Aufgabenbeispiele von Nullstellen, Schnittpunkte

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Nullstellen mit Nullprodukt

Beispiel:

Bestimme die Nullstellen der quadratischen Funktion f mit
y= x 2 -3x

Lösung einblenden

Um die Nullstellen zu berechnen, setzen wir einfach y = 0.

Hier kann man x ausklammern und den Satz vom Nullprodukt anwenden

x 2 -3x = 0
x ( x -3 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x -3 = 0 | +3
x2 = 3

L={0; 3 }

Nullstellen und Scheitel (Nullprodukt)

Beispiel:

Bestimme die Nullstellen und dann den Scheitel der quadratischen Funktion f mit
y= x 2 +5x

Lösung einblenden

Um die Nullstellen zu berechnen, setzen wir einfach y = 0.

Hier kann man x ausklammern und den Satz vom Nullprodukt anwenden

x 2 +5x = 0
x ( x +5 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x +5 = 0 | -5
x2 = -5

L={ -5 ; 0}

Wegen der Symmetrie von Parabeln wissen wir, dass der Scheitel genau in der Mitte zwischen den Nullstellen liegen muss. Wir berechen also den Mittelwert der beiden Nullstellen -5+0 2 = -2.5 und erhalten so den x-Wert des Scheitels.

Der Scheitel hat also die Koordinaten S(-2.5|y) mit y = ( -2,5 ) 2 +5( -2,5 ) = 6,25 -12,5 = -6.25.

Als Ergebnisse erhalten wir also: Nullstellen: x1=-5 und x2=0 , Scheitel: S(-2.5|-6.25).

Nullstellen mit Mitternachtsformel

Beispiel:

Berechne die Schnittpunkte mit der x-Achse (Nullstellen) des Graphen der Funktion f mit f(x)= x 2 - 26 5 x - 63 5 .

Lösung einblenden

Um die Schnittpunkte mit der x-Achse (Nullstellen) zu berechnen muss man einfach die Funktion gleich Null setzen, also

f(x)=0

x 2 - 26 5 x - 63 5 = 0 |⋅ 5
5( x 2 - 26 5 x - 63 5 ) = 0

5 x 2 -26x -63 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +26 ± ( -26 ) 2 -4 · 5 · ( -63 ) 25

x1,2 = +26 ± 676 +1260 10

x1,2 = +26 ± 1936 10

x1 = 26 + 1936 10 = 26 +44 10 = 70 10 = 7

x2 = 26 - 1936 10 = 26 -44 10 = -18 10 = -1,8

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "5 " teilen:

5 x 2 -26x -63 = 0 |: 5

x 2 - 26 5 x - 63 5 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 13 5 ) 2 - ( - 63 5 ) = 169 25 + 63 5 = 169 25 + 315 25 = 484 25

x1,2 = 13 5 ± 484 25

x1 = 13 5 - 22 5 = - 9 5 = -1.8

x2 = 13 5 + 22 5 = 35 5 = 7

L={ -1,8 ; 7 }

Gesucht sind ja die Schnittpunkte mit der x-Achse (Nullstellen), d.h. die gesuchten y-Werte sind immer jeweils 0.

Die Schnittpunkte mit der x-Achse (Nullstellen) sind also N1( -1,8 |0) und N2( 7 |0).

Schnittpunkte berechnen

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= -4 ( x -2 ) 2 +25
und
g(x)= 9 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

-4 ( x -2 ) 2 +25 = 9 | -25
-4 ( x -2 ) 2 = -16 |: ( -4 )
( x -2 ) 2 = 4 | 2

1. Fall

x -2 = - 4 = -2
x -2 = -2 | +2
x1 = 0

2. Fall

x -2 = 4 = 2
x -2 = 2 | +2
x2 = 4

L={0; 4 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g(0) = 9

g( 4 ) = 9

Die Schnittpunkte sind also S1(0| 9 ) und S2( 4 | 9 ).

Schnittpunkte mit MNF

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= 4 x 2 -8x -5
und
g(x)= 3 x 2 -5x +5 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

4 x 2 -8x -5 = 3 x 2 -5x +5 | -3 x 2 +5x -5

x 2 -3x -10 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +3 ± ( -3 ) 2 -4 · 1 · ( -10 ) 21

x1,2 = +3 ± 9 +40 2

x1,2 = +3 ± 49 2

x1 = 3 + 49 2 = 3 +7 2 = 10 2 = 5

x2 = 3 - 49 2 = 3 -7 2 = -4 2 = -2

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 3 2 ) 2 - ( -10 ) = 9 4 + 10 = 9 4 + 40 4 = 49 4

x1,2 = 3 2 ± 49 4

x1 = 3 2 - 7 2 = - 4 2 = -2

x2 = 3 2 + 7 2 = 10 2 = 5

L={ -2 ; 5 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -2 ) = 3 ( -2 ) 2 -5( -2 ) +5 = 34 +10 +5 = 12 +10 +5 = 27

g( 5 ) = 3 5 2 -55 +5 = 325 -25 +5 = 75 -25 +5 = 55

Die Schnittpunkte sind also S1( -2 | 27 ) und S2( 5 | 55 ).

Schnittpunkte mit MNF (Graph)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gezeichnet ist die Gerade der Funktion f.

Nicht abgebildet ist der Graph von g mit g(x)= - x 2 -5x +4 .

Bestimme die Schnittpunkte der Graphen von f und g.

Lösung einblenden

Als erstes müssen wir den Funktionsterm des eingezeichneten Graphen von f bestimmen:

Man erkennt sofort, dass es sich um eine Gerade handelt, also gilt y = m⋅x + c .

Den y-Achsenabschnitt c = 2 kann man dem Schaubild leicht entnehmen.

Etwas schwieriger ist das Ablesen der Steigung m. Wenn man sich jedoch ein Steigungsdreick eingezeichnet denkt und 1 Einheit(en) nach rechts geht, so muss man 4 nach oben gehen. Die Steigung ist also m=-4.

Der Term der abgebildeten Geraden ist also y= -4x +2 oder f(x)= -4x +2 .

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

-4x +2 = - x 2 -5x +4 | + x 2 +5x -4

x 2 + x -2 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -1 ± 1 2 -4 · 1 · ( -2 ) 21

x1,2 = -1 ± 1 +8 2

x1,2 = -1 ± 9 2

x1 = -1 + 9 2 = -1 +3 2 = 2 2 = 1

x2 = -1 - 9 2 = -1 -3 2 = -4 2 = -2

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 1 2 ) 2 - ( -2 ) = 1 4 + 2 = 1 4 + 8 4 = 9 4

x1,2 = - 1 2 ± 9 4

x1 = - 1 2 - 3 2 = - 4 2 = -2

x2 = - 1 2 + 3 2 = 2 2 = 1

L={ -2 ; 1 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -2 ) = - ( -2 ) 2 -5( -2 ) +4 = -4 +10 +4 = 10

g( 1 ) = - 1 2 -51 +4 = -1 -5 +4 = -2

Die Schnittpunkte sind also S1( -2 | 10 ) und S2( 1 | -2 ).

Linearfaktordarst. aus Term (a=1)

Beispiel:

Gegeben ist die Funktion f mit y= x 2 -6x +5 .
Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Für die faktorisierte Darstellung brauchen wir die Nullstellen. Also berechnen wir diese als erstes.

x 2 -6x +5 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +6 ± ( -6 ) 2 -4 · 1 · 5 21

x1,2 = +6 ± 36 -20 2

x1,2 = +6 ± 16 2

x1 = 6 + 16 2 = 6 +4 2 = 10 2 = 5

x2 = 6 - 16 2 = 6 -4 2 = 2 2 = 1

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -3 ) 2 - 5 = 9 - 5 = 4

x1,2 = 3 ± 4

x1 = 3 - 2 = 1

x2 = 3 + 2 = 5

Der Funktionterm ( x -1 ) ( x -5 ) hat nun also genau die gleichen Nullstellen wie y= x 2 -6x +5 und beide Terme haben a=1 als Koeffizient vor dem x² (Normalparabeln).

Also ist y= ( x -1 ) ( x -5 ) bereits der gesuchte Term.

Linearfaktordarst. am Graph (a=1)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist eine verschobene Normalparabel. Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Wir lesen einfach die beiden Schnittpunkte mit der x-Achse ab: N1(-3|0) und N2(0|0).

Also muss der Funktionsterm y= a · ( x +3 ) · x sein.

Weil es sich ja aber um eine Normalparabel handelt, kann dieses a nur 1 oder -1 sein.

Die Parabel ist nach unten geöffnet, also muss a = -1 sein.

Der gesuchte faktorisierte Funktionsterm ist somit y= - ( x +3 ) x .