Aufgabenbeispiele von Daten

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Mittelwert berechnen

Beispiel:

Bestimme den Mittelwert von: 80cm; 60cm; 10cm; 70cm; 80cm

Lösung einblenden

Um den Mittelwert zu ermitteln, müssen wir zuerst alle Werte addieren:

80cm + 60cm + 10cm + 70cm + 80cm = 300cm

... und dann diese Summe durch die Anzahl der Werte, also hier 5, teilen:

Mittelwert m = 300 5 cm = 60cm

Mittelwert rückwärts

Beispiel:

Die Werte 59; ⬜; 2; 14 haben den Mittelwert 21.

Welchen Wert muss dann das Kästchen ⬜ haben?

Lösung einblenden

Wir wissen ja, dass man den Mittelwert erhält, indem man alle Werte zusammenzählt und das Ergebnis durch die Anzahl der Werte dividiert, also:

59++2+14 4 = 21

Wenn wir nun alle Werte addieren erhalten wir:

75+ 4 = 21

Wenn wir die Summe im Zähler durch 4 teilen, erhalten wir 21.

Also muss doch die Summe im Zähler selbst gerade das 4-fache von 21, also 4 ⋅ 21 = 84 sein, also ...

75 + ⬜ = 84

Jetzt sieht man relativ leicht, dass dass Kästchen ⬜ = 84 - 75 sein muss.

⬜ = 9

Zentralwert angeben

Beispiel:

Gib mit Hilfe der Rangliste den Zentralwert an.

Urliste: 17; 4; 6; 6; 20; 17; 3; 20; 18; 19; 13

Lösung einblenden

Zuerst sortieren wir die Datenliste:

  1. -> 3
  2. -> 4
  3. -> 6
  4. -> 6
  5. -> 13
  6. -> 17
  7. -> 17
  8. -> 18
  9. -> 19
  10. -> 20
  11. -> 20

Da die Datenmenge eine ungerade Anzahl hat, müssen wir für den Zentralwert einfach den mittleren (hier also den 6-ten) Wert der Liste nehmen, also 17.

Kenngrößen bestimmen

Beispiel:

Bestimme jeweils das Minimum, das Maximum, die Spannweite, den Mittelwert und den Zentralwert von:

16 kg; 8 kg; 13 kg; 9 kg; 7 kg; 1 kg

Lösung einblenden

Minimum und Maximum

Wenn man sich alle Werte durchschaut, erkennt man schnell, dass der kleinst Wert, also das Minimum 1 kg und der größte Wert, also das Maximum 16 kg ist.

Spannweite

Die Spannweite ist einfach die Differenz zwischen dem Maximum und dem Minimum, also 16 kg - 1 kg = 15 kg.

Mittelwert

Um den Mittelwert zu ermitteln, müssen wir zuerst alle Werte addieren:

16 kg + 8 kg + 13 kg + 9 kg + 7 kg + 1 kg = 54 kg

... und dann diese Summe durch die Anzahl der Werte, also hier 6, teilen:

Mittelwert m = 54 6 kg = 9 kg

Zentralwert

Zuerst sortieren wir die Datenliste:

  1. -> 1
  2. -> 7
  3. -> 8
  4. -> 9
  5. -> 13
  6. -> 16

Da die Datenmenge eine gerade Anzahl hat, müssen wir für den Zentralwert den Mittelwert zwischen größtem Wert der unteren Hälfte (also 8) und dem kleinstem Wert der oberen Hälfte (hier 9) berechnen.
also (8+9):2 = 8,5 kg

Relative Häufigkeit

Beispiel:

Bei einer Umfrage unter Schüler:innen wurde gefragt, wie viele Personen in ihrem Haushalt leben. Dabei gaben 12 an, in einem 2-Personen-Haushalt zu leben, 42 in einem 3-Personen-Haushalt, 114 in einem 4-Personen-Haushalt und 32 Schüler:innen gaben an in einem Haushalt mit mindestens 5 Personen zu wohnen.Bestimme die relativen Häufigkeiten der verschiedenen Haushaltsgrößen bei den Schüler:innen in Prozent.

Lösung einblenden

Zuerst addieren wir alle Schüler:innen zusammen und erhalten: 12 + 42 + 114 + 32 = 200

Um nun die relative Häufigkleit zu bestimmen, müssen wir einfach jede Zahl durch die Gesamtsumme 200 teilen:

Um dann aus dem Bruch auf die Prozentzahl zu kommen, müssen wir den Bruch so erweitern und evtl. wieder kürzen, dass der Nenner 100 wird:

2-Personen: 12 200 = 6 100 = 6%

3-Personen: 42 200 = 21 100 = 21%

4-Personen: 114 200 = 57 100 = 57%

5-Personen oder mehr: 32 200 = 16 100 = 16%

Relative Häufigkeit rückwärts

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Die Innenwinkel aller Sektoren
sind Vielfache von 45°)

Bei einer Datenerhebung werden 640 Personen befragt. Die prozentuale Anteile für die Optionen A, B und C sind in dem Kreisdiagramm rechts dargestellt.

Bestimme jeweils die tatsächlichen Anzahlen an Personen, die für A, B oder C gestimmt haben.

Lösung einblenden

Da ja gegeben ist, dass alle Innenwinkel der Sektoren des Kreisdiagramms Vielfache von 45° sind, kann man schnnell die Innenwinkel der einzelnen Sektoren bestimemen:

A: 180°

B: 135°

C: 45°

Wenn wir nun diese Winkel durch 360° teilen, erhalten wir die relativen Häufigkeiten.

Diese müssen wir dann nur noch mit der Gesamtzahl n=640 multiplizieren, um auf die tatsächlichen Personenzahlen zu kommen:

Optionrelative Häufigkeittatsächliche Zahl
A 180 360 = 1 2 1 2 ⋅640 = 320
B 135 360 = 3 8 3 8 ⋅640 = 240
C 45 360 = 1 8 1 8 ⋅640 = 80