Aufgabenbeispiele von Zufallsexperimente ohne Zurücklegen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
ohne Zurücklegen (einfach)
Beispiel:
Auf einen Schüleraustausch bewerben sich 10 Mädchen und 5 Jungs. Weil aber leider weniger Plätze zur Verfügung stehen, muss gelost werden. Wie groß ist die Wahrscheinlichkeit, dass von den ersten 3 verlosten Plätzen genau 2 an ein Mädchen gehen?
Ereignis | P |
---|---|
Mädchen -> Mädchen -> Mädchen | |
Mädchen -> Mädchen -> Jungs | |
Mädchen -> Jungs -> Mädchen | |
Mädchen -> Jungs -> Jungs | |
Jungs -> Mädchen -> Mädchen | |
Jungs -> Mädchen -> Jungs | |
Jungs -> Jungs -> Mädchen | |
Jungs -> Jungs -> Jungs |
Einzel-Wahrscheinlichkeiten: P("Mädchen")=; P("Jungs")=;
Die relevanten Pfade sind:
'Mädchen'-'Mädchen'-'Jungs' (P=)
'Mädchen'-'Jungs'-'Mädchen' (P=)
'Jungs'-'Mädchen'-'Mädchen' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + =
Ziehen ohne Zurücklegen
Beispiel:
In einer Urne sind 6 rote und 4 blaue Kugeln. Es wird 3 mal ohne Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "höchstens 1 mal rot"?
Da ja ausschließlich nach 'rot' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'rot' und 'nicht rot'
Einzel-Wahrscheinlichkeiten :"rot": ; "nicht rot": ;
Ereignis | P |
---|---|
rot -> rot -> rot | |
rot -> rot -> nicht rot | |
rot -> nicht rot -> rot | |
rot -> nicht rot -> nicht rot | |
nicht rot -> rot -> rot | |
nicht rot -> rot -> nicht rot | |
nicht rot -> nicht rot -> rot | |
nicht rot -> nicht rot -> nicht rot |
Einzel-Wahrscheinlichkeiten: P("rot")=; P("nicht rot")=;
Die relevanten Pfade sind:
'rot'-'nicht rot'-'nicht rot' (P=)
'nicht rot'-'rot'-'nicht rot' (P=)
'nicht rot'-'nicht rot'-'rot' (P=)
'nicht rot'-'nicht rot'-'nicht rot' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + + =
nur Summen
Beispiel:
In einer Urne sind 4 Kugeln, die mit einer 1 beschriftet sind, 2 2er und 4 Kugeln mit einer 3. Es wird zwei mal mit Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen gerade 3 ist?
Ereignis | P |
---|---|
1 -> 1 | |
1 -> 2 | |
1 -> 3 | |
2 -> 1 | |
2 -> 2 | |
2 -> 3 | |
3 -> 1 | |
3 -> 2 | |
3 -> 3 |
Einzel-Wahrscheinlichkeiten: P("1")=; P("2")=; P("3")=;
Die relevanten Pfade sind:- '1'-'2' (P=)
- '2'-'1' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ =
Ziehen bis erstmals x kommt
Beispiel:
Werder Bremen hat mal wieder das Halbfinale des DFB-Pokals erreicht. Wie hoch ist die Wahrscheinlichkeit, dass bei der Auslosung Werder an 4. Stelle gezogen wird?
(Denk daran, den Bruch vollständig zu kürzen!)
Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:
P= ⋅ ⋅ ⋅
= ⋅ ⋅ ⋅
=
Ziehen mit Zurücklegen
Beispiel:
(Alle Sektoren sind Vielfache
von Achtels-Kreisen)
Ereignis | P |
---|---|
1 -> 1 | |
1 -> 2 | |
1 -> 3 | |
1 -> 4 | |
2 -> 1 | |
2 -> 2 | |
2 -> 3 | |
2 -> 4 | |
3 -> 1 | |
3 -> 2 | |
3 -> 3 | |
3 -> 4 | |
4 -> 1 | |
4 -> 2 | |
4 -> 3 | |
4 -> 4 |
Einzel-Wahrscheinlichkeiten: P("1")=; P("2")=; P("3")=; P("4")=;
Die relevanten Pfade sind:- '2'-'4' (P=)
- '4'-'2' (P=)
- '3'-'3' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + =