Aufgabenbeispiele von Normalparabel

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Punkte auf Normalparabel

Beispiel:

Überprüfe, ob die Punkte auf der (nach oben geöffneten) Normalparabel mit dem Scheitel S(0|0) liegen .
A(-6|36), B( 6 7 | 6 49 ), C(-0.4|0.16), D( 9 |81)

Lösung einblenden

A(-6|36) liegt auf der Normalparabel, weil y= ( -6 ) 2 =36.

B( 6 7 | 6 49 ) liegt nicht auf der Normalparabel, weil y= ( 6 7 ) 2 = 36 49 6 49 .

C(-0.4|0.16) liegt auf der Normalparabel, weil y= ( -0,4 ) 2 =0.16.

D( 9 |81) liegt nicht auf der Normalparabel, weil y= ( 9 ) 2 =9 81.

Term aus Schaubild (einfach)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Im Schaubild sieht man eine Normalparabel. Bestimme den Funktionsterm der zugehörigen quadratischen Funktion.

Lösung einblenden

Im Schaubild erkennen wir, dass der Scheitel der Normalparabel bei S(0|2) liegt.

Die Parabel ist also um 2 Einheiten in y-Richtung verschoben. Der Funktionsterm ist demnach y= x 2 + e , in diesem Fall mit e= 2.

Der gesuchte Funktionsterm ist also: y= x 2 +2 .

Term aus Schaubild - Normalparabel

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist das Schaubild einer Normalparabel. Bestimme deren Funktionsterm.

Lösung einblenden

Im Schaubild erkennen wir, dass der Scheitel der Normalparabel bei S(2|5) liegt.

Eine Normalparabel mit Scheitel S(d|e) hat den Funktionsterm y= ± ( x - d ) 2 + e .

Weil - ( x - d ) 2 nie größer Null werden kann, muss der größte Wert der Funktion bei x=d sein, weil hier ( x - d ) 2 gerade gleich Null ist. Wenn Der Scheitel nun als y-Wert e hat, so ist die Parabel um e Einheiten nach oben verschoben, also muss man zu - ( x - d ) 2 noch e addieren.

Wenn man nun beachtet, dass die Normalparabel nach unten geöffnet ist, und die Scheitelkoordinaten für d und e einsetzt, so erhält man als Funktionsterm: y= - ( x -2 ) 2 +5 .

Scheitel von (x-d)² oder x²+e ablesen

Beispiel:

Die Funktion f mit y= ( x +8 ) 2 ist eine quadratische Funktion. Ihr Graph ist eine Parabel. Bestimme den Scheitel.

Lösung einblenden

Der gesuchte Funktionsterm y= ( x +8 ) 2 ist ein Spezialfall von ( x - d ) 2 . Der kleinste Wert wird dabei also bei x=-8 angenommen. Dieser kleinste Wert ist dann y=0. Die Parabel hat also ihren Scheitel in S(-8|0).

Scheitel von (x-d)²+e ablesen

Beispiel:

Die Funktion f mit y= ( x -7 ) 2 +6 ist eine quadratische Funktion. Ihr Graph ist eine Parabel. Bestimme den Scheitel.

Lösung einblenden

Der gesuchte Funktionsterm y= ( x -7 ) 2 +6 ist ein Spezialfall von ( x - d ) 2 + e . Der Scheitel liegt dabei bei S(d|e), denn der kleinste Wert wird hier bei x=7 angenommen. Dieser kleinste Wert ist dann y = 6. Die Parabel hat also ihren Scheitel in S(7|6).

Weiterer Wert bei Normalparabel

Beispiel:

Der Punkt P(-2|y) liegt auf einer nach oben geöffneten Normalparabel mit Scheitel S(-1|3). Bestimme die y-Koordinate von P.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

1. Weg

Eine nach oben geöffnete Normalparabel mit Scheitel S(d|e) hat den Funktionsterm y= ( x - d ) 2 + e .

Also muss der Funktionsterm der vorliegenden Parabel y= ( x +1 ) 2 +3 sein.

Setzt man nun x=-2 in diesen Funktionsterm ein, so erhält man y = ( -2 +1 ) 2 +3 = 1 +3 = 4 .

2. Weg

Der x-Wert von S ist genau 1 Einheiten vom x-Wert des Scheitels entfernt und weil ja eine Normalparabel die gleiche Form wie das Schaubild von y=x² hat, muss also auch hier der y-Wert um 1²=1 höher liegen als der des Scheitel. Man erhält also den y-Wert von P, in dem man zum y-Wert des Scheitels noch 1 drauf addiert, also y = 3+1 = 4.

Der Punkt P hat also die Koordinaten P(-2|4).

Linearfaktordarst. aus Term (a=1)

Beispiel:

Gegeben ist die Funktion f mit y= x 2 +4x +3 .
Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Für die faktorisierte Darstellung brauchen wir die Nullstellen. Also berechnen wir diese als erstes.

x 2 +4x +3 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -4 ± 4 2 -4 · 1 · 3 21

x1,2 = -4 ± 16 -12 2

x1,2 = -4 ± 4 2

x1 = -4 + 4 2 = -4 +2 2 = -2 2 = -1

x2 = -4 - 4 2 = -4 -2 2 = -6 2 = -3

Der Funktionterm ( x +3 ) ( x +1 ) hat nun also genau die gleichen Nullstellen wie y= x 2 +4x +3 und beide Terme haben a=1 als Koeffizient vor dem x² (Normalparabeln).

Also ist y= ( x +3 ) ( x +1 ) bereits der gesuchte Term.

Linearfaktordarst. am Graph (a=1)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist eine Normalparabel. Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Wir lesen einfach die beiden Schnittpunkte mit der x-Achse ab: N1(-2|0) und N2(2|0).

Also muss der Funktionsterm y= a · ( x +2 ) · ( x -2 ) sein.

Weil es sich ja aber um eine Normalparabel handelt, kann dieses a nur 1 oder -1 sein.

Die Parabel ist nach unten geöffnet, also muss a = -1 sein.

Der gesuchte faktorisierte Funktionsterm ist somit y= - ( x +2 ) ( x -2 ) .