Aufgabenbeispiele von Proportionale Zuordnung

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Zweisatz rückwärts

Beispiel:

Der Hersteller eines Powerdrinks wirbt damit, das 1000 g Protein in dessen 5kg-Großpackung drin sind.

Wie viel g Protein ist in 1 kg Powerdrink?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:

5 kg Powerdrink1000 g Protein
1 kg Powerdrink?

Um von 5 kg Powerdrink in der ersten Zeile auf 1 kg Powerdrink in der zweiten Zeile zu kommen, müssen wir durch 5 teilen. Somit müssen wir auch die 1000 g Protein durch 5 teilen, um auf den Wert zu kommen, der den 1 kg Powerdrink entspricht:

: 5
5 kg Powerdrink1000 g Protein
1 kg Powerdrink?
: 5
: 5
5 kg Powerdrink1000 g Protein
1 kg Powerdrink200 g Protein
: 5

Damit haben wir nun den gesuchten Wert, der den 1 kg Powerdrink entspricht: 200 g Protein

Einfacher Dreisatz

Beispiel:

Bei einem Marktstand bezahlt man 14,00 € für 7 kg Äpfel.

Wie viel kosten 9 kg Äpfel?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:


7 kg Äpfel14,00 €
??
9 kg Äpfel?

Wir suchen einen möglichst großen Zwischenwert für die kg Äpfel in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 7 kg Äpfel teilen müssen.) Diese Zahl sollte ein Teiler von 7 und von 9 sein, also der ggT(7,9) = 1.

Wir suchen deswegen erst den entsprechenden Wert für 1 kg Äpfel:


7 kg Äpfel14,00 €
1 kg Äpfel?
9 kg Äpfel?

Um von 7 kg Äpfel in der ersten Zeile auf 1 kg Äpfel in der zweiten Zeile zu kommen, müssen wir durch 7 teilen. Somit müssen wir auch die 14 € durch 7 teilen, um auf den Wert zu kommen, der den 1 kg Äpfel entspricht:

: 7

7 kg Äpfel14,00 €
1 kg Äpfel?
9 kg Äpfel?

: 7
: 7

7 kg Äpfel14,00 €
1 kg Äpfel2,00 €
9 kg Äpfel?

: 7

Jetzt müssen wir ja wieder die 1 kg Äpfel in der mittleren Zeile mit 9 multiplizieren, um auf die 9 kg Äpfel in der dritten Zeile zu kommen.

: 7
⋅ 9

7 kg Äpfel14,00 €
1 kg Äpfel2,00 €
9 kg Äpfel?

: 7
⋅ 9

Wir müssen somit auch rechts die 2,00 € in der mittleren Zeile mit 9 multiplizieren:

: 7
⋅ 9

7 kg Äpfel14,00 €
1 kg Äpfel2,00 €
9 kg Äpfel18,00 €

: 7
⋅ 9

Damit haben wir nun den gesuchten Wert, der den 9 kg Äpfel entspricht: 18,00 €

Proportionaler Term

Beispiel:

Bei zwei propotionalen Größen A und B hat die Größe A den Wert 9 wenn die Größe B den Wert 11.7 hat.
Bestimme die Zuordnungsvorschrift, mit der man jedem Wert der Größe A einen Wert der Größe B zuordnen kann.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Um den Proportionalitätsfaktor zu finden, muss man lediglich den Wert von 'Größe B', nämlich 11.7 durch den Wert von 'Größe A' (9) teilen. Schließlich gilt bei proportionalen Größen, dass der Wert bei 1 gerade 1 9 des Wertes bei 9 sein muss.
Also: m= 11.7 9 =1,3
Zuordnungsvorschrift: y = 1,3 ⋅ x

Proportionaler Term Anwendung

Beispiel:

Im Winter schneit es 1 Stunde lang total gleichmäßig. Dabei fallen in 4 Minuten 10 cm. Bestimme die Zuordnungsvorschrift mit der man jedem Minuten-Wert eine Schneehöhe in cm zuordnen kann.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Um den Proportionalitätsfaktor zu finden, muss man lediglich den Wert von 'Schneehöhe', nämlich 10 durch den Wert von 'Zeit' (4) teilen. Schließlich gilt bei proportionalen Größen, dass der Wert bei 1 gerade 1 4 des Wertes bei 4 sein muss.
Also: m= 10 4 =2,5
Zuordnungsvorschrift: y = 2,5 ⋅ x

Wert bei Proportionalität finden

Beispiel:

Bei zwei proportionalen Größen A und B hat die Größe A den Wert 6, wenn die Größe B den Wert 15.6 hat.
Bestimme Zuordnungsvorschrift mit der man Werte der Größe A, Werte der Größe B zuordnen kann.

  1. Welchen Wert nimmt Größe B ein, wenn die Größe A den Wert 4 hat?
  2. Welchen Wert nimmt die Größe A ein, wenn die Größe B den Wert 19.5 hat?

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Da es sich hier um eine proportionale Zuordnung handelt, ist die Zuordnungsvorschrift y=m⋅x. Wenn man die Werte aus der Aufgabe einsetzt, so erhält man: 15.6 = m⋅6.

Um den Proportionalitätsfaktor m zu finden, muss man also lediglich den Wert von Größe B, nämlich 15.6 durch den Wert von Größe A (6) teilen. Schließlich gilt bei proportionalen Größen, dass der Wert bei 1 gerade 1 6 des Wertes bei 6 sein muss.
Also: m= 15.6 6 =2,6
Zuordnungsvorschrift: y = 2,6 ⋅ x

  1. y-Wert bei x = 4

    Da der/die Größe A den Wert 4 hat, muss man einfach 4 für x in den Proportionalitäts-Term einsetzen, um als y den zugehörigen Wert von Größe B zu erhalten:
    y=2,6 ⋅ 4 = 10.4

    .
  2. x-Wert bei y = 19.5

    Da der/die Größe B den Wert 19.5 hat, muss man 19.5 für y in den Proportionalitäts-Term einsetzen, um als x den zugehörigen Wert von Größe A zu erhalten:
    19.5 = 2,6 ⋅ x.
    Das klappt mit x = 19.5 2.6 , weil dann 19.5 = 2,6 19.5 2.6 .
    Somit gilt für x (Größe A) = 19.5 2.6 = 7.5.

Wert bei Proportionalität (Anwendungen)

Beispiel:

Ein Prepaid-Anbieter verlangt immer den gleichen Preis pro Minute Telefonieren mit dem Handy. Auf einem Werbeplakat steht, dass 6 Minuten nur 90ct kosten. Bestimme die Zuordnungsvorschrift mit der man den telefonierten Minuten den Preis in Cent zuordnen kann.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Da es sich hier um eine proportionale Zuordnung handelt, ist die Zuordnungsvorschrift y=m⋅x. Wenn man die Werte aus der Aufgabe einsetzt, so erhält man: 90 = m⋅6.

Um den Proportionalitätsfaktor m zu finden, muss man also lediglich den Wert von Preis, nämlich 90 durch den Wert von Minuten (6) teilen. Schließlich gilt bei proportionalen Größen, dass der Wert bei 1 gerade 1 6 des Wertes bei 6 sein muss.
Also: m= 90 6 =15
Zuordnungsvorschrift: y = 15 ⋅ x

x-Wert bei y = 135

Da der/die Preis den Wert 135 hat, muss man 135 für y in den Proportionalitäts-Term einsetzen, um als x den zugehörigen Wert von Minuten zu erhalten:
135 = 15 ⋅ x.
Das klappt mit x = 135 15 , weil dann 135 = 15 135 15 .
Somit gilt für x (Minuten) = 135 15 = 9.