Aufgabenbeispiele von Zufallsexperimente ohne Zurücklegen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


ohne Zurücklegen (einfach)

Beispiel:

Auf einen Schüleraustausch bewerben sich 10 Mädchen und 5 Jungs. Weil aber leider weniger Plätze zur Verfügung stehen, muss gelost werden. Wie groß ist die Wahrscheinlichkeit, dass von den ersten 3 verlosten Plätzen genau 2 an ein Mädchen gehen?

Lösung einblenden
EreignisP
Mädchen -> Mädchen -> Mädchen 24 91
Mädchen -> Mädchen -> Jungs 15 91
Mädchen -> Jungs -> Mädchen 15 91
Mädchen -> Jungs -> Jungs 20 273
Jungs -> Mädchen -> Mädchen 15 91
Jungs -> Mädchen -> Jungs 20 273
Jungs -> Jungs -> Mädchen 20 273
Jungs -> Jungs -> Jungs 2 91

Einzel-Wahrscheinlichkeiten: P("Mädchen")= 2 3 ; P("Jungs")= 1 3 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Mädchen'-'Mädchen'-'Jungs' (P= 15 91 )
'Mädchen'-'Jungs'-'Mädchen' (P= 15 91 )
'Jungs'-'Mädchen'-'Mädchen' (P= 15 91 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

15 91 + 15 91 + 15 91 = 45 91


Ziehen ohne Zurücklegen

Beispiel:

In einer Urne sind 6 rote und 4 blaue Kugeln. Es wird 3 mal ohne Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "höchstens 1 mal rot"?

Lösung einblenden

Da ja ausschließlich nach 'rot' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'rot' und 'nicht rot'

Einzel-Wahrscheinlichkeiten :"rot": 3 5 ; "nicht rot": 2 5 ;

EreignisP
rot -> rot -> rot 1 6
rot -> rot -> nicht rot 1 6
rot -> nicht rot -> rot 1 6
rot -> nicht rot -> nicht rot 1 10
nicht rot -> rot -> rot 1 6
nicht rot -> rot -> nicht rot 1 10
nicht rot -> nicht rot -> rot 1 10
nicht rot -> nicht rot -> nicht rot 1 30

Einzel-Wahrscheinlichkeiten: P("rot")= 3 5 ; P("nicht rot")= 2 5 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'rot'-'nicht rot'-'nicht rot' (P= 1 10 )
'nicht rot'-'rot'-'nicht rot' (P= 1 10 )
'nicht rot'-'nicht rot'-'rot' (P= 1 10 )
'nicht rot'-'nicht rot'-'nicht rot' (P= 1 30 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 10 + 1 10 + 1 10 + 1 30 = 1 3


nur Summen

Beispiel:

In einer Urne sind 4 Kugeln, die mit einer 1 beschriftet sind, 2 2er und 4 Kugeln mit einer 3. Es wird zwei mal mit Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen gerade 3 ist?

Lösung einblenden
EreignisP
1 -> 1 4 25
1 -> 2 2 25
1 -> 3 4 25
2 -> 1 2 25
2 -> 2 1 25
2 -> 3 2 25
3 -> 1 4 25
3 -> 2 2 25
3 -> 3 4 25

Einzel-Wahrscheinlichkeiten: P("1")= 2 5 ; P("2")= 1 5 ; P("3")= 2 5 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '1'-'2' (P= 2 25 )
  • '2'-'1' (P= 2 25 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

2 25 + 2 25 = 4 25


Ziehen bis erstmals x kommt

Beispiel:

Werder Bremen hat mal wieder das Halbfinale des DFB-Pokals erreicht. Wie hoch ist die Wahrscheinlichkeit, dass bei der Auslosung Werder an 4. Stelle gezogen wird?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 3 4 2 3 1 2 1
= 1 2 1 1 2 1
= 1 4

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Ziehen mit Zurücklegen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Ein Glücksrad wird zwei mal gedreht. Wie hoch ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen 6 ist?

Lösung einblenden
EreignisP
1 -> 1 1 4
1 -> 2 1 8
1 -> 3 1 16
1 -> 4 1 16
2 -> 1 1 8
2 -> 2 1 16
2 -> 3 1 32
2 -> 4 1 32
3 -> 1 1 16
3 -> 2 1 32
3 -> 3 1 64
3 -> 4 1 64
4 -> 1 1 16
4 -> 2 1 32
4 -> 3 1 64
4 -> 4 1 64

Einzel-Wahrscheinlichkeiten: P("1")= 1 2 ; P("2")= 1 4 ; P("3")= 1 8 ; P("4")= 1 8 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '2'-'4' (P= 1 32 )
  • '4'-'2' (P= 1 32 )
  • '3'-'3' (P= 1 64 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 32 + 1 32 + 1 64 = 5 64