Aufgabenbeispiele von Nullstellen, Schnittpunkte

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Nullstellen mit Nullprodukt

Beispiel:

Bestimme die Nullstellen der quadratischen Funktion f mit
y= 2 x 2 +5x

Lösung einblenden

Um die Nullstellen zu berechnen, setzen wir einfach y = 0.

Hier kann man x ausklammern und den Satz vom Nullprodukt anwenden

2 x 2 +5x = 0
x ( 2x +5 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

2x +5 = 0 | -5
2x = -5 |:2
x2 = - 5 2 = -2.5

L={ - 5 2 ; 0}

Nullstellen und Scheitel (Nullprodukt)

Beispiel:

Bestimme die Nullstellen und dann den Scheitel der quadratischen Funktion f mit
y= 3 x 2 +3x

Lösung einblenden

Um die Nullstellen zu berechnen, setzen wir einfach y = 0.

Hier kann man x ausklammern und den Satz vom Nullprodukt anwenden

3 x 2 +3x = 0
3 x ( x +1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x +1 = 0 | -1
x2 = -1

L={ -1 ; 0}

Wegen der Symmetrie von Parabeln wissen wir, dass der Scheitel genau in der Mitte zwischen den Nullstellen liegen muss. Wir berechen also den Mittelwert der beiden Nullstellen -1+0 2 = -0.5 und erhalten so den x-Wert des Scheitels.

Der Scheitel hat also die Koordinaten S(-0.5|y) mit y = 3 ( -0,5 ) 2 +3( -0,5 ) = 0,75 -1,5 = -0.75.

Als Ergebnisse erhalten wir also: Nullstellen: x1=-1 und x2=0 , Scheitel: S(-0.5|-0.75).

Nullstellen mit Mitternachtsformel

Beispiel:

Berechne die Schnittpunkte mit der x-Achse (Nullstellen) des Graphen der Funktion f mit f(x)= 2 x 2 +32x +126 .

Lösung einblenden

Um die Schnittpunkte mit der x-Achse (Nullstellen) zu berechnen muss man einfach die Funktion gleich Null setzen, also

f(x)=0

2 x 2 +32x +126 = 0 |:2

x 2 +16x +63 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -16 ± 16 2 -4 · 1 · 63 21

x1,2 = -16 ± 256 -252 2

x1,2 = -16 ± 4 2

x1 = -16 + 4 2 = -16 +2 2 = -14 2 = -7

x2 = -16 - 4 2 = -16 -2 2 = -18 2 = -9

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 8 2 - 63 = 64 - 63 = 1

x1,2 = -8 ± 1

x1 = -8 - 1 = -9

x2 = -8 + 1 = -7

L={ -9 ; -7 }

Gesucht sind ja die Schnittpunkte mit der x-Achse (Nullstellen), d.h. die gesuchten y-Werte sind immer jeweils 0.

Die Schnittpunkte mit der x-Achse (Nullstellen) sind also N1( -9 |0) und N2( -7 |0).

Schnittpunkte berechnen

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= 2 ( x +5 ) 2 +3
und
g(x)= 53 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

2 ( x +5 ) 2 +3 = 53 | -3
2 ( x +5 ) 2 = 50 |:2
( x +5 ) 2 = 25 | 2

1. Fall

x +5 = - 25 = -5
x +5 = -5 | -5
x1 = -10

2. Fall

x +5 = 25 = 5
x +5 = 5 | -5
x2 = 0

L={ -10 ; 0}

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -10 ) = 53

g(0) = 53

Die Schnittpunkte sind also S1( -10 | 53 ) und S2(0| 53 ).

Schnittpunkte mit MNF

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= 2 x 2 +3x -3
und
g(x)= x 2 +4x -1 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

2 x 2 +3x -3 = x 2 +4x -1 | - x 2 -4x +1

x 2 - x -2 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +1 ± ( -1 ) 2 -4 · 1 · ( -2 ) 21

x1,2 = +1 ± 1 +8 2

x1,2 = +1 ± 9 2

x1 = 1 + 9 2 = 1 +3 2 = 4 2 = 2

x2 = 1 - 9 2 = 1 -3 2 = -2 2 = -1

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 1 2 ) 2 - ( -2 ) = 1 4 + 2 = 1 4 + 8 4 = 9 4

x1,2 = 1 2 ± 9 4

x1 = 1 2 - 3 2 = - 2 2 = -1

x2 = 1 2 + 3 2 = 4 2 = 2

L={ -1 ; 2 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -1 ) = ( -1 ) 2 +4( -1 ) -1 = 1 -4 -1 = -4

g( 2 ) = 2 2 +42 -1 = 4 +8 -1 = 11

Die Schnittpunkte sind also S1( -1 | -4 ) und S2( 2 | 11 ).

Schnittpunkte mit MNF (Graph)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gezeichnet ist die Gerade der Funktion f.

Nicht abgebildet ist der Graph von g mit g(x)= - x 2 - x +2 .

Bestimme die Schnittpunkte der Graphen von f und g.

Lösung einblenden

Als erstes müssen wir den Funktionsterm des eingezeichneten Graphen von f bestimmen:

Man erkennt sofort, dass es sich um eine Gerade handelt, also gilt y = m⋅x + c .

Den y-Achsenabschnitt c = -1 kann man dem Schaubild leicht entnehmen.

Etwas schwieriger ist das Ablesen der Steigung m. Wenn man sich jedoch ein Steigungsdreick eingezeichnet denkt und 1 Einheit(en) nach rechts geht, so muss man 1 nach oben gehen. Die Steigung ist also m=1.

Der Term der abgebildeten Geraden ist also y= x -1 oder f(x)= x -1 .

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

x -1 = - x 2 - x +2 | + x 2 + x -2

x 2 +2x -3 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -2 ± 2 2 -4 · 1 · ( -3 ) 21

x1,2 = -2 ± 4 +12 2

x1,2 = -2 ± 16 2

x1 = -2 + 16 2 = -2 +4 2 = 2 2 = 1

x2 = -2 - 16 2 = -2 -4 2 = -6 2 = -3

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 1 2 - ( -3 ) = 1+ 3 = 4

x1,2 = -1 ± 4

x1 = -1 - 2 = -3

x2 = -1 + 2 = 1

L={ -3 ; 1 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -3 ) = - ( -3 ) 2 - ( -3 ) +2 = -9 +3 +2 = -4

g( 1 ) = - 1 2 - 1 +2 = -1 -1 +2 = 0

Die Schnittpunkte sind also S1( -3 | -4 ) und S2( 1 |0).

Linearfaktordarst. aus Term (a=1)

Beispiel:

Gegeben ist die Funktion f mit y= x 2 +3x .
Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Wir können einfach x ausklammern und erhalten so y= ( x +3 ) x .

Linearfaktordarst. am Graph (a=1)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist eine verschobene Normalparabel. Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Wir lesen einfach die beiden Schnittpunkte mit der x-Achse ab: N1(-1|0) und N2(1|0).

Also muss der Funktionsterm y= a · ( x +1 ) · ( x -1 ) sein.

Weil es sich ja aber um eine Normalparabel handelt, kann dieses a nur 1 oder -1 sein.

Die Parabel ist nach unten geöffnet, also muss a = -1 sein.

Der gesuchte faktorisierte Funktionsterm ist somit y= - ( x +1 ) ( x -1 ) .