429

Wenn man die bekannten Werte der Vierfeldertafel ins Baumdiagramm einträgt, so erkennt man folgende Gleichung:
P ( B ) P B ( A ) = P ( B A ) | : P ( B )

P B ( A ) = P( B A ) P( B )

oder hier im speziellen:
0,3874x = 0,1564 = |:0,3874
also
P B ( A ) = x = 0,1564 0,3874 ≈ 0,4037


Der gesuchte Wert (die Wahrscheinlichkeit. dass ein Handy mit der App ein iPhone ist) ist also 0,4037 = 40,37%.

Stochast. Unabhängigkeit Anwendungen

Beispiel:

In der Jahrgangstufe der 10-Klässler müssen die 100 Schülerinnen und Schüler ihre Kurse für die Kurstufe wählen. Jeder muss entweder Mathe Leistungsfach oder Mathe Basisfach wählen. Von den Mädchen wählen 24 das Leistungsfach. 24 von den insgesamt 40 Basisfachwahlen kommen von den Jungs. Vervollständige die Vierfeldertafel und entscheide damit, ob die beiden Ereignisse Geschlecht und Mathewahlen stochastisch unabhängig sind.

Lösung einblenden

Um die Aufgabe mit einer Vierfeldertafel lösen zu können, müssen wir erst unsere Ergebnisse A und B definieren:

A : Mädchen

A : nicht Mädchen, also Jungs

B : Leistungsfach

B : nicht Leistungsfach, also Basisfach

Hiermit ergibt sich folgende Vierfeldertafel:

  B
(Leistungsfach)
B
(Basisfach)
 
A
(Mädchen)
24  
A
(Jungs)
 24 
  40100

Diese müssen wir nun vollends ausfüllen:


Rechenweg zum Ausfüllen der Vierfeldertafel einblenden

  B
(Leistungsfach)
B
(Basisfach)
 
A
(Mädchen)
241640
A
(Jungs)
362460
 6040100

Um zu überprüfen, ob die beiden Ereignisse A (Mädchen) und B (Leistungsfach) stochatisch unabhängig sind, müssen wir die absoluten Zahlen zuerst in relative Häufigkeiten umwandeln. Dazu teilen wir einfach alle Zellen durch den Gesamtwert in der rechten unteren Zelle: 100. und runden diese auf drei Stellen hinter dem Komma. Wir erhalten so erhalten:

  B B  
A 0,240,160,4
A 0,360,240,6
 0,60,41

Jetzt können wir P(A)=0.4 mit P(B)=0.6 multiplizieren um zu überprüfen, ob dieses Produkt ungefähr den gleichen Wert hat wie
P(A ∩ B)=0.24, also:

P(A) ⋅ P(B) = 0.4 ⋅ 0.6 = 0.24 = 0.24 = P(A ∩ B),
A und B sind also stochastisch unabhängig.

Stochast. Unabhängigkeit rückwärts

Beispiel:

Vervollständige die Vierfeldertafel so, dass die beiden Ereignisse A und B stochastisch unabhängig sind.

Lösung einblenden

Als erstes tragen wir rechts unten die Summe P ( A ) + P ( A ) = P ( B ) + P ( B ) = 1 ein, schließlich ist die Wahrscheinlichkeit, dass A gilt oder dass A gilt 100%.

  B B  
A  0,2322 
A    
 0,14 1

In der 3. Zeile sind bereits zwei Werte bekannt, und da wir wissen, dass die weiße Zelle rechts immer die Summe der beiden inneren Zellen ist, können wir folgende Gleichung aufstellen:

0.14 + P( B ) = 1

Somit gilt: P( B ) = 1 - 0.14 = 0.86

  B B  
A  0,2322 
A    
 0,140,861

Weil wir ja wissen, dass die beiden Ereignisse A und B (und damit auch A und B ) stochastisch unabhängig sind, muss gelten:

P ( A ) P ( B ) = P ( A B )

also P ( A ) ⋅ 0.86 = 0.2322 |: 0.86

somit gilt:

P ( A ) = 0.2322 0.86 = 0.27

  B B  
A  0,23220,27
A    
 0,140,861

Jetzt können wir einfach mit den Summen die Vierfeldertafel vollends wie üblich füllen.

  B B  
A 0,03780,23220,27
A 0,10220,62780,73
 0,140,861