Aufgabenbeispiele von Vier-Felder-Tafel
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Mengen-Operationen elementar
Beispiel:
Gegeben ist die Ergebnismenge S={1; 2; 3; 4; 5; 6; 7; 8; 9; 10} und die Menge A = {2; 4; 5; 6; 7; 8; 9}. Bestimme .
Gegeben sind ja die Ergebnismenge S={1; 2; 3; 4; 5; 6; 7; 8; 9; 10} und die Menge A = {2; 4; 5; 6; 7; 8; 9}.
Die Menge
umfasst alle Elemente der Ergebnismenge S={1; 2; 3; 4; 5; 6; 7; 8; 9; 10},
die nicht in der Menge A={2; 4; 5; 6; 7; 8; 9} sind,
also
= {1; 3; 10}
Mengen-Operationen (allg.)
Beispiel:
Gegeben ist die Ergebnismenge S={1; 2; 3; 4; 5; 6; 7; 8; 9; 10} und die Mengen A = {4; 6; 7} und B = {5; 7; 9; 10}. Bestimme
Gegeben sind ja die Ergebnismenge S={1; 2; 3; 4; 5; 6; 7; 8; 9; 10} und die Mengen A = {4; 6; 7} und B = {5; 7; 9; 10}.
Um die Menge
Die Menge
umfasst alle Elemente der Ergebnismenge S={1; 2; 3; 4; 5; 6; 7; 8; 9; 10},
die nicht in der Menge A={4; 6; 7} sind,
also
= {1; 2; 3; 5; 8; 9; 10}
Die Menge
umfasst alle Elemente der Ergebnismenge S={1; 2; 3; 4; 5; 6; 7; 8; 9; 10},
die nicht in der Menge B={5; 7; 9; 10} sind,
also
= {1; 2; 3; 4; 6; 8}
Die Menge
also
Mengen-Operationen Wahrscheinlichkeit
Beispiel:
In einer Urne sind 7 Kugeln mit den Zahlen 1 bis 7 beschriftet. Es wird eine Kugel zufällig gezogen. Bestimme die Wahrscheinlichkeit, dass die Zahl dieser Kugel keine Primzahl und nicht größer als 5 ist.
Gegeben sind ja die Ergebnismenge S={1; 2; 3; 4; 5; 6; 7} und die Mengen A = {2; 3; 5; 7} und B = {1; 2; 3; 4; 5}.
Um die Menge
Die Menge
umfasst alle Elemente der Ergebnismenge S={1; 2; 3; 4; 5; 6; 7},
die nicht in der Menge A={2; 3; 5; 7} sind,
also
= {1; 4; 6}
Die Menge
also
Da alle Elemente aus S gleich wahrscheinlich sind, kann man nun die gesuchte Wahrscheinlichkeit über die Anzahl der Elemente der Mengen bestimmen:
P(
Mengen-Operationen Anwendungen
Beispiel:
In einer Urne sind 9 Kugeln mit den Zahlen 1 bis 9 beschriftet. Bestimme alle Kugeln deren Zahl keine Primzahl, aber höchstens die 5 ist.
Gegeben sind ja die Ergebnismenge S={1; 2; 3; 4; 5; 6; 7; 8; 9} und die Mengen A = {2; 3; 5; 7} und B = {1; 2; 3; 4; 5}.
Um die Menge
Die Menge
umfasst alle Elemente der Ergebnismenge S={1; 2; 3; 4; 5; 6; 7; 8; 9},
die nicht in der Menge A={2; 3; 5; 7} sind,
also
= {1; 4; 6; 8; 9}
Die Menge
also
Vierfeldertafel mit Anzahlen
Beispiel:
In der angezeigten Vierfeldertafel sind in jeder Zelle Anzahlen. Vervollständige die Vierfeldertafel.
In der 1. Zeile sind bereits zwei Werte bekannt, und da wir wissen, dass die weiße Zelle rechts immer die Summe der beiden inneren Zellen ist, können wir folgende Gleichung aufstellen:
47 + 195 = H(A)
Somit gilt: H(A) = 47 + 195 = 242
47 | 195 | 242 | |
243 | |||
216 |
In der 1. Spalte sind bereits zwei Werte bekannt, und da wir wissen, dass die weiße Zelle unten immer die Summe der beiden inneren Zellen darüber ist, können wir folgende Gleichung aufstellen:
47 + H( ∩ B) = 216
Somit gilt: H( ∩ B) = 216 - 47 = 169
47 | 195 | 242 | |
169 | 243 | ||
216 |
In der 3. Spalte sind bereits zwei Werte bekannt, und da wir wissen, dass die weiße Zelle unten immer die Summe der beiden inneren Zellen darüber ist, können wir folgende Gleichung aufstellen:
242 + 243 = H(B + )
Somit gilt: H(B + ) = 242 + 243 = 485
47 | 195 | 242 | |
169 | 243 | ||
216 | 485 |
In der 2. Zeile sind bereits zwei Werte bekannt, und da wir wissen, dass die weiße Zelle rechts immer die Summe der beiden inneren Zellen ist, können wir folgende Gleichung aufstellen:
169 + H( ∩ ) = 243
Somit gilt: H( ∩ ) = 243 - 169 = 74
47 | 195 | 242 | |
169 | 74 | 243 | |
216 | 485 |
In der 3. Zeile sind bereits zwei Werte bekannt, und da wir wissen, dass die weiße Zelle rechts immer die Summe der beiden inneren Zellen ist, können wir folgende Gleichung aufstellen:
216 + H( ) = 485
Somit gilt: H( ) = 485 - 216 = 269
47 | 195 | 242 | |
169 | 74 | 243 | |
216 | 269 | 485 |
Somit ist die Vierfeldertafel komplett ausgefüllt.
Vierfeldertafel mit Wahrscheinlichkeiten
Beispiel:
In der angezeigten Vierfeldertafel stehen in jeder Zelle Wahrscheinlichkeiten. Vervollständige die Vierfeldertafel.
Als erstes tragen wir rechts unten die Summe P(A)+P( ) = P(B)+P( ) = 1 ein, schließlich ist die Wahrscheinlichkeit, dass A gilt oder dass gilt 100%.
0,36 | 0,74 | ||
0,05 | |||
1 |
In der 1. Zeile sind bereits zwei Werte bekannt, und da wir wissen, dass die weiße Zelle rechts immer die Summe der beiden inneren Zellen ist, können wir folgende Gleichung aufstellen:
P(A ∩ B) + 0.36 = 0.74
Somit gilt: P(A ∩ B) = 0.74 - 0.36 = 0.38
0,38 | 0,36 | 0,74 | |
0,05 | |||
1 |
In der 1. Spalte sind bereits zwei Werte bekannt, und da wir wissen, dass die weiße Zelle unten immer die Summe der beiden inneren Zellen darüber ist, können wir folgende Gleichung aufstellen:
0.38 + 0.05 = P(B)
Somit gilt: P(B) = 0.38 + 0.05 = 0.43
0,38 | 0,36 | 0,74 | |
0,05 | |||
0,43 | 1 |
In der 3. Spalte sind bereits zwei Werte bekannt, und da wir wissen, dass die weiße Zelle unten immer die Summe der beiden inneren Zellen darüber ist, können wir folgende Gleichung aufstellen:
0.74 + P( ) = 1
Somit gilt: P( ) = 1 - 0.74 = 0.26
0,38 | 0,36 | 0,74 | |
0,05 | 0,26 | ||
0,43 | 1 |
In der 2. Zeile sind bereits zwei Werte bekannt, und da wir wissen, dass die weiße Zelle rechts immer die Summe der beiden inneren Zellen ist, können wir folgende Gleichung aufstellen:
0.05 + P( ∩ ) = 0.26
Somit gilt: P( ∩ ) = 0.26 - 0.05 = 0.21
0,38 | 0,36 | 0,74 | |
0,05 | 0,21 | 0,26 | |
0,43 | 1 |
In der 3. Zeile sind bereits zwei Werte bekannt, und da wir wissen, dass die weiße Zelle rechts immer die Summe der beiden inneren Zellen ist, können wir folgende Gleichung aufstellen:
0.43 + P( ) = 1
Somit gilt: P( ) = 1 - 0.43 = 0.57
0,38 | 0,36 | 0,74 | |
0,05 | 0,21 | 0,26 | |
0,43 | 0,57 | 1 |
Somit ist die Vierfeldertafel komplett ausgefüllt.
VFT Anwend. Häufigkeiten
Beispiel:
In einem Monat mit 31 Tagen gab es 11 Tage, an denen keine Schule war. Dummerweise gab es 9 Tage an denen Schule und schönes Wetter war und 6 Tage an denen keine Schule und kein schönes Wetter war. Wieviele schulfreie Tage mit schönem Wetter gab es?
Um die Aufgabe mit einer Vierfeldertafel lösen zu können, müssen wir erst unsere Ergebnisse A und B definieren:
: Schule
: nicht Schule, also schulfrei
: schönes Wetter
: nicht schönes Wetter, also schlechtes Wetter
Hiermit ergibt sich folgende Vierfeldertafel:
(schönes Wetter) |
(schlechtes Wetter) | ||
---|---|---|---|
(Schule) | 9 | ||
(schulfrei) | 6 | 11 | |
31 |
Diese müssen wir nun vollends ausfüllen:
Rechenweg zum Ausfüllen der Vierfeldertafel einblenden
In der 2. Zeile sind bereits zwei Werte bekannt, und da wir wissen, dass die weiße Zelle rechts immer die Summe der beiden inneren Zellen ist, können wir folgende Gleichung aufstellen:
H( ∩ B) + 6 = 11
Somit gilt: H( ∩ B) = 11 - 6 = 5
(schönes Wetter) |
(schlechtes Wetter) | ||
---|---|---|---|
(Schule) | 9 | ||
(schulfrei) | 5 | 6 | 11 |
31 |
In der 1. Spalte sind bereits zwei Werte bekannt, und da wir wissen, dass die weiße Zelle unten immer die Summe der beiden inneren Zellen darüber ist, können wir folgende Gleichung aufstellen:
9 + 5 = H(B)
Somit gilt: H(B) = 9 + 5 = 14
(schönes Wetter) |
(schlechtes Wetter) | ||
---|---|---|---|
(Schule) | 9 | ||
(schulfrei) | 5 | 6 | 11 |
14 | 31 |
In der 3. Spalte sind bereits zwei Werte bekannt, und da wir wissen, dass die weiße Zelle unten immer die Summe der beiden inneren Zellen darüber ist, können wir folgende Gleichung aufstellen:
H(A) + 11 = 31
Somit gilt: H(A) = 31 - 11 = 20
(schönes Wetter) |
(schlechtes Wetter) | ||
---|---|---|---|
(Schule) | 9 | 20 | |
(schulfrei) | 5 | 6 | 11 |
14 | 31 |
In der 1. Zeile sind bereits zwei Werte bekannt, und da wir wissen, dass die weiße Zelle rechts immer die Summe der beiden inneren Zellen ist, können wir folgende Gleichung aufstellen:
9 + H(A ∩ ) = 20
Somit gilt: H(A ∩ ) = 20 - 9 = 11
(schönes Wetter) |
(schlechtes Wetter) | ||
---|---|---|---|
(Schule) | 9 | 11 | 20 |
(schulfrei) | 5 | 6 | 11 |
14 | 31 |
In der 3. Zeile sind bereits zwei Werte bekannt, und da wir wissen, dass die weiße Zelle rechts immer die Summe der beiden inneren Zellen ist, können wir folgende Gleichung aufstellen:
14 + H( ) = 31
Somit gilt: H( ) = 31 - 14 = 17
(schönes Wetter) |
(schlechtes Wetter) | ||
---|---|---|---|
(Schule) | 9 | 11 | 20 |
(schulfrei) | 5 | 6 | 11 |
14 | 17 | 31 |
Somit ist die Vierfeldertafel komplett ausgefüllt.
(schönes Wetter) |
(schlechtes Wetter) | ||
---|---|---|---|
(Schule) | 9 | 11 | 20 |
(schulfrei) | 5 | 6 | 11 |
14 | 17 | 31 |
Der gesuchte Wert, Anzahl schulfreie schöne Tage, ist also 5.
VFT Anwend. prozentual (leichter)
Beispiel:
Schätzungen zufolge sind 4% der Lehrer Informatiklehrer. Von den anderen Lehrern nutzen 93% das MS-Office. Von den Informatik-Lehrern bevorzugen aber 87% ein anderes Office-Paket wie OpenOffice oder LibreOffice. Wie viel Prozent der Lehrer insgesamt nutzen nach diesen Schätzungen das MS-Office?
Um die Aufgabe mit einer Vierfeldertafel lösen zu können, müssen wir erst unsere Ergebnisse A und B definieren:
: Informatiklehrer
: nicht Informatiklehrer, also andere
: MS-Office
: nicht MS-Office, also anderes Office
Hiermit ergibt sich folgende Vierfeldertafel:
(MS-Office) |
(anderes Office) | ||
---|---|---|---|
(Informatiklehrer) | 0,04 | ||
(andere) | |||
Diese müssen wir nun vollends ausfüllen:
Als erstes tragen wir rechts unten die Summe + = + = 1 ein, schließlich ist die Wahrscheinlichkeit, dass gilt oder dass gilt 100%.
Dann tragen wir alle direkt aus dem Text entnehmbaren und die dadurch berechenbaren Wahrscheinlichkeiten in die Vierfeldertafel ein.
(MS-Office) |
(anderes Office) | ||
---|---|---|---|
(Informatiklehrer) | 0,04 | ||
(andere) | 0,96 | ||
1 |
Aus der Information von der Teilgruppe mit "Informatiklehrer" sind es
87% kann man die Wahrscheinlichkeit
=
0,04 ⋅
0,87 =
0,0348 berechnen.
(MS-Office) |
(anderes Office) | ||
---|---|---|---|
(Informatiklehrer) | 0,0348 | 0,04 | |
(andere) | 0,96 | ||
1 |
Aus der Information von der Teilgruppe mit "andere" sind es
93% kann man die Wahrscheinlichkeit
(MS-Office) |
(anderes Office) | ||
---|---|---|---|
(Informatiklehrer) | 0,0348 | 0,04 | |
(andere) | 0,8928 | 0,96 | |
1 |
Jetzt können wir wieder die restlichen Wahrscheinlichkeiten einfach mit der Vierfeldertafel berechnen:
(MS-Office) |
(anderes Office) | ||
---|---|---|---|
(Informatiklehrer) | 0,0052 | 0,0348 | 0,04 |
(andere) | 0,8928 | 0,0672 | 0,96 |
0,898 | 0,102 | 1 |
Der gesuchte Wert, Prozentsatz an MS-Office, ist also 0.898 = 89.8%.
VFT Anwend. prozentual (schwerer)
Beispiel:
Bei einer neuen Viruskrankkeit, geht man davon aus, dass 1,03% der Bevölkerung diese nicht überleben. In einem Land sind 95% der Bevölkerung nicht älter als 80 Jahre. Von den über 80-jährigen sterben sogar 11% an dieser Viruskrankheit. Wie groß ist die Wahrscheinlichkeit, dass ein zufällig ausgewählter Infizierter nicht älter als 80 ist und die Krankheit überlebt?
Um die Aufgabe mit einer Vierfeldertafel lösen zu können, müssen wir erst unsere Ergebnisse A und B definieren:
Hiermit ergibt sich folgende Vierfeldertafel:
(sterben) |
(überleben) | ||
---|---|---|---|
(über 80) | |||
(höchstens 80) | 0,95 | ||
0,0103 |
Diese müssen wir nun vollends ausfüllen:
Als erstes tragen wir rechts unten die Summe
Dann tragen wir alle direkt aus dem Text entnehmbaren und die dadurch berechenbaren Wahrscheinlichkeiten in die Vierfeldertafel ein.
(sterben) |
(überleben) | ||
---|---|---|---|
(über 80) | 0,05 | ||
(höchstens 80) | 0,95 | ||
0,0103 | 0,9897 | 1 |
Aus der Information von der Teilgruppe mit "über 80" sind es
11% kann man die Wahrscheinlichkeit
(sterben) |
(überleben) | ||
---|---|---|---|
(über 80) | 0,0055 | 0,05 | |
(höchstens 80) | 0,95 | ||
0,0103 | 0,9897 | 1 |
Jetzt können wir wieder die restlichen Wahrscheinlichkeiten einfach mit der Vierfeldertafel berechnen:
(sterben) |
(überleben) | ||
---|---|---|---|
(über 80) | 0,0055 | 0,0445 | 0,05 |
(höchstens 80) | 0,0048 | 0,9452 | 0,95 |
0,0103 | 0,9897 | 1 |
Der gesuchte Wert, die Wahrscheinlichkeit für unter 80 Jahre und Krankheit überleben, ist also 0.9452 = 94.52%.
bedingte Wahrsch. (nur Zahlen)
Beispiel:
Gegeben ist die vollständige Vierfeldertafel. Berechne die bedingte Wahrscheinlichkeit
| | ||
---|---|---|---|
| 101 | 96 | 197 |
| 31 | 183 | 214 |
132 | 279 | 411 |
Wir müssen also beim Baumdiagramm zuerst ( - also links - ) die Wahrscheinlichkeiten, ob
(Danach geht's dann ja - je nach Ausgang von
Wenn man die bekannten Werte der Vierfeldertafel ins Baumdiagramm einträgt, so erkennt man folgende Gleichung:
oder hier im speziellen:
also
bedingte Wahrsch. (nur Prozente)
Beispiel:
Gegeben ist die vollständige Vierfeldertafel. Berechne die bedingte Wahrscheinlichkeit
| | ||
---|---|---|---|
| 0,04 | 0,5 | 0,54 |
| 0,41 | 0,05 | 0,46 |
0,45 | 0,55 | 1 |
Wir müssen also beim Baumdiagramm zuerst ( - also links - ) die Wahrscheinlichkeiten, ob
(Danach geht's dann ja - je nach Ausgang von
Wenn man die bekannten Werte der Vierfeldertafel ins Baumdiagramm einträgt, so erkennt man folgende Gleichung:
oder hier im speziellen:
0,54 ⋅ x
= 0,5 = |:0,54
also
bedingte Wahrsch. Anwendungen
Beispiel:
Mit der Arbeit des Regierungschefs eines Staates sind von den Anhängern seiner eigenen Partei, deren Anteil 25% der Bevölkerung ausmacht, 63% zufrieden. Bei denen, die aber keine Anhängern dessen Partei sind, liegen die Zustimmungswerte nur bei 20%. Wie viel Prozent derjenigen, die mit der Arbeit des Regierungschefs zufrieden sind, sind auch Anhänger seiner Partei?
Um die Aufgabe mit einer Vierfeldertafel lösen zu können, müssen wir erst unsere Ergebnisse A und B definieren:
Hiermit ergibt sich folgende Vierfeldertafel:
(zufrieden) |
(unzufrieden) | ||
---|---|---|---|
(eigene Partei) | 0,25 | ||
(andere Partei) | |||
Diese müssen wir nun vollends ausfüllen:
Als erstes tragen wir rechts unten die Summe
Dann tragen wir alle direkt aus dem Text entnehmbaren und die dadurch berechenbaren Wahrscheinlichkeiten in die Vierfeldertafel ein.
(zufrieden) |
(unzufrieden) | ||
---|---|---|---|
(eigene Partei) | 0,25 | ||
(andere Partei) | 0,75 | ||
1 |
Mit Hilfe des Baumdiagramms kann man aus der Information
von der Teilgruppe mit "eigene Partei" sind es 63%, also
die Wahrscheinlichkeit
berechnen.
(zufrieden) |
(unzufrieden) | ||
---|---|---|---|
(eigene Partei) | 0,1575 | 0,25 | |
(andere Partei) | 0,75 | ||
1 |
Mit Hilfe des Baumdiagramms kann man aus der Information
von der Teilgruppe mit "andere Partei" sind es 20%, also
die Wahrscheinlichkeit
berechnen.
(zufrieden) |
(unzufrieden) | ||
---|---|---|---|
(eigene Partei) | 0,1575 | 0,25 | |
(andere Partei) | 0,15 | 0,75 | |
1 |
Jetzt können wir wieder die restlichen Wahrscheinlichkeiten einfach mit der Vierfeldertafel berechnen:
(zufrieden) |
(unzufrieden) | ||
---|---|---|---|
(eigene Partei) | 0,1575 | 0,0925 | 0,25 |
(andere Partei) | 0,15 | 0,6 | 0,75 |
0,3075 | 0,6925 | 1 |
Gesucht ist ja "der Anteil der Parteianhänger unter allen. die mit dem Regierungschef zufrieden sind", also die Wahrscheinlichkeit für
Um diese Wahrscheinlichkeit (bzw. prozentualer Anteil) zu bestimmmen, müssen wir nun das Baumdiagramm anders rum zeichnen. Das ist ja aber kein Problem, weil wir bereits die fertige Vierfeldertafel ausgefüllt haben.
Wir müssen also beim Baumdiagramm zuerst ( - also links - ) die Wahrscheinlichkeiten, ob
(Danach geht's dann ja - je nach Ausgang von
Wenn man die bekannten Werte der Vierfeldertafel ins Baumdiagramm einträgt, so erkennt man folgende Gleichung:
oder hier im speziellen:
0,3075 ⋅ x
= 0,1575 = |:0,3075
also
Der gesuchte Wert (der Anteil der Parteianhänger unter allen. die mit dem Regierungschef zufrieden sind) ist also 0,5122 = 51,22%.
Stochast. Unabhängigkeit Anwendungen
Beispiel:
Nach einer Umfrage könnten sich 25% der Befragten vorstellen, sich als nächstes Auto ein Elektroauto zu kaufen. 46% davon seien auch schon einmal in einem E-Auto gefahren. 52,5% der Befragten meinten, dass sie noch nie in einem E-Auto gesessen sind und sich sicher auch nie eines kaufen werden. Vervollständige die Vierfeldertafel und entscheide damit, ob die beiden Ereignisse "E-Auto kaufen" und "Erfahrung mit E-Auto" stochastisch unabhängig sind.
Um die Aufgabe mit einer Vierfeldertafel lösen zu können, müssen wir erst unsere Ergebnisse A und B definieren:
Hiermit ergibt sich folgende Vierfeldertafel:
(E-Auto kennen) |
(nicht kennen) | ||
---|---|---|---|
(E-Auto kaufen) | 0,25 | ||
(nicht kaufen) | 0,525 | ||
Diese müssen wir nun vollends ausfüllen:
Als erstes tragen wir rechts unten die Summe
Dann tragen wir alle direkt aus dem Text entnehmbaren und die dadurch berechenbaren Wahrscheinlichkeiten in die Vierfeldertafel ein.
(E-Auto kennen) |
(nicht kennen) | ||
---|---|---|---|
(E-Auto kaufen) | 0,25 | ||
(nicht kaufen) | 0,225 | 0,525 | 0,75 |
1 |
Mit Hilfe des Baumdiagramms kann man aus der Information
von der Teilgruppe mit "E-Auto kaufen" sind es 46%, also
die Wahrscheinlichkeit
berechnen.
(E-Auto kennen) |
(nicht kennen) | ||
---|---|---|---|
(E-Auto kaufen) | 0,115 | 0,25 | |
(nicht kaufen) | 0,225 | 0,525 | 0,75 |
1 |
Jetzt können wir wieder die restlichen Wahrscheinlichkeiten einfach mit der Vierfeldertafel berechnen:
(E-Auto kennen) |
(nicht kennen) | ||
---|---|---|---|
(E-Auto kaufen) | 0,115 | 0,135 | 0,25 |
(nicht kaufen) | 0,225 | 0,525 | 0,75 |
0,34 | 0,66 | 1 |
Jetzt können wir P(A)=0.25 mit P(B)=0.34 multiplizieren um zu überprüfen, ob dieses Produkt ungefähr den gleichen Wert hat wie
P(A ∩ B)=0.115, also:
P(A) ⋅ P(B) = 0.25 ⋅ 0.34 = 0.085
≠ 0.115 = P(A ∩ B),
A und B sind also stochastisch abhängig.
Stochast. Unabhängigkeit rückwärts
Beispiel:
Vervollständige die Vierfeldertafel so, dass die beiden Ereignisse A und B stochastisch unabhängig sind.
Als erstes tragen wir rechts unten die Summe
|
| ||
---|---|---|---|
| 0,1558 | 0,38 | |
| |||
1 |
In der 3. Spalte sind bereits zwei Werte bekannt, und da wir wissen, dass die weiße Zelle unten immer die Summe der beiden inneren Zellen darüber ist, können wir folgende Gleichung aufstellen:
0.38 + P(
Somit gilt: P(
|
| ||
---|---|---|---|
| 0,1558 | 0,38 | |
| 0,62 | ||
1 |
Weil wir ja wissen, dass die beiden Ereignisse A und B (und damit auch
also 0.38 ⋅
somit gilt:
|
| ||
---|---|---|---|
| 0,1558 | 0,38 | |
| 0,62 | ||
0,41 | 1 |
Jetzt können wir einfach mit den Summen die Vierfeldertafel vollends wie üblich füllen.
|
| ||
---|---|---|---|
| 0,1558 | 0,2242 | 0,38 |
| 0,2542 | 0,3658 | 0,62 |
0,41 | 0,59 | 1 |