Aufgabenbeispiele von Nullstellen, Schnittpunkte

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Nullstellen mit Nullprodukt

Beispiel:

Bestimme die Nullstellen der quadratischen Funktion f mit
y= 2 x 2 +3x

Lösung einblenden

Um die Nullstellen zu berechnen, setzen wir einfach y = 0.

Hier kann man x ausklammern und den Satz vom Nullprodukt anwenden

2 x 2 +3x = 0
x ( 2x +3 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

2x +3 = 0 | -3
2x = -3 |:2
x2 = - 3 2 = -1.5

L={ - 3 2 ; 0}

Nullstellen und Scheitel (Nullprodukt)

Beispiel:

Bestimme die Nullstellen und dann den Scheitel der quadratischen Funktion f mit
y= 4 x 2 +20x

Lösung einblenden

Um die Nullstellen zu berechnen, setzen wir einfach y = 0.

Hier kann man x ausklammern und den Satz vom Nullprodukt anwenden

4 x 2 +20x = 0
4 x ( x +5 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x +5 = 0 | -5
x2 = -5

L={ -5 ; 0}

Wegen der Symmetrie von Parabeln wissen wir, dass der Scheitel genau in der Mitte zwischen den Nullstellen liegen muss. Wir berechen also den Mittelwert der beiden Nullstellen -5+0 2 = -2.5 und erhalten so den x-Wert des Scheitels.

Der Scheitel hat also die Koordinaten S(-2.5|y) mit y = 4 ( -2,5 ) 2 +20( -2,5 ) = 25 -50 = -25.

Als Ergebnisse erhalten wir also: Nullstellen: x1=-5 und x2=0 , Scheitel: S(-2.5|-25).

Nullstellen mit Mitternachtsformel

Beispiel:

Berechne die Schnittpunkte mit der x-Achse (Nullstellen) des Graphen der Funktion f mit f(x)= x 2 + 15 2 x + 25 2 .

Lösung einblenden

Um die Schnittpunkte mit der x-Achse (Nullstellen) zu berechnen muss man einfach die Funktion gleich Null setzen, also

f(x)=0

x 2 + 15 2 x + 25 2 = 0 |⋅ 2
2( x 2 + 15 2 x + 25 2 ) = 0

2 x 2 +15x +25 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -15 ± 15 2 -4 · 2 · 25 22

x1,2 = -15 ± 225 -200 4

x1,2 = -15 ± 25 4

x1 = -15 + 25 4 = -15 +5 4 = -10 4 = -2,5

x2 = -15 - 25 4 = -15 -5 4 = -20 4 = -5

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "2 " teilen:

2 x 2 +15x +25 = 0 |: 2

x 2 + 15 2 x + 25 2 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 15 4 ) 2 - ( 25 2 ) = 225 16 - 25 2 = 225 16 - 200 16 = 25 16

x1,2 = - 15 4 ± 25 16

x1 = - 15 4 - 5 4 = - 20 4 = -5

x2 = - 15 4 + 5 4 = - 10 4 = -2.5

L={ -5 ; -2,5 }

Gesucht sind ja die Schnittpunkte mit der x-Achse (Nullstellen), d.h. die gesuchten y-Werte sind immer jeweils 0.

Die Schnittpunkte mit der x-Achse (Nullstellen) sind also N1( -5 |0) und N2( -2,5 |0).

Schnittpunkte berechnen

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= -3 ( x +5 ) 2 +11
und
g(x)= -1 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

-3 ( x +5 ) 2 +11 = -1 | -11
-3 ( x +5 ) 2 = -12 |: ( -3 )
( x +5 ) 2 = 4 | 2

1. Fall

x +5 = - 4 = -2
x +5 = -2 | -5
x1 = -7

2. Fall

x +5 = 4 = 2
x +5 = 2 | -5
x2 = -3

L={ -7 ; -3 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -7 ) = -1

g( -3 ) = -1

Die Schnittpunkte sind also S1( -7 | -1 ) und S2( -3 | -1 ).

Schnittpunkte mit MNF

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= -4 x 2 -2x -8
und
g(x)= -5 x 2 -3x -2 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

-4 x 2 -2x -8 = -5 x 2 -3x -2 | +5 x 2 +3x +2

x 2 + x -6 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -1 ± 1 2 -4 · 1 · ( -6 ) 21

x1,2 = -1 ± 1 +24 2

x1,2 = -1 ± 25 2

x1 = -1 + 25 2 = -1 +5 2 = 4 2 = 2

x2 = -1 - 25 2 = -1 -5 2 = -6 2 = -3

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 1 2 ) 2 - ( -6 ) = 1 4 + 6 = 1 4 + 24 4 = 25 4

x1,2 = - 1 2 ± 25 4

x1 = - 1 2 - 5 2 = - 6 2 = -3

x2 = - 1 2 + 5 2 = 4 2 = 2

L={ -3 ; 2 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -3 ) = -5 ( -3 ) 2 -3( -3 ) -2 = -59 +9 -2 = -45 +9 -2 = -38

g( 2 ) = -5 2 2 -32 -2 = -54 -6 -2 = -20 -6 -2 = -28

Die Schnittpunkte sind also S1( -3 | -38 ) und S2( 2 | -28 ).

Schnittpunkte mit MNF (Graph)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gezeichnet ist die Gerade der Funktion f.

Nicht abgebildet ist der Graph von g mit g(x)= - x 2 +2x +22 .

Bestimme die Schnittpunkte der Graphen von f und g.

Lösung einblenden

Als erstes müssen wir den Funktionsterm des eingezeichneten Graphen von f bestimmen:

Man erkennt sofort, dass es sich um eine Gerade handelt, also gilt y = m⋅x + c .

Den y-Achsenabschnitt c = 2 kann man dem Schaubild leicht entnehmen.

Etwas schwieriger ist das Ablesen der Steigung m. Wenn man sich jedoch ein Steigungsdreick eingezeichnet denkt und 1 Einheit(en) nach rechts geht, so muss man 1 nach oben gehen. Die Steigung ist also m=1.

Der Term der abgebildeten Geraden ist also y= x +2 oder f(x)= x +2 .

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

x +2 = - x 2 +2x +22 | + x 2 -2x -22

x 2 - x -20 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +1 ± ( -1 ) 2 -4 · 1 · ( -20 ) 21

x1,2 = +1 ± 1 +80 2

x1,2 = +1 ± 81 2

x1 = 1 + 81 2 = 1 +9 2 = 10 2 = 5

x2 = 1 - 81 2 = 1 -9 2 = -8 2 = -4

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 1 2 ) 2 - ( -20 ) = 1 4 + 20 = 1 4 + 80 4 = 81 4

x1,2 = 1 2 ± 81 4

x1 = 1 2 - 9 2 = - 8 2 = -4

x2 = 1 2 + 9 2 = 10 2 = 5

L={ -4 ; 5 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -4 ) = - ( -4 ) 2 +2( -4 ) +22 = -16 -8 +22 = -2

g( 5 ) = - 5 2 +25 +22 = -25 +10 +22 = 7

Die Schnittpunkte sind also S1( -4 | -2 ) und S2( 5 | 7 ).

Linearfaktordarst. aus Term (a=1)

Beispiel:

Gegeben ist die Funktion f mit y= x 2 +4x .
Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Wir können einfach x ausklammern und erhalten so y= ( x +4 ) x .

Linearfaktordarst. am Graph (a=1)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist eine verschobene Normalparabel. Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Wir lesen einfach die beiden Schnittpunkte mit der x-Achse ab: N1(1|0) und N2(4|0).

Also muss der Funktionsterm y= a · ( x -1 ) · ( x -4 ) sein.

Weil es sich ja aber um eine Normalparabel handelt, kann dieses a nur 1 oder -1 sein.

Die Parabel ist nach oben geöffnet, also muss a = 1 sein.

Der gesuchte faktorisierte Funktionsterm ist somit y= ( x -1 ) ( x -4 ) .