Klasse 5
Klasse 6
Klasse 7
Klasse 8
Klasse 9
Klasse 10
Fit für die Oberstufe
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Prozentuale Veränderung
Beispiel:
Ordne der prozentualen Veränderung -2% den richtigen Faktor zu:
Eine prozentuale Veränderung um -2% bedeutet doch, dass aus den ursprünglichen 100%
100% -2%, also 98% gemacht werden.
Um diese 98% wieder als normale Zahl umzurechnen, teilen wir sie einfach durch 98:100 = 0,98.
98% sind also das 0,98-fache von 100%
Somit entspricht eine Veränderung um 2% einer Multiplikation mit den Faktor 0,98.
Erhöhung/Senkung um Faktor
Beispiel:
Ordne dem Faktor 1,06 die richtige prozentuale Veränderung zu:
Eine Multiplikation mit den Faktor 1,06 bedeutet doch, dass aus den ursprünglichen 100%
100% ⋅1,06, also 106% gemacht werden.
Und diese 106% sind ja 6% mehr als 100%
Somit entspricht eine Multiplikation mit den Faktor 1,06 einer prozentuale Veränderung um + 6%.
Prozentwert - prozentuale Änderung
Beispiel:
Wenn man 49 um 0,5% vermindert, so erhält man ...
Für die Verminderung multipliziert man den Prozentsatz als Dezimalzahl (0.005) mit dem Grundwert (49):
also 0.005 ⋅ 49 = 0.245 (nur Verminderung)
Diesen muss man vom ursprünglichen Wert (49) abziehen, so dass der gesuchte verminderte Wert 49 - 0.245 = 48.76 ist.
Schneller geht's wenn man die 49 einfach mit (1
49 ⋅ 0.995 = 48.76.
Berechnung des Grundwertes
Beispiel:
27 kg entsprechen 150% sind. Wie groß war der Grundwert (100%) ?
150% sind 27 kg
Beides durch 15 dividieren
also gilt 10% ≙ kg = 1,8 kg
Beides mit 10 multiplizieren
Für den Grundwert gilt dann: 100% ≙ 18kg
Oder schneller:
G = kg = 18kg
Prozentwert bestimmen
Beispiel:
Bestimme den Prozentwert: 21% von 51.
Man multipliziert den Prozentsatz als Dezimalzahl (0,21) mit dem Grundwert (51):
also 0,21 ⋅ 51 = 10,71 =
10,71
Berechnung des Prozentsatzes
Beispiel:
Herr Uklatsch erzählt stolz, dass er nur noch 85kg wiegt. Vor einem halben Jahr brachte er noch 95kg auf die Waage. Wie viel Prozent seines Gewichts hat er abgenommen?
Man teilt den Prozentwert (10) durch den Grundwert (95):
also 10:95 ≈ 0,1053 ≈
10,5%
summierter Grundwert, Anwendung
Beispiel:
Ein Jeans wurde um 40% reduziert und kostet nun nur noch 48. Wieviel hat sie ursprünglich gekostet?
Da der Grundwert um 40% verkleinert wurde, entspricht der Rest von 48 eben gerade 100%-40% = 60 %.
60% sind also 48
Beides durch 6 dividieren
also gilt 10% ≙ = 8
Beides mit 10 multiplizieren
Für den Grundwert gilt dann: 100% ≙ 80
oder als kürzere Rechnung...
Grundwert G= = = 80
summierter Prozentwert, Anwendungen
Beispiel:
Ein Caterer hat für ein Event 250 Essen vorbereitet. Da fällt ihm ein, dass er ja auch noch zusätzliche Essen für die Vegetarier zubereiten muss. Erfahrunsgemäß kommen auf 100 "Fleischesser" 16 Vegetarier. Wie viele Essen muss er insgesamt zubereiten?
Man multipliziert den Prozentsatz als Dezimalzahl (0,16) mit dem Grundwert (250) und erhält so den
Prozentwert 0,16 ⋅ 250 = 40.
Diesen muss man nun
noch zum Grundwert addieren und erhält so den gesuchten Wert 250 + 40 = 290.
Schneller geht's wenn man die 250 einfach mit (1
250 ⋅ 1,16 = 290.
summierter Grundwert, Anwendung
Beispiel:
Ein Zimmermann stellt einem Kunden eine Rechnung über 1666€ aus. Wieviel darf er für sich behalten, nachdem er die Mehrwertsteuer von 19% an das Finanzamt abgeführt hat?
Da der Grundwert um 19% vergrößert wurde, entspricht der vergrößerte Wert von 1666 eben gerade 100% + 19% = 119 %.
119% sind also 1666
Beides durch 119 dividieren
also gilt 1% ≙ = 14
Beides mit 100 multiplizieren
Für den Grundwert gilt dann: 100% ≙ 1400
oder als kürzere Rechnung...
Grundwert G= = = 1400
Gleichungen mit Prozenten
Beispiel:
Herr Schlauberger kauft nach einem Tipp 50 Aktien der Firma TechnoMath. Nach ein paar Tagen sinkt der Kurs der Aktie um 7%. Herr Schlauberger möchte den günstigen Kurs nützen und kauft gleich nochmal 100 Aktien. Als der Kurs schließlich nochmal um weitere 6% sinkt kauft er gleich nochmal 100 Stück. Insgesamt hat Herr Schlauberger nun 13825,2€ ausgegeben. Wie viel kostete eine Aktie bei seinem ersten Kauf?
| = | |||
| = | |: | ||
| = |
L={ }
