Aufgabenbeispiele von Scheitelform

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


x²+bx+c -> Scheitelform

Beispiel:

Bestimme die Koordinaten des Scheitels der Parabel von der Funktion f mit y= x 2 -2x +4 .

Lösung einblenden

1. Weg

y= x 2 -2x +4

Man erweitert die ersten beiden Summanden ( x 2 -2x ) zu einem 'binomischen Formel'-Term. Dazu teilt man die -2x durch 2x und quadriert diese Ergebnis -1 zu 1. Diese 1 fügt man dann an dritter Stelle in die Summe ein. So erhält man einen Term der Form x² ± 2xb + b², den man mit der binomischen Formel als (x ± b)² schreiben kann. Damit der Funktionsterm aber nicht verändert wird muss man die 1, die man an 3. Stelle eingefügt hat, danach auch wieder abziehen.

= x 2 -2x +1 -1 +4

= ( x -1 ) 2 -1 +4

= ( x -1 ) 2 +3

Jetzt kann man den Scheitel leicht ablesen: S(1|3).


2. Weg

Wir betrachten nun nur x 2 -2x . Deren Parabel sieht ja genau gleich aus wie x 2 -2x +4 nur um 4 nach oben/unten verschoben. Das heißt beide Parabeln haben ihren Scheitel an der gleichen x-Stelle.

Von x 2 -2x können wir aber über Ausklammern und den Satz vom Nullprodukt sehr leicht die Nullstellen bestimmen.

x 2 -2x = 0
x ( x -2 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x -2 = 0 | +2
x2 = 2

Aus Symmetriegründen muss der Scheitel genau in der Mitte zwischen den Nullstellen liegen, also S(1|y).

y = 1 2 -21 +4 = 1 -2 +4 = 3

also: S(1|3).


ax²+bx+c -> Scheitelform

Beispiel:

Bestimme die Koordinaten des Scheitels der Parabel von der Funktion f mit y= 3 x 2 +12x +3 .

Lösung einblenden

1. Weg

y= 3 x 2 +12x +3

= 3( x 2 +4x ) +3

Man erweitert die ersten beiden Summanden ( x 2 +4x ) zu einem 'binomischen Formel'-Term. Dazu teilt man die 4x durch 2x und quadriert diese Ergebnis 2 zu 4. Diese 4 fügt man dann an dritter Stelle in die Summe ein. So erhält man einen Term der Form x² ± 2xb + b², den man mit der binomischen Formel als (x ± b)² schreiben kann. Damit der Funktionsterm aber nicht verändert wird muss man die 4, die man an 3. Stelle eingefügt hat, danach auch wieder abziehen.

= 3( x 2 +4x +4 -4 ) +3

= 3( x 2 +4x +4 ) + 3 · ( -4 ) +3

= 3 ( x +2 ) 2 -12 +3

= 3 ( x +2 ) 2 -9

Jetzt kann man den Scheitel leicht ablesen: S(-2|-9).


2. Weg

Wir betrachten nun nur 3 x 2 +12x . Deren Parabel sieht ja genau gleich aus wie 3 x 2 +12x +3 nur um 3 nach oben/unten verschoben. Das heißt beide Parabeln haben ihren Scheitel an der gleichen x-Stelle.

Von 3 x 2 +12x können wir aber über Ausklammern und den Satz vom Nullprodukt sehr leicht die Nullstellen bestimmen.

3 x 2 +12x = 0
3 x ( x +4 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x +4 = 0 | -4
x2 = -4

Aus Symmetriegründen muss der Scheitel genau in der Mitte zwischen den Nullstellen liegen, also S(-2|y).

y = 3 ( -2 ) 2 +12( -2 ) +3 = 12 -24 +3 = -9

also: S(-2|-9).