Aufgabenbeispiele von Nullstellen, Schnittpunkte

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Nullstellen mit Nullprodukt

Beispiel:

Bestimme die Nullstellen der quadratischen Funktion f mit
y= x 2 -2x

Lösung einblenden

Um die Nullstellen zu berechnen, setzen wir einfach y = 0.

Hier kann man x ausklammern und den Satz vom Nullprodukt anwenden

x 2 -2x = 0
x ( x -2 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x -2 = 0 | +2
x2 = 2

L={0; 2 }

Nullstellen und Scheitel (Nullprodukt)

Beispiel:

Bestimme die Nullstellen und dann den Scheitel der quadratischen Funktion f mit
y= 3 x 2 -9x

Lösung einblenden

Um die Nullstellen zu berechnen, setzen wir einfach y = 0.

Hier kann man x ausklammern und den Satz vom Nullprodukt anwenden

3 x 2 -9x = 0
3 x ( x -3 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x -3 = 0 | +3
x2 = 3

L={0; 3 }

Wegen der Symmetrie von Parabeln wissen wir, dass der Scheitel genau in der Mitte zwischen den Nullstellen liegen muss. Wir berechen also den Mittelwert der beiden Nullstellen 0+3 2 = 1.5 und erhalten so den x-Wert des Scheitels.

Der Scheitel hat also die Koordinaten S(1.5|y) mit y = 3 1,5 2 -91,5 = 6,75 -13,5 = -6.75.

Als Ergebnisse erhalten wir also: Nullstellen: x1=0 und x2=3 , Scheitel: S(1.5|-6.75).

Nullstellen mit Mitternachtsformel

Beispiel:

Berechne die Schnittpunkte mit der x-Achse (Nullstellen) des Graphen der Funktion f mit f(x)= x 2 - 3 5 x - 2 5 .

Lösung einblenden

Um die Schnittpunkte mit der x-Achse (Nullstellen) zu berechnen muss man einfach die Funktion gleich Null setzen, also

f(x)=0

x 2 - 3 5 x - 2 5 = 0 |⋅ 5
5( x 2 - 3 5 x - 2 5 ) = 0

5 x 2 -3x -2 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +3 ± ( -3 ) 2 -4 · 5 · ( -2 ) 25

x1,2 = +3 ± 9 +40 10

x1,2 = +3 ± 49 10

x1 = 3 + 49 10 = 3 +7 10 = 10 10 = 1

x2 = 3 - 49 10 = 3 -7 10 = -4 10 = -0,4

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "5 " teilen:

5 x 2 -3x -2 = 0 |: 5

x 2 - 3 5 x - 2 5 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 3 10 ) 2 - ( - 2 5 ) = 9 100 + 2 5 = 9 100 + 40 100 = 49 100

x1,2 = 3 10 ± 49 100

x1 = 3 10 - 7 10 = - 4 10 = -0.4

x2 = 3 10 + 7 10 = 10 10 = 1

L={ -0,4 ; 1 }

Gesucht sind ja die Schnittpunkte mit der x-Achse (Nullstellen), d.h. die gesuchten y-Werte sind immer jeweils 0.

Die Schnittpunkte mit der x-Achse (Nullstellen) sind also N1( -0,4 |0) und N2( 1 |0).

Schnittpunkte berechnen

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= -3 ( x -4 ) 2
und
g(x)= -75 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

-3 ( x -4 ) 2 = -75 |: ( -3 )
( x -4 ) 2 = 25 | 2

1. Fall

x -4 = - 25 = -5
x -4 = -5 | +4
x1 = -1

2. Fall

x -4 = 25 = 5
x -4 = 5 | +4
x2 = 9

L={ -1 ; 9 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -1 ) = -75

g( 9 ) = -75

Die Schnittpunkte sind also S1( -1 | -75 ) und S2( 9 | -75 ).

Schnittpunkte mit MNF

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= -4 x 2 +2x -14
und
g(x)= -5 x 2 +3x -2 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

-4 x 2 +2x -14 = -5 x 2 +3x -2 | +5 x 2 -3x +2

x 2 - x -12 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +1 ± ( -1 ) 2 -4 · 1 · ( -12 ) 21

x1,2 = +1 ± 1 +48 2

x1,2 = +1 ± 49 2

x1 = 1 + 49 2 = 1 +7 2 = 8 2 = 4

x2 = 1 - 49 2 = 1 -7 2 = -6 2 = -3

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 1 2 ) 2 - ( -12 ) = 1 4 + 12 = 1 4 + 48 4 = 49 4

x1,2 = 1 2 ± 49 4

x1 = 1 2 - 7 2 = - 6 2 = -3

x2 = 1 2 + 7 2 = 8 2 = 4

L={ -3 ; 4 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -3 ) = -5 ( -3 ) 2 +3( -3 ) -2 = -59 -9 -2 = -45 -9 -2 = -56

g( 4 ) = -5 4 2 +34 -2 = -516 +12 -2 = -80 +12 -2 = -70

Die Schnittpunkte sind also S1( -3 | -56 ) und S2( 4 | -70 ).

Schnittpunkte mit MNF (Graph)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gezeichnet ist die Gerade der Funktion f.

Nicht abgebildet ist der Graph von g mit g(x)= - x 2 - 1 3 x +11 .

Bestimme die Schnittpunkte der Graphen von f und g.

Lösung einblenden

Als erstes müssen wir den Funktionsterm des eingezeichneten Graphen von f bestimmen:

Man erkennt sofort, dass es sich um eine Gerade handelt, also gilt y = m⋅x + c .

Den y-Achsenabschnitt c = -1 kann man dem Schaubild leicht entnehmen.

Etwas schwieriger ist das Ablesen der Steigung m. Wenn man sich jedoch ein Steigungsdreick eingezeichnet denkt und 3 Einheit(en) nach rechts geht, so muss man 2 nach oben gehen. Die Steigung ist also m= 2 3 .

Der Term der abgebildeten Geraden ist also y= 2 3 x -1 oder f(x)= 2 3 x -1 .

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

2 3 x -1 = - x 2 - 1 3 x +11 |⋅ 3
3( 2 3 x -1 ) = 3( - x 2 - 1 3 x +11 )
2x -3 = -3 x 2 - x +33 | +3 x 2 + x -33
3 x 2 +3x -36 = 0 |:3

x 2 + x -12 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -1 ± 1 2 -4 · 1 · ( -12 ) 21

x1,2 = -1 ± 1 +48 2

x1,2 = -1 ± 49 2

x1 = -1 + 49 2 = -1 +7 2 = 6 2 = 3

x2 = -1 - 49 2 = -1 -7 2 = -8 2 = -4

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 1 2 ) 2 - ( -12 ) = 1 4 + 12 = 1 4 + 48 4 = 49 4

x1,2 = - 1 2 ± 49 4

x1 = - 1 2 - 7 2 = - 8 2 = -4

x2 = - 1 2 + 7 2 = 6 2 = 3

L={ -4 ; 3 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -4 ) = - ( -4 ) 2 - 1 3 ( -4 ) +11 = -16 + 4 3 +11 = - 11 3

g( 3 ) = - 3 2 - 1 3 3 +11 = -9 -1 +11 = 1

Die Schnittpunkte sind also S1( -4 | - 11 3 ) und S2( 3 | 1 ).

Linearfaktordarst. aus Term (a=1)

Beispiel:

Gegeben ist die Funktion f mit y= x 2 +4x .
Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Wir können einfach x ausklammern und erhalten so y= ( x +4 ) x .

Linearfaktordarst. am Graph (a=1)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist eine verschobene Normalparabel. Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Wir lesen einfach die beiden Schnittpunkte mit der x-Achse ab: N1(-4|0) und N2(0|0).

Also muss der Funktionsterm y= a · ( x +4 ) · x sein.

Weil es sich ja aber um eine Normalparabel handelt, kann dieses a nur 1 oder -1 sein.

Die Parabel ist nach unten geöffnet, also muss a = -1 sein.

Der gesuchte faktorisierte Funktionsterm ist somit y= - ( x +4 ) x .