Klasse 5
Klasse 6
Klasse 7
Klasse 8
Klasse 9
Klasse 10
Fit für die Oberstufe
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Bruch mal Zahl (einfach)
Beispiel:
Berechne.
⋅ 5
Einen Bruch multipliziert man mit einer Zahl, in dem man die Zahl mit dem Zähler multipliziert:
=
=
Bruch mal Zahl (kürzen)
Beispiel:
Berechne: ⋅
Gib den Bruch vollständig gekürzt ein!
Man erkennt, dass 10 und 6 im Nenner beide 2 als Teiler haben.
Wir können also diagonal mit 2 kürzen:
⋅
Bruch mal/durch Zahl (rückwärts einfach)
Beispiel:
Berechne.
⋅ ⬜ =
Einen Bruch multipliziert man mit einer Zahl, in dem man die Zahl mit dem Zähler multipliziert:
=
Da die Nenner gleich sind, müssen auch die Zähler gleich sein:
7 ⋅ ⬜ = 63
⬜ = 9
Bruch mal/durch Zahl (rückwärts schwerer)
Beispiel:
Berechne.
:
Einen Bruch dividiert man durch eine Zahl, in dem man die Zahl in den Nenner reinmultipliziert:
=
Leider sind jetzt weder Zähler noch Nenner bei den Brüchen links und rechts vom Gleichheitszeichen gleich.Wenn man den Bruch rechts jedoch mit 7 erweitert würden die Zähler gleich werden:
=
Da jetzt die Zähler gleich sind, müssen auch die Nenner gleich sein:
⬜ ⋅
⬜ = 4
Multiplizieren (einfach)
Beispiel:
Berechne.
⋅
= ⋅
Zwei Brüche multipliziert man, indem man die beiden Zähler und die beiden Nenner jeweils miteinander multipliziert:
=
=
Brüche multiplizieren
Beispiel:
Multipliziere die Brüche: ⋅
Zuletzt wird das Ergebnis (falls möglich) gekürzt:
Multiplizieren (mit kürzen)
Beispiel:
Berechne. Kürze dabei bereits vor dem Multiplizieren:
Der Bruch muss vollständig gekürzt eingegeben werden!
Zwei Brüche multipliziert man, in dem man die beiden Zähler und die beiden Nenner jeweils miteinander multipliziert:
=
=
Bevor wir jetzt aber die Produkte im Zähler und Nenner ausmultiplizieren, sollten wir erst mal schauen, ob wir nicht kürzen können:
=
Und da sowohl 18 als auch 15 die 3 als Teiler haben, können wir also diagonal mit 3 kürzen:
=
Und da sowohl 11 als auch 11 die 11 als Teiler hat, können wir also auch diagonal mit 11 kürzen:
=
=
=
Anteile von Brüchen
Beispiel:
Berechne: ein Drittel von
Gib den Bruch vollständig gekürzt ein!
ein Drittel von
oder von
rechnet man als ⋅ .
=
=
Bruch von Bruch (graphisch)
Beispiel:
(Alle Sektoren sind gleich groß)
Wie groß ist der Anteil am Kreis, wenn man der gefärbten Fläche nimmt:
Der Bruch muss vollständig gekürzt eingegeben werden!
Zuerst zählen wir die Anzahl aller Sektoren des Kreises als Nenner und die Anzahl der eingefärbten als Zähler und erhalten so als den im Kreis dargestellten Bruch.
Wir suchen also den Anteil der von entspricht.
Dazu rechnen wir:
=
=
=
Multipl. gemischte Brüche (mit kürzen)
Beispiel:
Berechne. Kürze dabei bereits vor dem Multiplizieren:
⋅
Der Bruch muss vollständig gekürzt eingegeben werden!
Da wir die Brüche verrechnen möchten, sollten wir die gemischten Brüche unbedingt erstmal in echte Brüche umwandeln:
= = = =
= = = =
Zwei Brüche multipliziert man, in dem man die beiden Zähler und die beiden Nenner jeweils miteinander multipliziert:
= ⋅
= ⋅
=
Bevor wir jetzt aber die Produkte im Zähler und Nenner ausmultiplizieren, sollten wir erst mal schauen, ob wir nicht kürzen können:
=
Und da sowohl 15 als auch 5 die 5 als Teiler haben, können wir also diagonal mit 5 kürzen:
=
=
3 Brüche multiplizieren
Beispiel:
Berechne:
Gib den Bruch vollständig gekürzt ein!
Wir schauen nun, ob wir diagonal kürzen können:
= ⋅ ⋅
=
= ⋅ ⋅
=
= ⋅ ⋅
=
= ⋅ ⋅
=
jetzt einfach noch die Brüche multiplizieren
=
=