Aufgabenbeispiele von Nullstellen, Schnittpunkte

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Nullstellen mit Nullprodukt

Beispiel:

Bestimme die Nullstellen der quadratischen Funktion f mit
y= x 2 -2x

Lösung einblenden

Um die Nullstellen zu berechnen, setzen wir einfach y = 0.

Hier kann man x ausklammern und den Satz vom Nullprodukt anwenden

x 2 -2x = 0
x ( x -2 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x -2 = 0 | +2
x2 = 2

L={0; 2 }

Nullstellen und Scheitel (Nullprodukt)

Beispiel:

Bestimme die Nullstellen und dann den Scheitel der quadratischen Funktion f mit
y= 4 x 2 +20x

Lösung einblenden

Um die Nullstellen zu berechnen, setzen wir einfach y = 0.

Hier kann man x ausklammern und den Satz vom Nullprodukt anwenden

4 x 2 +20x = 0
4 x ( x +5 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x +5 = 0 | -5
x2 = -5

L={ -5 ; 0}

Wegen der Symmetrie von Parabeln wissen wir, dass der Scheitel genau in der Mitte zwischen den Nullstellen liegen muss. Wir berechen also den Mittelwert der beiden Nullstellen -5+0 2 = -2.5 und erhalten so den x-Wert des Scheitels.

Der Scheitel hat also die Koordinaten S(-2.5|y) mit y = 4 ( -2,5 ) 2 +20( -2,5 ) = 25 -50 = -25.

Als Ergebnisse erhalten wir also: Nullstellen: x1=-5 und x2=0 , Scheitel: S(-2.5|-25).

Nullstellen mit Mitternachtsformel

Beispiel:

Berechne die Schnittpunkte mit der x-Achse (Nullstellen) des Graphen der Funktion f mit f(x)= 3 x 2 -21x +18 .

Lösung einblenden

Um die Schnittpunkte mit der x-Achse (Nullstellen) zu berechnen muss man einfach die Funktion gleich Null setzen, also

f(x)=0

3 x 2 -21x +18 = 0 |:3

x 2 -7x +6 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +7 ± ( -7 ) 2 -4 · 1 · 6 21

x1,2 = +7 ± 49 -24 2

x1,2 = +7 ± 25 2

x1 = 7 + 25 2 = 7 +5 2 = 12 2 = 6

x2 = 7 - 25 2 = 7 -5 2 = 2 2 = 1

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 7 2 ) 2 - 6 = 49 4 - 6 = 49 4 - 24 4 = 25 4

x1,2 = 7 2 ± 25 4

x1 = 7 2 - 5 2 = 2 2 = 1

x2 = 7 2 + 5 2 = 12 2 = 6

L={ 1 ; 6 }

Gesucht sind ja die Schnittpunkte mit der x-Achse (Nullstellen), d.h. die gesuchten y-Werte sind immer jeweils 0.

Die Schnittpunkte mit der x-Achse (Nullstellen) sind also N1( 1 |0) und N2( 6 |0).

Schnittpunkte berechnen

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= ( x +5 ) 2 +13
und
g(x)= 14 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

( x +5 ) 2 +13 = 14 | -13
( x +5 ) 2 = 1 | 2

1. Fall

x +5 = - 1 = -1
x +5 = -1 | -5
x1 = -6

2. Fall

x +5 = 1 = 1
x +5 = 1 | -5
x2 = -4

L={ -6 ; -4 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -6 ) = 14

g( -4 ) = 14

Die Schnittpunkte sind also S1( -6 | 14 ) und S2( -4 | 14 ).

Schnittpunkte mit MNF

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= -2 x 2 +4x +4
und
g(x)= -3 x 2 - x -2 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

-2 x 2 +4x +4 = -3 x 2 - x -2 | +3 x 2 + x +2

x 2 +5x +6 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -5 ± 5 2 -4 · 1 · 6 21

x1,2 = -5 ± 25 -24 2

x1,2 = -5 ± 1 2

x1 = -5 + 1 2 = -5 +1 2 = -4 2 = -2

x2 = -5 - 1 2 = -5 -1 2 = -6 2 = -3

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 5 2 ) 2 - 6 = 25 4 - 6 = 25 4 - 24 4 = 1 4

x1,2 = - 5 2 ± 1 4

x1 = - 5 2 - 1 2 = - 6 2 = -3

x2 = - 5 2 + 1 2 = - 4 2 = -2

L={ -3 ; -2 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -3 ) = -3 ( -3 ) 2 - ( -3 ) -2 = -39 +3 -2 = -27 +3 -2 = -26

g( -2 ) = -3 ( -2 ) 2 - ( -2 ) -2 = -34 +2 -2 = -12 +2 -2 = -12

Die Schnittpunkte sind also S1( -3 | -26 ) und S2( -2 | -12 ).

Schnittpunkte mit MNF (Graph)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gezeichnet ist die Gerade der Funktion f.

Nicht abgebildet ist der Graph von g mit g(x)= - x 2 + x +4 .

Bestimme die Schnittpunkte der Graphen von f und g.

Lösung einblenden

Als erstes müssen wir den Funktionsterm des eingezeichneten Graphen von f bestimmen:

Man erkennt sofort, dass es sich um eine Gerade handelt, also gilt y = m⋅x + c .

Den y-Achsenabschnitt c = -2 kann man dem Schaubild leicht entnehmen.

Etwas schwieriger ist das Ablesen der Steigung m. Wenn man sich jedoch ein Steigungsdreick eingezeichnet denkt und 1 Einheit(en) nach rechts geht, so muss man 2 nach oben gehen. Die Steigung ist also m=2.

Der Term der abgebildeten Geraden ist also y= 2x -2 oder f(x)= 2x -2 .

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

2x -2 = - x 2 + x +4 | + x 2 - x -4

x 2 + x -6 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -1 ± 1 2 -4 · 1 · ( -6 ) 21

x1,2 = -1 ± 1 +24 2

x1,2 = -1 ± 25 2

x1 = -1 + 25 2 = -1 +5 2 = 4 2 = 2

x2 = -1 - 25 2 = -1 -5 2 = -6 2 = -3

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 1 2 ) 2 - ( -6 ) = 1 4 + 6 = 1 4 + 24 4 = 25 4

x1,2 = - 1 2 ± 25 4

x1 = - 1 2 - 5 2 = - 6 2 = -3

x2 = - 1 2 + 5 2 = 4 2 = 2

L={ -3 ; 2 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -3 ) = - ( -3 ) 2 -3 +4 = -9 -3 +4 = -8

g( 2 ) = - 2 2 +2 +4 = -4 +2 +4 = 2

Die Schnittpunkte sind also S1( -3 | -8 ) und S2( 2 | 2 ).

Linearfaktordarst. aus Term (a=1)

Beispiel:

Gegeben ist die Funktion f mit y= x 2 +2x -3 .
Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Für die faktorisierte Darstellung brauchen wir die Nullstellen. Also berechnen wir diese als erstes.

x 2 +2x -3 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -2 ± 2 2 -4 · 1 · ( -3 ) 21

x1,2 = -2 ± 4 +12 2

x1,2 = -2 ± 16 2

x1 = -2 + 16 2 = -2 +4 2 = 2 2 = 1

x2 = -2 - 16 2 = -2 -4 2 = -6 2 = -3

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 1 2 - ( -3 ) = 1+ 3 = 4

x1,2 = -1 ± 4

x1 = -1 - 2 = -3

x2 = -1 + 2 = 1

Der Funktionterm ( x +3 ) ( x -1 ) hat nun also genau die gleichen Nullstellen wie y= x 2 +2x -3 und beide Terme haben a=1 als Koeffizient vor dem x² (Normalparabeln).

Also ist y= ( x +3 ) ( x -1 ) bereits der gesuchte Term.

Linearfaktordarst. am Graph (a=1)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist eine verschobene Normalparabel. Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Wir lesen einfach die beiden Schnittpunkte mit der x-Achse ab: N1(-1|0) und N2(2|0).

Also muss der Funktionsterm y= a · ( x +1 ) · ( x -2 ) sein.

Weil es sich ja aber um eine Normalparabel handelt, kann dieses a nur 1 oder -1 sein.

Die Parabel ist nach unten geöffnet, also muss a = -1 sein.

Der gesuchte faktorisierte Funktionsterm ist somit y= - ( x +1 ) ( x -2 ) .