Aufgabenbeispiele von Zufallsexperimente ohne Zurücklegen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


ohne Zurücklegen (einfach)

Beispiel:

Bei der Auslosung zum Championsleague-Achtelfinale sind noch alle 4 deutsche Mannschaften im Lostopf mit den 16 Mannschaften. Wie groß ist die Wahrscheinlichkeit, dass von den erstem drei gezogenen Mannschaften genau 2 deutsche Mannschaften sind (wenn man mal von der falschen Annahme ausgeht, dass alle Mannschaften im gleichen Lostopf sind)?

Lösung einblenden
EreignisP
deutsch -> deutsch -> deutsch 1 140
deutsch -> deutsch -> andere 3 70
deutsch -> andere -> deutsch 3 70
deutsch -> andere -> andere 11 70
andere -> deutsch -> deutsch 3 70
andere -> deutsch -> andere 11 70
andere -> andere -> deutsch 11 70
andere -> andere -> andere 11 28

Einzel-Wahrscheinlichkeiten: P("deutsch")= 1 4 ; P("andere")= 3 4 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'deutsch'-'deutsch'-'andere' (P= 3 70 )
'deutsch'-'andere'-'deutsch' (P= 3 70 )
'andere'-'deutsch'-'deutsch' (P= 3 70 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

3 70 + 3 70 + 3 70 = 9 70


Ziehen ohne Zurücklegen

Beispiel:

In einer Urne sind 8 rote und 4 blaue Kugeln. Es wird 2 mal ohne Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "höchstens 1 mal rot"?

Lösung einblenden

Da ja ausschließlich nach 'rot' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'rot' und 'nicht rot'

Einzel-Wahrscheinlichkeiten :"rot": 2 3 ; "nicht rot": 1 3 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal rot' alle Möglichkeiten enthalten, außer eben 2 mal 'rot'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(2 mal 'rot')=1- 14 33 = 19 33

EreignisP
rot -> rot 14 33
rot -> nicht rot 8 33
nicht rot -> rot 8 33
nicht rot -> nicht rot 1 11

Einzel-Wahrscheinlichkeiten: P("rot")= 2 3 ; P("nicht rot")= 1 3 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'rot'-'nicht rot' (P= 8 33 )
'nicht rot'-'rot' (P= 8 33 )
'nicht rot'-'nicht rot' (P= 1 11 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

8 33 + 8 33 + 1 11 = 19 33


nur Summen

Beispiel:

In einer Urne sind 3 Kugeln, die mit einer 1 beschriftet sind, 3 2er und 4 Kugeln mit einer 3. Es wird zwei mal mit Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen gerade 4 ist?

Lösung einblenden
EreignisP
1 -> 1 9 100
1 -> 2 9 100
1 -> 3 3 25
2 -> 1 9 100
2 -> 2 9 100
2 -> 3 3 25
3 -> 1 3 25
3 -> 2 3 25
3 -> 3 4 25

Einzel-Wahrscheinlichkeiten: P("1")= 3 10 ; P("2")= 3 10 ; P("3")= 2 5 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '1'-'3' (P= 3 25 )
  • '3'-'1' (P= 3 25 )
  • '2'-'2' (P= 9 100 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

3 25 + 3 25 + 9 100 = 33 100


Ziehen bis erstmals x kommt

Beispiel:

In einer Urne sind 6 rote und 3 blaue Kugeln. Es soll (ohne Zurücklegen) solange gezogen werden, bis erstmals eine rote Kugel erscheint. Wie hoch ist die Wahrscheinlichkeit die rote Kugel im 3. Versuch zu ziehen?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 3 9 2 8 6 7
= 3 3 2 4 1 7
= 1 14

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Ziehen ohne Zurücklegen

Beispiel:

In einem Kartenstapel sind 4 Asse, 4 Könige und 2 Damen. Es werden 2 Karten vom Stapel gleichzeitig gezogen. Wie groß ist die Wahrscheinlichkeit "genau 2 mal König"?

Lösung einblenden

Da ja ausschließlich nach 'König' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'König' und 'nicht König'

Einzel-Wahrscheinlichkeiten :"König": 2 5 ; "nicht König": 3 5 ;

EreignisP
König -> König 2 15
König -> nicht König 4 15
nicht König -> König 4 15
nicht König -> nicht König 1 3

Einzel-Wahrscheinlichkeiten: P("König")= 2 5 ; P("nicht König")= 3 5 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'König'-'König' (P= 2 15 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

2 15 = 2 15