Aufgabenbeispiele von Nullstellen, Schnittpunkte

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Nullstellen mit Nullprodukt

Beispiel:

Bestimme die Nullstellen der quadratischen Funktion f mit
y= x 2 +7x

Lösung einblenden

Um die Nullstellen zu berechnen, setzen wir einfach y = 0.

Hier kann man x ausklammern und den Satz vom Nullprodukt anwenden

x 2 +7x = 0
x ( x +7 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x +7 = 0 | -7
x2 = -7

L={ -7 ; 0}

Nullstellen und Scheitel (Nullprodukt)

Beispiel:

Bestimme die Nullstellen und dann den Scheitel der quadratischen Funktion f mit
y= x 2 +4x

Lösung einblenden

Um die Nullstellen zu berechnen, setzen wir einfach y = 0.

Hier kann man x ausklammern und den Satz vom Nullprodukt anwenden

x 2 +4x = 0
x ( x +4 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x +4 = 0 | -4
x2 = -4

L={ -4 ; 0}

Wegen der Symmetrie von Parabeln wissen wir, dass der Scheitel genau in der Mitte zwischen den Nullstellen liegen muss. Wir berechen also den Mittelwert der beiden Nullstellen -4+0 2 = -2 und erhalten so den x-Wert des Scheitels.

Der Scheitel hat also die Koordinaten S(-2|y) mit y = ( -2 ) 2 +4( -2 ) = 4 -8 = -4.

Als Ergebnisse erhalten wir also: Nullstellen: x1=-4 und x2=0 , Scheitel: S(-2|-4).

Nullstellen mit Mitternachtsformel

Beispiel:

Berechne die Schnittpunkte mit der x-Achse (Nullstellen) des Graphen der Funktion f mit f(x)= x 2 - 21 5 x - 54 5 .

Lösung einblenden

Um die Schnittpunkte mit der x-Achse (Nullstellen) zu berechnen muss man einfach die Funktion gleich Null setzen, also

f(x)=0

x 2 - 21 5 x - 54 5 = 0 |⋅ 5
5( x 2 - 21 5 x - 54 5 ) = 0

5 x 2 -21x -54 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +21 ± ( -21 ) 2 -4 · 5 · ( -54 ) 25

x1,2 = +21 ± 441 +1080 10

x1,2 = +21 ± 1521 10

x1 = 21 + 1521 10 = 21 +39 10 = 60 10 = 6

x2 = 21 - 1521 10 = 21 -39 10 = -18 10 = -1,8

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "5 " teilen:

5 x 2 -21x -54 = 0 |: 5

x 2 - 21 5 x - 54 5 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 21 10 ) 2 - ( - 54 5 ) = 441 100 + 54 5 = 441 100 + 1080 100 = 1521 100

x1,2 = 21 10 ± 1521 100

x1 = 21 10 - 39 10 = - 18 10 = -1.8

x2 = 21 10 + 39 10 = 60 10 = 6

L={ -1,8 ; 6 }

Gesucht sind ja die Schnittpunkte mit der x-Achse (Nullstellen), d.h. die gesuchten y-Werte sind immer jeweils 0.

Die Schnittpunkte mit der x-Achse (Nullstellen) sind also N1( -1,8 |0) und N2( 6 |0).

Schnittpunkte berechnen

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= -3 ( x -6 ) 2 +6
und
g(x)= -42 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

-3 ( x -6 ) 2 +6 = -42 | -6
-3 ( x -6 ) 2 = -48 |: ( -3 )
( x -6 ) 2 = 16 | 2

1. Fall

x -6 = - 16 = -4
x -6 = -4 | +6
x1 = 2

2. Fall

x -6 = 16 = 4
x -6 = 4 | +6
x2 = 10

L={ 2 ; 10 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( 2 ) = -42

g( 10 ) = -42

Die Schnittpunkte sind also S1( 2 | -42 ) und S2( 10 | -42 ).

Schnittpunkte mit MNF

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= -3 x 2 +3x +15
und
g(x)= -4 x 2 -5x -1 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

-3 x 2 +3x +15 = -4 x 2 -5x -1 | +4 x 2 +5x +1

x 2 +8x +16 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -8 ± 8 2 -4 · 1 · 16 21

x1,2 = -8 ± 64 -64 2

x1,2 = -8 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = -8 2 = -4

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 4 2 - 16 = 16 - 16 = 0

Da die Diskriminante D = 0 ist, hat die quadratische Gleichung nur eine Lösunng.

x = -4 ± 0 = -4

L={ -4 }

-4 ist 2-fache Lösung!

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -4 ) = -4 ( -4 ) 2 -5( -4 ) -1 = -416 +20 -1 = -64 +20 -1 = -45

Der einzige Schnittpunkt ist also S( -4 | -45 ).

Schnittpunkte mit MNF (Graph)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gezeichnet ist die Gerade der Funktion f.

Nicht abgebildet ist der Graph von g mit g(x)= - x 2 + 17 3 x -6 .

Bestimme die Schnittpunkte der Graphen von f und g.

Lösung einblenden

Als erstes müssen wir den Funktionsterm des eingezeichneten Graphen von f bestimmen:

Man erkennt sofort, dass es sich um eine Gerade handelt, also gilt y = m⋅x + c .

Den y-Achsenabschnitt c = 3 kann man dem Schaubild leicht entnehmen.

Etwas schwieriger ist das Ablesen der Steigung m. Wenn man sich jedoch ein Steigungsdreick eingezeichnet denkt und 3 Einheit(en) nach rechts geht, so muss man 1 nach oben gehen. Die Steigung ist also m= - 1 3 .

Der Term der abgebildeten Geraden ist also y= - 1 3 x +3 oder f(x)= - 1 3 x +3 .

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

- 1 3 x +3 = - x 2 + 17 3 x -6 |⋅ 3
3( - 1 3 x +3 ) = 3( - x 2 + 17 3 x -6 )
-x +9 = -3 x 2 +17x -18 | +3 x 2 -17x +18
3 x 2 -18x +27 = 0 |:3

x 2 -6x +9 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +6 ± ( -6 ) 2 -4 · 1 · 9 21

x1,2 = +6 ± 36 -36 2

x1,2 = +6 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = 6 2 = 3

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -3 ) 2 - 9 = 9 - 9 = 0

Da die Diskriminante D = 0 ist, hat die quadratische Gleichung nur eine Lösunng.

x = 3 ± 0 = 3

L={ 3 }

3 ist 2-fache Lösung!

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( 3 ) = - 3 2 + 17 3 3 -6 = -9 +17 -6 = 2

Der einzige Schnittpunkt ist also S( 3 | 2 ).

Linearfaktordarst. aus Term (a=1)

Beispiel:

Gegeben ist die Funktion f mit y= x 2 +2x -3 .
Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Für die faktorisierte Darstellung brauchen wir die Nullstellen. Also berechnen wir diese als erstes.

x 2 +2x -3 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -2 ± 2 2 -4 · 1 · ( -3 ) 21

x1,2 = -2 ± 4 +12 2

x1,2 = -2 ± 16 2

x1 = -2 + 16 2 = -2 +4 2 = 2 2 = 1

x2 = -2 - 16 2 = -2 -4 2 = -6 2 = -3

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 1 2 - ( -3 ) = 1+ 3 = 4

x1,2 = -1 ± 4

x1 = -1 - 2 = -3

x2 = -1 + 2 = 1

Der Funktionterm ( x +3 ) ( x -1 ) hat nun also genau die gleichen Nullstellen wie y= x 2 +2x -3 und beide Terme haben a=1 als Koeffizient vor dem x² (Normalparabeln).

Also ist y= ( x +3 ) ( x -1 ) bereits der gesuchte Term.

Linearfaktordarst. am Graph (a=1)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist eine verschobene Normalparabel. Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Wir lesen einfach die beiden Schnittpunkte mit der x-Achse ab: N1(-2|0) und N2(2|0).

Also muss der Funktionsterm y= a · ( x +2 ) · ( x -2 ) sein.

Weil es sich ja aber um eine Normalparabel handelt, kann dieses a nur 1 oder -1 sein.

Die Parabel ist nach oben geöffnet, also muss a = 1 sein.

Der gesuchte faktorisierte Funktionsterm ist somit y= ( x +2 ) ( x -2 ) .