Aufgabenbeispiele von Zufallsexperimente ohne Zurücklegen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


ohne Zurücklegen (einfach)

Beispiel:

In einer Urne sind 8 rote und 4 blaue Kugeln. Es wird 2 mal ohne Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "höchstens 1 mal blau"?

Lösung einblenden

Da ja ausschließlich nach 'blau' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'blau' und 'nicht blau'

Einzel-Wahrscheinlichkeiten :"blau": 1 3 ; "nicht blau": 2 3 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal blau' alle Möglichkeiten enthalten, außer eben 2 mal 'blau'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(2 mal 'blau')=1- 1 11 = 10 11

EreignisP
blau -> blau 1 11
blau -> nicht blau 8 33
nicht blau -> blau 8 33
nicht blau -> nicht blau 14 33

Einzel-Wahrscheinlichkeiten: P("blau")= 1 3 ; P("nicht blau")= 2 3 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'blau'-'nicht blau' (P= 8 33 )
'nicht blau'-'blau' (P= 8 33 )
'nicht blau'-'nicht blau' (P= 14 33 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

8 33 + 8 33 + 14 33 = 10 11


Ziehen ohne Zurücklegen

Beispiel:

In einem Kartenstapel sind verschiedene Karten, 9 vom Typ Kreuz, 7 vom Typ Herz, 2 vom Typ Pik und 6 vom Typ Karo. Es werden 2 Karten gleichzeitig vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit, 2 Karten der gleichen Farbe zu ziehen? (Unter Farben versteht man beim Kartenspiel Herz, Kreuz, Pig und Karo - nicht rot und schwarz)

Lösung einblenden
EreignisP
Kreuz -> Kreuz 3 23
Kreuz -> Herz 21 184
Kreuz -> Pik 3 92
Kreuz -> Karo 9 92
Herz -> Kreuz 21 184
Herz -> Herz 7 92
Herz -> Pik 7 276
Herz -> Karo 7 92
Pik -> Kreuz 3 92
Pik -> Herz 7 276
Pik -> Pik 1 276
Pik -> Karo 1 46
Karo -> Kreuz 9 92
Karo -> Herz 7 92
Karo -> Pik 1 46
Karo -> Karo 5 92

Einzel-Wahrscheinlichkeiten: P("Kreuz")= 3 8 ; P("Herz")= 7 24 ; P("Pik")= 1 12 ; P("Karo")= 1 4 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Kreuz'-'Kreuz' (P= 3 23 )
'Herz'-'Herz' (P= 7 92 )
'Pik'-'Pik' (P= 1 276 )
'Karo'-'Karo' (P= 5 92 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

3 23 + 7 92 + 1 276 + 5 92 = 73 276


nur Summen

Beispiel:

In einer Urne sind 5 Kugeln, die mit einer 1 beschriftet sind, 3 2er und 4 Kugeln mit einer 3. Es wird zwei mal mit Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen gerade 6 ist?

Lösung einblenden

Da ja ausschließlich nach '3' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '3' und 'nicht 3'

Einzel-Wahrscheinlichkeiten :"3": 1 3 ; "nicht 3": 2 3 ;

EreignisP
3 -> 3 1 9
3 -> nicht 3 2 9
nicht 3 -> 3 2 9
nicht 3 -> nicht 3 4 9

Einzel-Wahrscheinlichkeiten: P("3")= 1 3 ; P("nicht 3")= 2 3 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '3'-'3' (P= 1 9 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 9 = 1 9


Ziehen bis erstmals x kommt

Beispiel:

Eine Lehrerin sammelt die Hausaufgaben von einigen Schülern ein, um zu kontrollieren, ob diese auch ordentlich gemacht wurden. Aus Zeitgründen möchte sie aber nicht alle, sondern nur ein paar wenige einsammeln, welche durch ein Losverfahren ausgewählt werden. Aus (der unbegründeten) Angst ungerecht behandelt zu werden, bestehen die 3 Jungs darauf, dass unbedingt immer eine Hausaufgabe eines der 21 Mädchen der Klasse eingesammelt wird. Deswegen wird solange gelost, bis das erste Mädchen gezogen wird. Wie groß ist die Wahrscheinlichkeit, dass dies beim 3. Losdurchgang passiert?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 3 24 2 23 21 22
= 3 4 1 23 7 22
= 21 2024

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Ziehen mit Zurücklegen

Beispiel:

Beim Roulette kann man auch auf Zahlenbereiche setzen. Z.B. auf die Zahlenbereiche 1-12, 13-24 und 25-36, wobei die grüne 0 zu keinem der Bereiche gehört. Es wird zwei mal eine Kugel im Roulette gespielt. Wie groß ist die Wahrscheinlichkeit für "genau 2 mal 1-12"?

Lösung einblenden

Da ja ausschließlich nach '1-12' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '1-12' und 'nicht 1-12'

Einzel-Wahrscheinlichkeiten :"1-12": 12 37 ; "nicht 1-12": 25 37 ;

EreignisP
1-12 -> 1-12 144 1369
1-12 -> nicht 1-12 300 1369
nicht 1-12 -> 1-12 300 1369
nicht 1-12 -> nicht 1-12 625 1369

Einzel-Wahrscheinlichkeiten: P("1-12")= 12 37 ; P("nicht 1-12")= 25 37 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '1-12'-'1-12' (P= 144 1369 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

144 1369 = 144 1369