Aufgabenbeispiele von Nullstellen, Schnittpunkte

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Nullstellen mit Nullprodukt

Beispiel:

Bestimme die Nullstellen der quadratischen Funktion f mit
y= 5 x 2 +4x

Lösung einblenden

Um die Nullstellen zu berechnen, setzen wir einfach y = 0.

Hier kann man x ausklammern und den Satz vom Nullprodukt anwenden

5 x 2 +4x = 0
x ( 5x +4 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

5x +4 = 0 | -4
5x = -4 |:5
x2 = - 4 5 = -0.8

L={ - 4 5 ; 0}

Nullstellen und Scheitel (Nullprodukt)

Beispiel:

Bestimme die Nullstellen und dann den Scheitel der quadratischen Funktion f mit
y= x 2 -8x

Lösung einblenden

Um die Nullstellen zu berechnen, setzen wir einfach y = 0.

Hier kann man x ausklammern und den Satz vom Nullprodukt anwenden

x 2 -8x = 0
x ( x -8 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x -8 = 0 | +8
x2 = 8

L={0; 8 }

Wegen der Symmetrie von Parabeln wissen wir, dass der Scheitel genau in der Mitte zwischen den Nullstellen liegen muss. Wir berechen also den Mittelwert der beiden Nullstellen 0+8 2 = 4 und erhalten so den x-Wert des Scheitels.

Der Scheitel hat also die Koordinaten S(4|y) mit y = 4 2 -84 = 16 -32 = -16.

Als Ergebnisse erhalten wir also: Nullstellen: x1=0 und x2=8 , Scheitel: S(4|-16).

Nullstellen mit Mitternachtsformel

Beispiel:

Berechne die Schnittpunkte mit der x-Achse (Nullstellen) des Graphen der Funktion f mit f(x)= x 2 -5x +4 .

Lösung einblenden

Um die Schnittpunkte mit der x-Achse (Nullstellen) zu berechnen muss man einfach die Funktion gleich Null setzen, also

f(x)=0

x 2 -5x +4 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +5 ± ( -5 ) 2 -4 · 1 · 4 21

x1,2 = +5 ± 25 -16 2

x1,2 = +5 ± 9 2

x1 = 5 + 9 2 = 5 +3 2 = 8 2 = 4

x2 = 5 - 9 2 = 5 -3 2 = 2 2 = 1

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 5 2 ) 2 - 4 = 25 4 - 4 = 25 4 - 16 4 = 9 4

x1,2 = 5 2 ± 9 4

x1 = 5 2 - 3 2 = 2 2 = 1

x2 = 5 2 + 3 2 = 8 2 = 4

L={ 1 ; 4 }

Gesucht sind ja die Schnittpunkte mit der x-Achse (Nullstellen), d.h. die gesuchten y-Werte sind immer jeweils 0.

Die Schnittpunkte mit der x-Achse (Nullstellen) sind also N1( 1 |0) und N2( 4 |0).

Schnittpunkte berechnen

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= ( x -5 ) 2
und
g(x)= 9 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

( x -5 ) 2 = 9 | 2

1. Fall

x -5 = - 9 = -3
x -5 = -3 | +5
x1 = 2

2. Fall

x -5 = 9 = 3
x -5 = 3 | +5
x2 = 8

L={ 2 ; 8 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( 2 ) = 9

g( 8 ) = 9

Die Schnittpunkte sind also S1( 2 | 9 ) und S2( 8 | 9 ).

Schnittpunkte mit MNF

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= -2 x 2 -11x +11
und
g(x)= -3 x 2 -5x +2 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

-2 x 2 -11x +11 = -3 x 2 -5x +2 | +3 x 2 +5x -2

x 2 -6x +9 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +6 ± ( -6 ) 2 -4 · 1 · 9 21

x1,2 = +6 ± 36 -36 2

x1,2 = +6 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = 6 2 = 3

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -3 ) 2 - 9 = 9 - 9 = 0

Da die Diskriminante D = 0 ist, hat die quadratische Gleichung nur eine Lösunng.

x = 3 ± 0 = 3

L={ 3 }

3 ist 2-fache Lösung!

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( 3 ) = -3 3 2 -53 +2 = -39 -15 +2 = -27 -15 +2 = -40

Der einzige Schnittpunkt ist also S( 3 | -40 ).

Schnittpunkte mit MNF (Graph)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gezeichnet ist die Gerade der Funktion f.

Nicht abgebildet ist der Graph von g mit g(x)= - x 2 + 11 2 x -12 .

Bestimme die Schnittpunkte der Graphen von f und g.

Lösung einblenden

Als erstes müssen wir den Funktionsterm des eingezeichneten Graphen von f bestimmen:

Man erkennt sofort, dass es sich um eine Gerade handelt, also gilt y = m⋅x + c .

Den y-Achsenabschnitt c = 0 kann man dem Schaubild leicht entnehmen.

Etwas schwieriger ist das Ablesen der Steigung m. Wenn man sich jedoch ein Steigungsdreick eingezeichnet denkt und 2 Einheit(en) nach rechts geht, so muss man 3 nach oben gehen. Die Steigung ist also m= - 3 2 .

Der Term der abgebildeten Geraden ist also y= - 3 2 x oder f(x)= - 3 2 x .

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

- 3 2 x = - x 2 + 11 2 x -12 |⋅ 2
-3x = 2( - x 2 + 11 2 x -12 )
-3x = -2 x 2 +11x -24 | +2 x 2 -11x +24
2 x 2 -14x +24 = 0 |:2

x 2 -7x +12 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +7 ± ( -7 ) 2 -4 · 1 · 12 21

x1,2 = +7 ± 49 -48 2

x1,2 = +7 ± 1 2

x1 = 7 + 1 2 = 7 +1 2 = 8 2 = 4

x2 = 7 - 1 2 = 7 -1 2 = 6 2 = 3

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 7 2 ) 2 - 12 = 49 4 - 12 = 49 4 - 48 4 = 1 4

x1,2 = 7 2 ± 1 4

x1 = 7 2 - 1 2 = 6 2 = 3

x2 = 7 2 + 1 2 = 8 2 = 4

L={ 3 ; 4 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( 3 ) = - 3 2 + 11 2 3 -12 = -9 + 33 2 -12 = - 9 2

g( 4 ) = - 4 2 + 11 2 4 -12 = -16 +22 -12 = -6

Die Schnittpunkte sind also S1( 3 | - 9 2 ) und S2( 4 | -6 ).

Linearfaktordarst. aus Term (a=1)

Beispiel:

Gegeben ist die Funktion f mit y= x 2 -2x -3 .
Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Für die faktorisierte Darstellung brauchen wir die Nullstellen. Also berechnen wir diese als erstes.

x 2 -2x -3 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +2 ± ( -2 ) 2 -4 · 1 · ( -3 ) 21

x1,2 = +2 ± 4 +12 2

x1,2 = +2 ± 16 2

x1 = 2 + 16 2 = 2 +4 2 = 6 2 = 3

x2 = 2 - 16 2 = 2 -4 2 = -2 2 = -1

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -1 ) 2 - ( -3 ) = 1+ 3 = 4

x1,2 = 1 ± 4

x1 = 1 - 2 = -1

x2 = 1 + 2 = 3

Der Funktionterm ( x +1 ) ( x -3 ) hat nun also genau die gleichen Nullstellen wie y= x 2 -2x -3 und beide Terme haben a=1 als Koeffizient vor dem x² (Normalparabeln).

Also ist y= ( x +1 ) ( x -3 ) bereits der gesuchte Term.

Linearfaktordarst. am Graph (a=1)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist eine verschobene Normalparabel. Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Wir lesen einfach die beiden Schnittpunkte mit der x-Achse ab: N1(1|0) und N2(4|0).

Also muss der Funktionsterm y= a · ( x -1 ) · ( x -4 ) sein.

Weil es sich ja aber um eine Normalparabel handelt, kann dieses a nur 1 oder -1 sein.

Die Parabel ist nach oben geöffnet, also muss a = 1 sein.

Der gesuchte faktorisierte Funktionsterm ist somit y= ( x -1 ) ( x -4 ) .