Aufgabenbeispiele von Nullstellen, Schnittpunkte

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Nullstellen mit Nullprodukt

Beispiel:

Bestimme die Nullstellen der quadratischen Funktion f mit
y= 5 x 2 +6x

Lösung einblenden

Um die Nullstellen zu berechnen, setzen wir einfach y = 0.

Hier kann man x ausklammern und den Satz vom Nullprodukt anwenden

5 x 2 +6x = 0
x ( 5x +6 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

5x +6 = 0 | -6
5x = -6 |:5
x2 = - 6 5 = -1.2

L={ - 6 5 ; 0}

Nullstellen und Scheitel (Nullprodukt)

Beispiel:

Bestimme die Nullstellen und dann den Scheitel der quadratischen Funktion f mit
y= 3 x 2 -9x

Lösung einblenden

Um die Nullstellen zu berechnen, setzen wir einfach y = 0.

Hier kann man x ausklammern und den Satz vom Nullprodukt anwenden

3 x 2 -9x = 0
3 x ( x -3 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x -3 = 0 | +3
x2 = 3

L={0; 3 }

Wegen der Symmetrie von Parabeln wissen wir, dass der Scheitel genau in der Mitte zwischen den Nullstellen liegen muss. Wir berechen also den Mittelwert der beiden Nullstellen 0+3 2 = 1.5 und erhalten so den x-Wert des Scheitels.

Der Scheitel hat also die Koordinaten S(1.5|y) mit y = 3 1,5 2 -91,5 = 6,75 -13,5 = -6.75.

Als Ergebnisse erhalten wir also: Nullstellen: x1=0 und x2=3 , Scheitel: S(1.5|-6.75).

Nullstellen mit Mitternachtsformel

Beispiel:

Berechne die Schnittpunkte mit der x-Achse (Nullstellen) des Graphen der Funktion f mit f(x)= x 2 - 1 2 x -14 .

Lösung einblenden

Um die Schnittpunkte mit der x-Achse (Nullstellen) zu berechnen muss man einfach die Funktion gleich Null setzen, also

f(x)=0

x 2 - 1 2 x -14 = 0 |⋅ 2
2( x 2 - 1 2 x -14 ) = 0

2 x 2 - x -28 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +1 ± ( -1 ) 2 -4 · 2 · ( -28 ) 22

x1,2 = +1 ± 1 +224 4

x1,2 = +1 ± 225 4

x1 = 1 + 225 4 = 1 +15 4 = 16 4 = 4

x2 = 1 - 225 4 = 1 -15 4 = -14 4 = -3,5

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "2 " teilen:

2 x 2 - x -28 = 0 |: 2

x 2 - 1 2 x -14 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 1 4 ) 2 - ( -14 ) = 1 16 + 14 = 1 16 + 224 16 = 225 16

x1,2 = 1 4 ± 225 16

x1 = 1 4 - 15 4 = - 14 4 = -3.5

x2 = 1 4 + 15 4 = 16 4 = 4

L={ -3,5 ; 4 }

Gesucht sind ja die Schnittpunkte mit der x-Achse (Nullstellen), d.h. die gesuchten y-Werte sind immer jeweils 0.

Die Schnittpunkte mit der x-Achse (Nullstellen) sind also N1( -3,5 |0) und N2( 4 |0).

Schnittpunkte berechnen

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= ( x +6 ) 2
und
g(x)= 9 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

( x +6 ) 2 = 9 | 2

1. Fall

x +6 = - 9 = -3
x +6 = -3 | -6
x1 = -9

2. Fall

x +6 = 9 = 3
x +6 = 3 | -6
x2 = -3

L={ -9 ; -3 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -9 ) = 9

g( -3 ) = 9

Die Schnittpunkte sind also S1( -9 | 9 ) und S2( -3 | 9 ).

Schnittpunkte mit MNF

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= -4 x 2 + x +6
und
g(x)= -5 x 2 -5x -3 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

-4 x 2 + x +6 = -5 x 2 -5x -3 | +5 x 2 +5x +3

x 2 +6x +9 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -6 ± 6 2 -4 · 1 · 9 21

x1,2 = -6 ± 36 -36 2

x1,2 = -6 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = -6 2 = -3

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 3 2 - 9 = 9 - 9 = 0

Da die Diskriminante D = 0 ist, hat die quadratische Gleichung nur eine Lösunng.

x = -3 ± 0 = -3

L={ -3 }

-3 ist 2-fache Lösung!

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -3 ) = -5 ( -3 ) 2 -5( -3 ) -3 = -59 +15 -3 = -45 +15 -3 = -33

Der einzige Schnittpunkt ist also S( -3 | -33 ).

Schnittpunkte mit MNF (Graph)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gezeichnet ist die Gerade der Funktion f.

Nicht abgebildet ist der Graph von g mit g(x)= - x 2 + 15 2 x -10 .

Bestimme die Schnittpunkte der Graphen von f und g.

Lösung einblenden

Als erstes müssen wir den Funktionsterm des eingezeichneten Graphen von f bestimmen:

Man erkennt sofort, dass es sich um eine Gerade handelt, also gilt y = m⋅x + c .

Den y-Achsenabschnitt c = 0 kann man dem Schaubild leicht entnehmen.

Etwas schwieriger ist das Ablesen der Steigung m. Wenn man sich jedoch ein Steigungsdreick eingezeichnet denkt und 2 Einheit(en) nach rechts geht, so muss man 1 nach oben gehen. Die Steigung ist also m= 1 2 .

Der Term der abgebildeten Geraden ist also y= 1 2 x oder f(x)= 1 2 x .

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

1 2 x = - x 2 + 15 2 x -10 |⋅ 2
x = 2( - x 2 + 15 2 x -10 )
x = -2 x 2 +15x -20 | +2 x 2 -15x +20
2 x 2 -14x +20 = 0 |:2

x 2 -7x +10 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +7 ± ( -7 ) 2 -4 · 1 · 10 21

x1,2 = +7 ± 49 -40 2

x1,2 = +7 ± 9 2

x1 = 7 + 9 2 = 7 +3 2 = 10 2 = 5

x2 = 7 - 9 2 = 7 -3 2 = 4 2 = 2

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 7 2 ) 2 - 10 = 49 4 - 10 = 49 4 - 40 4 = 9 4

x1,2 = 7 2 ± 9 4

x1 = 7 2 - 3 2 = 4 2 = 2

x2 = 7 2 + 3 2 = 10 2 = 5

L={ 2 ; 5 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( 2 ) = - 2 2 + 15 2 2 -10 = -4 +15 -10 = 1

g( 5 ) = - 5 2 + 15 2 5 -10 = -25 + 75 2 -10 = 5 2

Die Schnittpunkte sind also S1( 2 | 1 ) und S2( 5 | 5 2 ).

Linearfaktordarst. aus Term (a=1)

Beispiel:

Gegeben ist die Funktion f mit y= x 2 +6x +8 .
Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Für die faktorisierte Darstellung brauchen wir die Nullstellen. Also berechnen wir diese als erstes.

x 2 +6x +8 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -6 ± 6 2 -4 · 1 · 8 21

x1,2 = -6 ± 36 -32 2

x1,2 = -6 ± 4 2

x1 = -6 + 4 2 = -6 +2 2 = -4 2 = -2

x2 = -6 - 4 2 = -6 -2 2 = -8 2 = -4

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 3 2 - 8 = 9 - 8 = 1

x1,2 = -3 ± 1

x1 = -3 - 1 = -4

x2 = -3 + 1 = -2

Der Funktionterm ( x +4 ) ( x +2 ) hat nun also genau die gleichen Nullstellen wie y= x 2 +6x +8 und beide Terme haben a=1 als Koeffizient vor dem x² (Normalparabeln).

Also ist y= ( x +4 ) ( x +2 ) bereits der gesuchte Term.

Linearfaktordarst. am Graph (a=1)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist eine verschobene Normalparabel. Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Wir lesen einfach die beiden Schnittpunkte mit der x-Achse ab: N1(0|0) und N2(2|0).

Also muss der Funktionsterm y= a · x · ( x -2 ) sein.

Weil es sich ja aber um eine Normalparabel handelt, kann dieses a nur 1 oder -1 sein.

Die Parabel ist nach oben geöffnet, also muss a = 1 sein.

Der gesuchte faktorisierte Funktionsterm ist somit y= x ( x -2 ) .