Aufgabenbeispiele von Wurzelgleichungen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


einfache Wurzelgleichung

Beispiel:

Löse die folgende Gleichung:

- 3x +18 = 3

Lösung einblenden
- 3x +18 = 3 |:(-1 )
3x +18 = -3

Diese Gleichung kann keine Lösung haben, da eine Wurzel nie einen negativen Wert annehmen kann!

L={}

Wurzelgleichung (-> quadr.)

Beispiel:

Löse die folgende Gleichung:

-7x -12 = x

Lösung einblenden
-7x -12 = x |(⋅)2 (Vorsicht: evtl. Vergrößerung der Lösungsmenge)
-7x -12 = ( x ) 2
-7x -12 = x 2 | - x 2

- x 2 -7x -12 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +7 ± ( -7 ) 2 -4 · ( -1 ) · ( -12 ) 2( -1 )

x1,2 = +7 ± 49 -48 -2

x1,2 = +7 ± 1 -2

x1 = 7 + 1 -2 = 7 +1 -2 = 8 -2 = -4

x2 = 7 - 1 -2 = 7 -1 -2 = 6 -2 = -3

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- x 2 -7x -12 = 0 |: -1

x 2 +7x +12 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 7 2 ) 2 - 12 = 49 4 - 12 = 49 4 - 48 4 = 1 4

x1,2 = - 7 2 ± 1 4

x1 = - 7 2 - 1 2 = - 8 2 = -4

x2 = - 7 2 + 1 2 = - 6 2 = -3

Beim Quadrieren oben haben wir eventuel die Lösungesmenge vergrößert.
Deswegen müssen wir jetzt bei allen Lösungen eine Probe machen, ob sie auch wirklich Lösungen sind.

Probe für x = -4

Linke Seite:

x = -4 in -7x -12

= -7( -4 ) -12

= 28 -12

= 16

= 4

Rechte Seite:

x = -4 in x

= -4

Also 4 ≠ -4

x = -4 ist somit keine Lösung !

Probe für x = -3

Linke Seite:

x = -3 in -7x -12

= -7( -3 ) -12

= 21 -12

= 9

= 3

Rechte Seite:

x = -3 in x

= -3

Also 3 ≠ -3

x = -3 ist somit keine Lösung !

L={}

Wurzelgleichung (rechts linear)

Beispiel:

Löse die folgende Gleichung:

x +2 + x = -2

Lösung einblenden
x +2 + x = -2 | - x
x +2 = -x -2 |(⋅)2 (Vorsicht: evtl. Vergrößerung der Lösungsmenge)
x +2 = ( -x -2 ) 2
x +2 = x 2 +4x +4 | - x 2 -4x -4

- x 2 -3x -2 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +3 ± ( -3 ) 2 -4 · ( -1 ) · ( -2 ) 2( -1 )

x1,2 = +3 ± 9 -8 -2

x1,2 = +3 ± 1 -2

x1 = 3 + 1 -2 = 3 +1 -2 = 4 -2 = -2

x2 = 3 - 1 -2 = 3 -1 -2 = 2 -2 = -1

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- x 2 -3x -2 = 0 |: -1

x 2 +3x +2 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 3 2 ) 2 - 2 = 9 4 - 2 = 9 4 - 8 4 = 1 4

x1,2 = - 3 2 ± 1 4

x1 = - 3 2 - 1 2 = - 4 2 = -2

x2 = - 3 2 + 1 2 = - 2 2 = -1

Beim Quadrieren oben haben wir eventuel die Lösungesmenge vergrößert.
Deswegen müssen wir jetzt bei allen Lösungen eine Probe machen, ob sie auch wirklich Lösungen sind.

Probe für x = -2

Linke Seite:

x = -2 in x +2 + x

= -2 +2 -2

= 0 -2

= 0 -2

= -2

Rechte Seite:

x = -2 in -2

= -2

Also -2 = -2

x = -2 ist somit eine Lösung !

Probe für x = -1

Linke Seite:

x = -1 in x +2 + x

= -1 +2 -1

= 1 -1

= 1 -1

= 0

Rechte Seite:

x = -1 in -2

= -2

Also 0 ≠ -2

x = -1 ist somit keine Lösung !

L={ -2 }

Wurzelgleichung (2 Wurzeln, 1x quadr.)

Beispiel:

Löse die folgende Gleichung:

11x +37 = 2 2x +7

Lösung einblenden
11x +37 = 2 2x +7 |(⋅)2 (Vorsicht: evtl. Vergrößerung der Lösungsmenge)
11x +37 = ( 2 2x +7 ) 2
11x +37 = 4( 2x +7 )
11x +37 = 8x +28 | -37
11x = 8x -9 | -8x
3x = -9 |:3
x = -3

Beim Quadrieren oben haben wir eventuel die Lösungesmenge vergrößert.
Deswegen müssen wir jetzt bei allen Lösungen eine Probe machen, ob sie auch wirklich Lösungen sind.

Probe für x = -3

Linke Seite:

x = -3 in 11x +37

= 11( -3 ) +37

= -33 +37

= 4

= 2

Rechte Seite:

x = -3 in 2 2x +7

= 2 2( -3 ) +7

= 2 -6 +7

= 2 1

= 2

Also 2 = 2

x = -3 ist somit eine Lösung !

L={ -3 }

Wurzelgleichung (2 Wurzeln, 2x quadr.)

Beispiel:

Löse die folgende Gleichung:

6x +7 = 4x +8 +1

Lösung einblenden
6x +7 = 4x +8 +1 |(⋅)2 (Vorsicht: evtl. Vergrößerung der Lösungsmenge)
6x +7 = ( 4x +8 +1 ) 2
6x +7 = 2 4x +8 +4x +9 | -6x -7 -2 4x +8
-2 4x +8 = -2x +2 |:(-2 )
4x +8 = x -1 |(⋅)2 (Vorsicht: evtl. Vergrößerung der Lösungsmenge)
4x +8 = ( x -1 ) 2
4x +8 = x 2 -2x +1 | - x 2 +2x -1

- x 2 +6x +7 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -6 ± 6 2 -4 · ( -1 ) · 7 2( -1 )

x1,2 = -6 ± 36 +28 -2

x1,2 = -6 ± 64 -2

x1 = -6 + 64 -2 = -6 +8 -2 = 2 -2 = -1

x2 = -6 - 64 -2 = -6 -8 -2 = -14 -2 = 7

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- x 2 +6x +7 = 0 |: -1

x 2 -6x -7 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -3 ) 2 - ( -7 ) = 9+ 7 = 16

x1,2 = 3 ± 16

x1 = 3 - 4 = -1

x2 = 3 + 4 = 7

Beim Quadrieren oben haben wir eventuel die Lösungesmenge vergrößert.
Deswegen müssen wir jetzt bei allen Lösungen eine Probe machen, ob sie auch wirklich Lösungen sind.

Probe für x = -1

Linke Seite:

x = -1 in 6x +7

= 6( -1 ) +7

= -6 +7

= 1

= 1

Rechte Seite:

x = -1 in 4x +8 +1

= 4( -1 ) +8 +1

= -4 +8 +1

= 4 +1

= 2 +1

= 3

Also 1 ≠ 3

x = -1 ist somit keine Lösung !

Probe für x = 7

Linke Seite:

x = 7 in 6x +7

= 67 +7

= 42 +7

= 49

= 7

Rechte Seite:

x = 7 in 4x +8 +1

= 47 +8 +1

= 28 +8 +1

= 36 +1

= 6 +1

= 7

Also 7 = 7

x = 7 ist somit eine Lösung !

L={ 7 }