- Klasse 5-6
- Klasse 7-8
- Klasse 9-10
nach Aufgabentypen suchen
Aufgabentypen anhand von Beispielen durchstöbern
Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen
Thaleskreis + gleichschenkl. Dreieck 2
Beispiel:
M liegt genau in der Mitte der Dreiecksseite AB. Bestimme die fehlende Winkelweite φ.
Der Winkel β liegt mit dem rechten Winkel und 23° an einer Seite, also gilt
β +90° + 23° = 180°, oder β = 90° - 23° =67° .
Am blauen Thaleskreis erkennt man, dass die Strecken MD und MA gleich lang sind, also ist MDA
ein gleichschenkliges Dreieck und somit sind α und γ gleich groß, es gilt also:
α + γ + β = 2⋅α +
β = 2⋅α + 67°=180°, also 2⋅α = 113°
, somit α = 56.5°.
Wegen des Thaleskreises muss der Winkel in D (γ+δ)=90° sein. Also gilt:
α + 90° + ε = 180°, also 56.5° + 90° + ε = 180°
oder ε = 90° - 56.5° = 33.5°
Weil die Höhe auf C genau in der Mitte auf AB trifft, ist das große Dreieck ABC symmetrisch
und somit gleichschenklig. Das bedeutet, dass α und (ε+φ)
gleich groß sein müssen.
Es gilt somit: α = (ε+φ),
also 56.5° = 33.5°+φ, oder φ=56.5° -33.5°.
φ = 23°
Winkel im KoSy konstruieren (<180°)
Beispiel:
Zeichne die Punkte A(7|5) und B(0|5) in ein Koordinatensystem.
Zeichne den Winkel α = 79° so, dass A der Scheitel ist und B auf dem ersten Schenkel liegt.
Der zweite Schenkel schneidet die x-Achse im Punkt S. Lies die Koordinaten dieses Schnittpunkts S ab.
Wenn man die Punkte A und B in das Koordinatensystem eingezeichnet hat, muss man darauf achten, dass man den 2. Schenkel des Winkels im positiven Drehsinn (also gegen den Uhrzeigersinn) einzeichnet.
Dann erhält man den Schnittpunkt mit der x-Achse bei S(6|0).
Winkel im KoSy konstruieren
Beispiel:
Zeichne die Punkte A(0|3) und B(4|4) in ein Koordinatensystem.
(Zeichne dabei die y-Achse in die Mitte des KoSy, so dass die x-Achse mindestens von -5 bis 5 zu sehen ist.)
Zeichne den Winkel α = 222° so, dass A der Scheitel ist und B auf dem ersten Schenkel liegt.
Der zweite Schenkel schneidet die x-Achse im Punkt S. Lies die Koordinaten dieses Schnittpunkts S ab.
Wenn man die Punkte A und B in das Koordinatensystem eingezeichnet hat, muss man darauf achten, dass man den 2. Schenkel des Winkels im positiven Drehsinn (also gegen den Uhrzeigersinn) einzeichnet.
Dann erhält man den Schnittpunkt mit der x-Achse bei S(-2|0).