Aufgabenbeispiele von Zufallsexperimente ohne Zurücklegen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


ohne Zurücklegen (einfach)

Beispiel:

In einer 8-ten Klasse gibt es 7 Schüler mit NWT-Profil, 5 Schüler mit sprachlichem Profil, 10 Schüler mit Musik-Profil und 3 Schüler mit IMP-Profil. Der NWT-Lehrer hört, dass heute 2 Schüler fehlen würden. Wie groß ist die Wahrscheinlichkeit dass mindestens 1 Schüler mit NWT-Profil fehlen?

Lösung einblenden

Da ja ausschließlich nach 'NWT' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'NWT' und 'nicht NWT'

Einzel-Wahrscheinlichkeiten :"NWT": 7 25 ; "nicht NWT": 18 25 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal NWT' alle Möglichkeiten enthalten, außer eben kein 'NWT' bzw. 0 mal 'NWT'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(0 mal 'NWT')=1- 51 100 = 49 100

EreignisP
NWT -> NWT 7 100
NWT -> nicht NWT 21 100
nicht NWT -> NWT 21 100
nicht NWT -> nicht NWT 51 100

Einzel-Wahrscheinlichkeiten: P("NWT")= 7 25 ; P("nicht NWT")= 18 25 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'NWT'-'nicht NWT' (P= 21 100 )
'nicht NWT'-'NWT' (P= 21 100 )
'NWT'-'NWT' (P= 7 100 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

21 100 + 21 100 + 7 100 = 49 100


Ziehen ohne Zurücklegen

Beispiel:

In einem Kartenstapel sind 4 Karten der Farbe Kreuz, 8 der Farbe Pik, 9 der Farbe Herz und 3 der Farbe Karo. Es werden 2 Karten gleichzeitig vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit für "höchstens 1 mal Kreuz"? (Unter Farben versteht man beim Kartenspiel Herz, Kreuz, Pig und Karo - nicht rot und schwarz)

Lösung einblenden

Da ja ausschließlich nach 'Kreuz' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Kreuz' und 'nicht Kreuz'

Einzel-Wahrscheinlichkeiten :"Kreuz": 1 6 ; "nicht Kreuz": 5 6 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal Kreuz' alle Möglichkeiten enthalten, außer eben 2 mal 'Kreuz'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(2 mal 'Kreuz')=1- 1 46 = 45 46

EreignisP
Kreuz -> Kreuz 1 46
Kreuz -> nicht Kreuz 10 69
nicht Kreuz -> Kreuz 10 69
nicht Kreuz -> nicht Kreuz 95 138

Einzel-Wahrscheinlichkeiten: P("Kreuz")= 1 6 ; P("nicht Kreuz")= 5 6 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Kreuz'-'nicht Kreuz' (P= 10 69 )
'nicht Kreuz'-'Kreuz' (P= 10 69 )
'nicht Kreuz'-'nicht Kreuz' (P= 95 138 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

10 69 + 10 69 + 95 138 = 45 46


nur Summen

Beispiel:

In einer 8. Klasse gibt es 10 SchülerInnen, die 13 Jahre alt sind, 10 14-Jährige und 4 15-Jährige. Ein Lehrer, der keine Ahnung über das Alter seiner Schüler hat, muss bei zwei SchülerInnen raten, wie alt die beiden zusammen sind. Er tippt auf 28 Jahre. Wie groß ist die Wahrscheinlichkeit, dass er zufällig richtig getippt hat?

Lösung einblenden
EreignisP
13 -> 13 15 92
13 -> 14 25 138
13 -> 15 5 69
14 -> 13 25 138
14 -> 14 15 92
14 -> 15 5 69
15 -> 13 5 69
15 -> 14 5 69
15 -> 15 1 46

Einzel-Wahrscheinlichkeiten: P("13")= 5 12 ; P("14")= 5 12 ; P("15")= 1 6 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'13'-'15' (P= 5 69 )
'15'-'13' (P= 5 69 )
'14'-'14' (P= 15 92 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

5 69 + 5 69 + 15 92 = 85 276


Ziehen bis erstmals x kommt

Beispiel:

Werder Bremen hat mal wieder das Halbfinale des DFB-Pokals erreicht. Wie hoch ist die Wahrscheinlichkeit, dass bei der Auslosung Werder an 3. Stelle gezogen wird?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 3 4 2 3 1 2
= 1 2 1 1 2
= 1 4

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Ziehen ohne Zurücklegen

Beispiel:

In einer Urne sind 7 Kugeln, die mit einer 1 beschriftet sind, 3 kugel mit einer 2 und 5 Kugeln mit einer 3. Es werden zwei Kugeln gleichzeitig gezogen. Wie groß ist die Wahrscheinlichkeit, dass die Summe der Kugeln 4 ist?

Lösung einblenden
EreignisP
1 -> 1 1 5
1 -> 2 1 10
1 -> 3 1 6
2 -> 1 1 10
2 -> 2 1 35
2 -> 3 1 14
3 -> 1 1 6
3 -> 2 1 14
3 -> 3 2 21

Einzel-Wahrscheinlichkeiten: P("1")= 7 15 ; P("2")= 1 5 ; P("3")= 1 3 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'1'-'3' (P= 1 6 )
'3'-'1' (P= 1 6 )
'2'-'2' (P= 1 35 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 6 + 1 6 + 1 35 = 38 105