Aufgabenbeispiele von Nullstellen, Schnittpunkte

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Nullstellen mit Nullprodukt

Beispiel:

Bestimme die Nullstellen der quadratischen Funktion f mit
y= x 2 - x

Lösung einblenden

Um die Nullstellen zu berechnen, setzen wir einfach y = 0.

Hier kann man x ausklammern und den Satz vom Nullprodukt anwenden

x 2 - x = 0
x ( x -1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x -1 = 0 | +1
x2 = 1

L={0; 1 }

Nullstellen und Scheitel (Nullprodukt)

Beispiel:

Bestimme die Nullstellen und dann den Scheitel der quadratischen Funktion f mit
y= 2 x 2 +6x

Lösung einblenden

Um die Nullstellen zu berechnen, setzen wir einfach y = 0.

Hier kann man x ausklammern und den Satz vom Nullprodukt anwenden

2 x 2 +6x = 0
2 x ( x +3 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x +3 = 0 | -3
x2 = -3

L={ -3 ; 0}

Wegen der Symmetrie von Parabeln wissen wir, dass der Scheitel genau in der Mitte zwischen den Nullstellen liegen muss. Wir berechen also den Mittelwert der beiden Nullstellen -3+0 2 = -1.5 und erhalten so den x-Wert des Scheitels.

Der Scheitel hat also die Koordinaten S(-1.5|y) mit y = 2 ( -1,5 ) 2 +6( -1,5 ) = 4,5 -9 = -4.5.

Als Ergebnisse erhalten wir also: Nullstellen: x1=-3 und x2=0 , Scheitel: S(-1.5|-4.5).

Nullstellen mit Mitternachtsformel

Beispiel:

Berechne die Schnittpunkte mit der x-Achse (Nullstellen) des Graphen der Funktion f mit f(x)= 3 x 2 +30x +75 .

Lösung einblenden

Um die Schnittpunkte mit der x-Achse (Nullstellen) zu berechnen muss man einfach die Funktion gleich Null setzen, also

f(x)=0

3 x 2 +30x +75 = 0 |:3

x 2 +10x +25 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -10 ± 10 2 -4 · 1 · 25 21

x1,2 = -10 ± 100 -100 2

x1,2 = -10 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = -10 2 = -5

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 5 2 - 25 = 25 - 25 = 0

Da die Diskriminante D = 0 ist, hat die quadratische Gleichung nur eine Lösunng.

x = -5 ± 0 = -5

L={ -5 }

-5 ist 2-fache Lösung!

Gesucht sind ja die Schnittpunkte mit der x-Achse (Nullstellen), d.h. die gesuchten y-Werte sind immer jeweils 0.

Der einzige Schnittpunkt mit der x-Achse ist also N( -5 |0).

Schnittpunkte berechnen

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= 3 ( x -5 ) 2 -10
und
g(x)= -7 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

3 ( x -5 ) 2 -10 = -7 | +10
3 ( x -5 ) 2 = 3 |:3
( x -5 ) 2 = 1 | 2

1. Fall

x -5 = - 1 = -1
x -5 = -1 | +5
x1 = 4

2. Fall

x -5 = 1 = 1
x -5 = 1 | +5
x2 = 6

L={ 4 ; 6 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( 4 ) = -7

g( 6 ) = -7

Die Schnittpunkte sind also S1( 4 | -7 ) und S2( 6 | -7 ).

Schnittpunkte mit MNF

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= -2 x 2 +14x +22
und
g(x)= -3 x 2 +4x -3 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

-2 x 2 +14x +22 = -3 x 2 +4x -3 | +3 x 2 -4x +3

x 2 +10x +25 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -10 ± 10 2 -4 · 1 · 25 21

x1,2 = -10 ± 100 -100 2

x1,2 = -10 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = -10 2 = -5

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 5 2 - 25 = 25 - 25 = 0

Da die Diskriminante D = 0 ist, hat die quadratische Gleichung nur eine Lösunng.

x = -5 ± 0 = -5

L={ -5 }

-5 ist 2-fache Lösung!

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -5 ) = -3 ( -5 ) 2 +4( -5 ) -3 = -325 -20 -3 = -75 -20 -3 = -98

Der einzige Schnittpunkt ist also S( -5 | -98 ).

Schnittpunkte mit MNF (Graph)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gezeichnet ist die Gerade der Funktion f.

Nicht abgebildet ist der Graph von g mit g(x)= - x 2 + 29 4 x -11 .

Bestimme die Schnittpunkte der Graphen von f und g.

Lösung einblenden

Als erstes müssen wir den Funktionsterm des eingezeichneten Graphen von f bestimmen:

Man erkennt sofort, dass es sich um eine Gerade handelt, also gilt y = m⋅x + c .

Den y-Achsenabschnitt c = 1 kann man dem Schaubild leicht entnehmen.

Etwas schwieriger ist das Ablesen der Steigung m. Wenn man sich jedoch ein Steigungsdreick eingezeichnet denkt und 4 Einheit(en) nach rechts geht, so muss man 1 nach oben gehen. Die Steigung ist also m= 1 4 .

Der Term der abgebildeten Geraden ist also y= 1 4 x +1 oder f(x)= 1 4 x +1 .

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

1 4 x +1 = - x 2 + 29 4 x -11 |⋅ 4
4( 1 4 x +1 ) = 4( - x 2 + 29 4 x -11 )
x +4 = -4 x 2 +29x -44 | +4 x 2 -29x +44
4 x 2 -28x +48 = 0 |:4

x 2 -7x +12 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +7 ± ( -7 ) 2 -4 · 1 · 12 21

x1,2 = +7 ± 49 -48 2

x1,2 = +7 ± 1 2

x1 = 7 + 1 2 = 7 +1 2 = 8 2 = 4

x2 = 7 - 1 2 = 7 -1 2 = 6 2 = 3

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 7 2 ) 2 - 12 = 49 4 - 12 = 49 4 - 48 4 = 1 4

x1,2 = 7 2 ± 1 4

x1 = 7 2 - 1 2 = 6 2 = 3

x2 = 7 2 + 1 2 = 8 2 = 4

L={ 3 ; 4 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( 3 ) = - 3 2 + 29 4 3 -11 = -9 + 87 4 -11 = 7 4

g( 4 ) = - 4 2 + 29 4 4 -11 = -16 +29 -11 = 2

Die Schnittpunkte sind also S1( 3 | 7 4 ) und S2( 4 | 2 ).

Linearfaktordarst. aus Term (a=1)

Beispiel:

Gegeben ist die Funktion f mit y= x 2 -2x .
Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Wir können einfach x ausklammern und erhalten so y= x ( x -2 ) .

Linearfaktordarst. am Graph (a=1)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist eine verschobene Normalparabel. Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Wir lesen einfach die beiden Schnittpunkte mit der x-Achse ab: N1(-2|0) und N2(0|0).

Also muss der Funktionsterm y= a · ( x +2 ) · x sein.

Weil es sich ja aber um eine Normalparabel handelt, kann dieses a nur 1 oder -1 sein.

Die Parabel ist nach unten geöffnet, also muss a = -1 sein.

Der gesuchte faktorisierte Funktionsterm ist somit y= - ( x +2 ) x .