Aufgabenbeispiele von Nullstellen, Schnittpunkte

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Nullstellen mit Nullprodukt

Beispiel:

Bestimme die Nullstellen der quadratischen Funktion f mit
y= 5 x 2 +2x

Lösung einblenden

Um die Nullstellen zu berechnen, setzen wir einfach y = 0.

Hier kann man x ausklammern und den Satz vom Nullprodukt anwenden

5 x 2 +2x = 0
x ( 5x +2 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

5x +2 = 0 | -2
5x = -2 |:5
x2 = - 2 5 = -0.4

L={ - 2 5 ; 0}

Nullstellen und Scheitel (Nullprodukt)

Beispiel:

Bestimme die Nullstellen und dann den Scheitel der quadratischen Funktion f mit
y= x 2 +2x

Lösung einblenden

Um die Nullstellen zu berechnen, setzen wir einfach y = 0.

Hier kann man x ausklammern und den Satz vom Nullprodukt anwenden

x 2 +2x = 0
x ( x +2 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x +2 = 0 | -2
x2 = -2

L={ -2 ; 0}

Wegen der Symmetrie von Parabeln wissen wir, dass der Scheitel genau in der Mitte zwischen den Nullstellen liegen muss. Wir berechen also den Mittelwert der beiden Nullstellen -2+0 2 = -1 und erhalten so den x-Wert des Scheitels.

Der Scheitel hat also die Koordinaten S(-1|y) mit y = ( -1 ) 2 +2( -1 ) = 1 -2 = -1.

Als Ergebnisse erhalten wir also: Nullstellen: x1=-2 und x2=0 , Scheitel: S(-1|-1).

Nullstellen mit Mitternachtsformel

Beispiel:

Berechne die Schnittpunkte mit der x-Achse (Nullstellen) des Graphen der Funktion f mit f(x)= x 2 - x + 1 4 .

Lösung einblenden

Um die Schnittpunkte mit der x-Achse (Nullstellen) zu berechnen muss man einfach die Funktion gleich Null setzen, also

f(x)=0

x 2 - x + 1 4 = 0 |⋅ 4
4( x 2 - x + 1 4 ) = 0

4 x 2 -4x +1 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +4 ± ( -4 ) 2 -4 · 4 · 1 24

x1,2 = +4 ± 16 -16 8

x1,2 = +4 ± 0 8

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = 4 8 = 1 2

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "4 " teilen:

4 x 2 -4x +1 = 0 |: 4

x 2 - x + 1 4 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 1 2 ) 2 - ( 1 4 ) = 1 4 - 1 4 = 0 4 = 0

Da die Diskriminante D = 0 ist, hat die quadratische Gleichung nur eine Lösunng.

x = 1 2 ± 0 = 1 2

L={ 1 2 }

1 2 ist 2-fache Lösung!

Gesucht sind ja die Schnittpunkte mit der x-Achse (Nullstellen), d.h. die gesuchten y-Werte sind immer jeweils 0.

Der einzige Schnittpunkt mit der x-Achse ist also N( 1 2 |0).

Schnittpunkte berechnen

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= ( x +1 ) 2
und
g(x)= 16 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

( x +1 ) 2 = 16 | 2

1. Fall

x +1 = - 16 = -4
x +1 = -4 | -1
x1 = -5

2. Fall

x +1 = 16 = 4
x +1 = 4 | -1
x2 = 3

L={ -5 ; 3 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -5 ) = 16

g( 3 ) = 16

Die Schnittpunkte sind also S1( -5 | 16 ) und S2( 3 | 16 ).

Schnittpunkte mit MNF

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= 5 x 2 -7x +19
und
g(x)= 4 x 2 + x +4 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

5 x 2 -7x +19 = 4 x 2 + x +4 | -4 x 2 - x -4

x 2 -8x +15 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +8 ± ( -8 ) 2 -4 · 1 · 15 21

x1,2 = +8 ± 64 -60 2

x1,2 = +8 ± 4 2

x1 = 8 + 4 2 = 8 +2 2 = 10 2 = 5

x2 = 8 - 4 2 = 8 -2 2 = 6 2 = 3

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -4 ) 2 - 15 = 16 - 15 = 1

x1,2 = 4 ± 1

x1 = 4 - 1 = 3

x2 = 4 + 1 = 5

L={ 3 ; 5 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( 3 ) = 4 3 2 +3 +4 = 49 +3 +4 = 36 +3 +4 = 43

g( 5 ) = 4 5 2 +5 +4 = 425 +5 +4 = 100 +5 +4 = 109

Die Schnittpunkte sind also S1( 3 | 43 ) und S2( 5 | 109 ).

Schnittpunkte mit MNF (Graph)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gezeichnet ist die Gerade der Funktion f.

Nicht abgebildet ist der Graph von g mit g(x)= - x 2 + 29 4 x -12 .

Bestimme die Schnittpunkte der Graphen von f und g.

Lösung einblenden

Als erstes müssen wir den Funktionsterm des eingezeichneten Graphen von f bestimmen:

Man erkennt sofort, dass es sich um eine Gerade handelt, also gilt y = m⋅x + c .

Den y-Achsenabschnitt c = 0 kann man dem Schaubild leicht entnehmen.

Etwas schwieriger ist das Ablesen der Steigung m. Wenn man sich jedoch ein Steigungsdreick eingezeichnet denkt und 4 Einheit(en) nach rechts geht, so muss man 1 nach oben gehen. Die Steigung ist also m= 1 4 .

Der Term der abgebildeten Geraden ist also y= 1 4 x oder f(x)= 1 4 x .

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

1 4 x = - x 2 + 29 4 x -12 |⋅ 4
x = 4( - x 2 + 29 4 x -12 )
x = -4 x 2 +29x -48 | +4 x 2 -29x +48
4 x 2 -28x +48 = 0 |:4

x 2 -7x +12 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +7 ± ( -7 ) 2 -4 · 1 · 12 21

x1,2 = +7 ± 49 -48 2

x1,2 = +7 ± 1 2

x1 = 7 + 1 2 = 7 +1 2 = 8 2 = 4

x2 = 7 - 1 2 = 7 -1 2 = 6 2 = 3

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 7 2 ) 2 - 12 = 49 4 - 12 = 49 4 - 48 4 = 1 4

x1,2 = 7 2 ± 1 4

x1 = 7 2 - 1 2 = 6 2 = 3

x2 = 7 2 + 1 2 = 8 2 = 4

L={ 3 ; 4 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( 3 ) = - 3 2 + 29 4 3 -12 = -9 + 87 4 -12 = 3 4

g( 4 ) = - 4 2 + 29 4 4 -12 = -16 +29 -12 = 1

Die Schnittpunkte sind also S1( 3 | 3 4 ) und S2( 4 | 1 ).

Linearfaktordarst. aus Term (a=1)

Beispiel:

Gegeben ist die Funktion f mit y= x 2 +2x -3 .
Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Für die faktorisierte Darstellung brauchen wir die Nullstellen. Also berechnen wir diese als erstes.

x 2 +2x -3 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -2 ± 2 2 -4 · 1 · ( -3 ) 21

x1,2 = -2 ± 4 +12 2

x1,2 = -2 ± 16 2

x1 = -2 + 16 2 = -2 +4 2 = 2 2 = 1

x2 = -2 - 16 2 = -2 -4 2 = -6 2 = -3

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 1 2 - ( -3 ) = 1+ 3 = 4

x1,2 = -1 ± 4

x1 = -1 - 2 = -3

x2 = -1 + 2 = 1

Der Funktionterm ( x +3 ) ( x -1 ) hat nun also genau die gleichen Nullstellen wie y= x 2 +2x -3 und beide Terme haben a=1 als Koeffizient vor dem x² (Normalparabeln).

Also ist y= ( x +3 ) ( x -1 ) bereits der gesuchte Term.

Linearfaktordarst. am Graph (a=1)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist eine verschobene Normalparabel. Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Wir lesen einfach die beiden Schnittpunkte mit der x-Achse ab: N1(1|0) und N2(5|0).

Also muss der Funktionsterm y= a · ( x -1 ) · ( x -5 ) sein.

Weil es sich ja aber um eine Normalparabel handelt, kann dieses a nur 1 oder -1 sein.

Die Parabel ist nach oben geöffnet, also muss a = 1 sein.

Der gesuchte faktorisierte Funktionsterm ist somit y= ( x -1 ) ( x -5 ) .