Aufgabenbeispiele von Nullstellen, Schnittpunkte

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Nullstellen mit Nullprodukt

Beispiel:

Bestimme die Nullstellen der quadratischen Funktion f mit
y= 2 x 2 -7x

Lösung einblenden

Um die Nullstellen zu berechnen, setzen wir einfach y = 0.

Hier kann man x ausklammern und den Satz vom Nullprodukt anwenden

2 x 2 -7x = 0
x ( 2x -7 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

2x -7 = 0 | +7
2x = 7 |:2
x2 = 7 2 = 3.5

L={0; 7 2 }

Nullstellen und Scheitel (Nullprodukt)

Beispiel:

Bestimme die Nullstellen und dann den Scheitel der quadratischen Funktion f mit
y= 2 x 2 -2x

Lösung einblenden

Um die Nullstellen zu berechnen, setzen wir einfach y = 0.

Hier kann man x ausklammern und den Satz vom Nullprodukt anwenden

2 x 2 -2x = 0
2 x ( x -1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x -1 = 0 | +1
x2 = 1

L={0; 1 }

Wegen der Symmetrie von Parabeln wissen wir, dass der Scheitel genau in der Mitte zwischen den Nullstellen liegen muss. Wir berechen also den Mittelwert der beiden Nullstellen 0+1 2 = 0.5 und erhalten so den x-Wert des Scheitels.

Der Scheitel hat also die Koordinaten S(0.5|y) mit y = 2 0,5 2 -20,5 = 0,5 -1 = -0.5.

Als Ergebnisse erhalten wir also: Nullstellen: x1=0 und x2=1 , Scheitel: S(0.5|-0.5).

Nullstellen mit Mitternachtsformel

Beispiel:

Berechne die Schnittpunkte mit der x-Achse (Nullstellen) des Graphen der Funktion f mit f(x)= x 2 - 8 5 x - 21 5 .

Lösung einblenden

Um die Schnittpunkte mit der x-Achse (Nullstellen) zu berechnen muss man einfach die Funktion gleich Null setzen, also

f(x)=0

x 2 - 8 5 x - 21 5 = 0 |⋅ 5
5( x 2 - 8 5 x - 21 5 ) = 0

5 x 2 -8x -21 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +8 ± ( -8 ) 2 -4 · 5 · ( -21 ) 25

x1,2 = +8 ± 64 +420 10

x1,2 = +8 ± 484 10

x1 = 8 + 484 10 = 8 +22 10 = 30 10 = 3

x2 = 8 - 484 10 = 8 -22 10 = -14 10 = -1,4

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "5 " teilen:

5 x 2 -8x -21 = 0 |: 5

x 2 - 8 5 x - 21 5 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 4 5 ) 2 - ( - 21 5 ) = 16 25 + 21 5 = 16 25 + 105 25 = 121 25

x1,2 = 4 5 ± 121 25

x1 = 4 5 - 11 5 = - 7 5 = -1.4

x2 = 4 5 + 11 5 = 15 5 = 3

L={ -1,4 ; 3 }

Gesucht sind ja die Schnittpunkte mit der x-Achse (Nullstellen), d.h. die gesuchten y-Werte sind immer jeweils 0.

Die Schnittpunkte mit der x-Achse (Nullstellen) sind also N1( -1,4 |0) und N2( 3 |0).

Schnittpunkte berechnen

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= 3 ( x +3 ) 2 -5
und
g(x)= 22 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

3 ( x +3 ) 2 -5 = 22 | +5
3 ( x +3 ) 2 = 27 |:3
( x +3 ) 2 = 9 | 2

1. Fall

x +3 = - 9 = -3
x +3 = -3 | -3
x1 = -6

2. Fall

x +3 = 9 = 3
x +3 = 3 | -3
x2 = 0

L={ -6 ; 0}

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -6 ) = 22

g(0) = 22

Die Schnittpunkte sind also S1( -6 | 22 ) und S2(0| 22 ).

Schnittpunkte mit MNF

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= 6 x 2 +7x
und
g(x)= 5 x 2 +3x -4 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

6 x 2 +7x = 5 x 2 +3x -4 | -5 x 2 -3x +4

x 2 +4x +4 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -4 ± 4 2 -4 · 1 · 4 21

x1,2 = -4 ± 16 -16 2

x1,2 = -4 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = -4 2 = -2

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 2 2 - 4 = 4 - 4 = 0

Da die Diskriminante D = 0 ist, hat die quadratische Gleichung nur eine Lösunng.

x = -2 ± 0 = -2

L={ -2 }

-2 ist 2-fache Lösung!

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -2 ) = 5 ( -2 ) 2 +3( -2 ) -4 = 54 -6 -4 = 20 -6 -4 = 10

Der einzige Schnittpunkt ist also S( -2 | 10 ).

Schnittpunkte mit MNF (Graph)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gezeichnet ist die Gerade der Funktion f.

Nicht abgebildet ist der Graph von g mit g(x)= - x 2 + 3 2 x +1 .

Bestimme die Schnittpunkte der Graphen von f und g.

Lösung einblenden

Als erstes müssen wir den Funktionsterm des eingezeichneten Graphen von f bestimmen:

Man erkennt sofort, dass es sich um eine Gerade handelt, also gilt y = m⋅x + c .

Den y-Achsenabschnitt c = -3 kann man dem Schaubild leicht entnehmen.

Etwas schwieriger ist das Ablesen der Steigung m. Wenn man sich jedoch ein Steigungsdreick eingezeichnet denkt und 2 Einheit(en) nach rechts geht, so muss man 3 nach oben gehen. Die Steigung ist also m= 3 2 .

Der Term der abgebildeten Geraden ist also y= 3 2 x -3 oder f(x)= 3 2 x -3 .

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

3 2 x -3 = - x 2 + 3 2 x +1 | +3
3 2 x = - x 2 + 3 2 x +4 | + x 2 - 3 2 x
x 2 = 4 | 2
x1 = - 4 = -2
x2 = 4 = 2

L={ -2 ; 2 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -2 ) = - ( -2 ) 2 + 3 2 ( -2 ) +1 = -4 -3 +1 = -6

g( 2 ) = - 2 2 + 3 2 2 +1 = -4 +3 +1 = 0

Die Schnittpunkte sind also S1( -2 | -6 ) und S2( 2 |0).

Linearfaktordarst. aus Term (a=1)

Beispiel:

Gegeben ist die Funktion f mit y= x 2 +6x +8 .
Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Für die faktorisierte Darstellung brauchen wir die Nullstellen. Also berechnen wir diese als erstes.

x 2 +6x +8 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -6 ± 6 2 -4 · 1 · 8 21

x1,2 = -6 ± 36 -32 2

x1,2 = -6 ± 4 2

x1 = -6 + 4 2 = -6 +2 2 = -4 2 = -2

x2 = -6 - 4 2 = -6 -2 2 = -8 2 = -4

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 3 2 - 8 = 9 - 8 = 1

x1,2 = -3 ± 1

x1 = -3 - 1 = -4

x2 = -3 + 1 = -2

Der Funktionterm ( x +4 ) ( x +2 ) hat nun also genau die gleichen Nullstellen wie y= x 2 +6x +8 und beide Terme haben a=1 als Koeffizient vor dem x² (Normalparabeln).

Also ist y= ( x +4 ) ( x +2 ) bereits der gesuchte Term.

Linearfaktordarst. am Graph (a=1)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist eine verschobene Normalparabel. Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Wir lesen einfach die beiden Schnittpunkte mit der x-Achse ab: N1(-3|0) und N2(1|0).

Also muss der Funktionsterm y= a · ( x +3 ) · ( x -1 ) sein.

Weil es sich ja aber um eine Normalparabel handelt, kann dieses a nur 1 oder -1 sein.

Die Parabel ist nach oben geöffnet, also muss a = 1 sein.

Der gesuchte faktorisierte Funktionsterm ist somit y= ( x +3 ) ( x -1 ) .