Aufgabenbeispiele von Nullstellen, Schnittpunkte

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Nullstellen mit Nullprodukt

Beispiel:

Bestimme die Nullstellen der quadratischen Funktion f mit
y= x 2 - x

Lösung einblenden

Um die Nullstellen zu berechnen, setzen wir einfach y = 0.

Hier kann man x ausklammern und den Satz vom Nullprodukt anwenden

x 2 - x = 0
x ( x -1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x -1 = 0 | +1
x2 = 1

L={0; 1 }

Nullstellen und Scheitel (Nullprodukt)

Beispiel:

Bestimme die Nullstellen und dann den Scheitel der quadratischen Funktion f mit
y= x 2 +2x

Lösung einblenden

Um die Nullstellen zu berechnen, setzen wir einfach y = 0.

Hier kann man x ausklammern und den Satz vom Nullprodukt anwenden

x 2 +2x = 0
x ( x +2 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x +2 = 0 | -2
x2 = -2

L={ -2 ; 0}

Wegen der Symmetrie von Parabeln wissen wir, dass der Scheitel genau in der Mitte zwischen den Nullstellen liegen muss. Wir berechen also den Mittelwert der beiden Nullstellen -2+0 2 = -1 und erhalten so den x-Wert des Scheitels.

Der Scheitel hat also die Koordinaten S(-1|y) mit y = ( -1 ) 2 +2( -1 ) = 1 -2 = -1.

Als Ergebnisse erhalten wir also: Nullstellen: x1=-2 und x2=0 , Scheitel: S(-1|-1).

Nullstellen mit Mitternachtsformel

Beispiel:

Berechne die Schnittpunkte mit der x-Achse (Nullstellen) des Graphen der Funktion f mit f(x)= x 2 - 16 5 x -9 .

Lösung einblenden

Um die Schnittpunkte mit der x-Achse (Nullstellen) zu berechnen muss man einfach die Funktion gleich Null setzen, also

f(x)=0

x 2 - 16 5 x -9 = 0 |⋅ 5
5( x 2 - 16 5 x -9 ) = 0

5 x 2 -16x -45 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +16 ± ( -16 ) 2 -4 · 5 · ( -45 ) 25

x1,2 = +16 ± 256 +900 10

x1,2 = +16 ± 1156 10

x1 = 16 + 1156 10 = 16 +34 10 = 50 10 = 5

x2 = 16 - 1156 10 = 16 -34 10 = -18 10 = -1,8

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "5 " teilen:

5 x 2 -16x -45 = 0 |: 5

x 2 - 16 5 x -9 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 8 5 ) 2 - ( -9 ) = 64 25 + 9 = 64 25 + 225 25 = 289 25

x1,2 = 8 5 ± 289 25

x1 = 8 5 - 17 5 = - 9 5 = -1.8

x2 = 8 5 + 17 5 = 25 5 = 5

L={ -1,8 ; 5 }

Gesucht sind ja die Schnittpunkte mit der x-Achse (Nullstellen), d.h. die gesuchten y-Werte sind immer jeweils 0.

Die Schnittpunkte mit der x-Achse (Nullstellen) sind also N1( -1,8 |0) und N2( 5 |0).

Schnittpunkte berechnen

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= ( x -2 ) 2
und
g(x)= 4 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

( x -2 ) 2 = 4 | 2

1. Fall

x -2 = - 4 = -2
x -2 = -2 | +2
x1 = 0

2. Fall

x -2 = 4 = 2
x -2 = 2 | +2
x2 = 4

L={0; 4 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g(0) = 4

g( 4 ) = 4

Die Schnittpunkte sind also S1(0| 4 ) und S2( 4 | 4 ).

Schnittpunkte mit MNF

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= - x 2 -4x +1
und
g(x)= -2 x 2 + x -5 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

- x 2 -4x +1 = -2 x 2 + x -5 | +2 x 2 - x +5

x 2 -5x +6 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +5 ± ( -5 ) 2 -4 · 1 · 6 21

x1,2 = +5 ± 25 -24 2

x1,2 = +5 ± 1 2

x1 = 5 + 1 2 = 5 +1 2 = 6 2 = 3

x2 = 5 - 1 2 = 5 -1 2 = 4 2 = 2

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 5 2 ) 2 - 6 = 25 4 - 6 = 25 4 - 24 4 = 1 4

x1,2 = 5 2 ± 1 4

x1 = 5 2 - 1 2 = 4 2 = 2

x2 = 5 2 + 1 2 = 6 2 = 3

L={ 2 ; 3 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( 2 ) = -2 2 2 +2 -5 = -24 +2 -5 = -8 +2 -5 = -11

g( 3 ) = -2 3 2 +3 -5 = -29 +3 -5 = -18 +3 -5 = -20

Die Schnittpunkte sind also S1( 2 | -11 ) und S2( 3 | -20 ).

Schnittpunkte mit MNF (Graph)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gezeichnet ist die Gerade der Funktion f.

Nicht abgebildet ist der Graph von g mit g(x)= - x 2 + 1 2 x +1 .

Bestimme die Schnittpunkte der Graphen von f und g.

Lösung einblenden

Als erstes müssen wir den Funktionsterm des eingezeichneten Graphen von f bestimmen:

Man erkennt sofort, dass es sich um eine Gerade handelt, also gilt y = m⋅x + c .

Den y-Achsenabschnitt c = 0 kann man dem Schaubild leicht entnehmen.

Etwas schwieriger ist das Ablesen der Steigung m. Wenn man sich jedoch ein Steigungsdreick eingezeichnet denkt und 2 Einheit(en) nach rechts geht, so muss man 1 nach oben gehen. Die Steigung ist also m= 1 2 .

Der Term der abgebildeten Geraden ist also y= 1 2 x oder f(x)= 1 2 x .

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

1 2 x = - x 2 + 1 2 x +1 | + x 2 - 1 2 x
x 2 = 1 | 2
x1 = - 1 = -1
x2 = 1 = 1

L={ -1 ; 1 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -1 ) = - ( -1 ) 2 + 1 2 ( -1 ) +1 = -1 - 1 2 +1 = - 1 2

g( 1 ) = - 1 2 + 1 2 1 +1 = -1 + 1 2 +1 = 1 2

Die Schnittpunkte sind also S1( -1 | - 1 2 ) und S2( 1 | 1 2 ).

Linearfaktordarst. aus Term (a=1)

Beispiel:

Gegeben ist die Funktion f mit y= x 2 - x -2 .
Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Für die faktorisierte Darstellung brauchen wir die Nullstellen. Also berechnen wir diese als erstes.

x 2 - x -2 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +1 ± ( -1 ) 2 -4 · 1 · ( -2 ) 21

x1,2 = +1 ± 1 +8 2

x1,2 = +1 ± 9 2

x1 = 1 + 9 2 = 1 +3 2 = 4 2 = 2

x2 = 1 - 9 2 = 1 -3 2 = -2 2 = -1

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 1 2 ) 2 - ( -2 ) = 1 4 + 2 = 1 4 + 8 4 = 9 4

x1,2 = 1 2 ± 9 4

x1 = 1 2 - 3 2 = - 2 2 = -1

x2 = 1 2 + 3 2 = 4 2 = 2

Der Funktionterm ( x +1 ) ( x -2 ) hat nun also genau die gleichen Nullstellen wie y= x 2 - x -2 und beide Terme haben a=1 als Koeffizient vor dem x² (Normalparabeln).

Also ist y= ( x +1 ) ( x -2 ) bereits der gesuchte Term.

Linearfaktordarst. am Graph (a=1)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist eine verschobene Normalparabel. Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Wir lesen einfach die beiden Schnittpunkte mit der x-Achse ab: N1(0|0) und N2(3|0).

Also muss der Funktionsterm y= a · x · ( x -3 ) sein.

Weil es sich ja aber um eine Normalparabel handelt, kann dieses a nur 1 oder -1 sein.

Die Parabel ist nach oben geöffnet, also muss a = 1 sein.

Der gesuchte faktorisierte Funktionsterm ist somit y= x ( x -3 ) .