Aufgabenbeispiele von Zufallsexperimente ohne Zurücklegen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


ohne Zurücklegen (einfach)

Beispiel:

In einer Urne sind 3 rote und 7 blaue Kugeln. Es wird 2 mal ohne Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "genau 2 mal rot"?

Lösung einblenden
EreignisP
rot -> rot 1 15
rot -> blau 7 30
blau -> rot 7 30
blau -> blau 7 15

Einzel-Wahrscheinlichkeiten: P("rot")= 3 10 ; P("blau")= 7 10 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'rot'-'rot' (P= 1 15 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 15 = 1 15


Ziehen ohne Zurücklegen

Beispiel:

In einer Urne sind verschiedene Kugeln, 5 vom Typ rot und 5 vom Typ blau. Es wird 3 mal ohne Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit, 3 Kugeln gleicher Farbe zu ziehen?

Lösung einblenden
EreignisP
rot -> rot -> rot 1 12
rot -> rot -> blau 5 36
rot -> blau -> rot 5 36
rot -> blau -> blau 5 36
blau -> rot -> rot 5 36
blau -> rot -> blau 5 36
blau -> blau -> rot 5 36
blau -> blau -> blau 1 12

Einzel-Wahrscheinlichkeiten: P("rot")= 1 2 ; P("blau")= 1 2 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'rot'-'rot'-'rot' (P= 1 12 )
'blau'-'blau'-'blau' (P= 1 12 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 12 + 1 12 = 1 6


nur Summen

Beispiel:

In einer 8. Klasse gibt es 10 SchülerInnen, die 13 Jahre alt sind, 5 14-Jährige und 4 15-Jährige. Ein Lehrer, der keine Ahnung über das Alter seiner Schüler hat, muss bei zwei SchülerInnen raten, wie alt die beiden zusammen sind. Er tippt auf 30 Jahre. Wie groß ist die Wahrscheinlichkeit, dass er zufällig richtig getippt hat?

Lösung einblenden

Da ja ausschließlich nach '15' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '15' und 'nicht 15'

Einzel-Wahrscheinlichkeiten :"15": 4 19 ; "nicht 15": 15 19 ;

EreignisP
15 -> 15 2 57
15 -> nicht 15 10 57
nicht 15 -> 15 10 57
nicht 15 -> nicht 15 35 57

Einzel-Wahrscheinlichkeiten: P("15")= 4 19 ; P("nicht 15")= 15 19 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'15'-'15' (P= 2 57 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

2 57 = 2 57


Ziehen bis erstmals x kommt

Beispiel:

Eine Lehrerin sammelt die Hausaufgaben von einigen Schülern ein, um zu kontrollieren, ob diese auch ordentlich gemacht wurden. Aus Zeitgründen möchte sie aber nicht alle, sondern nur ein paar wenige einsammeln, welche durch ein Losverfahren ausgewählt werden. Aus (der unbegründeten) Angst ungerecht behandelt zu werden, bestehen die 3 Jungs darauf, dass unbedingt immer eine Hausaufgabe eines der 18 Mädchen der Klasse eingesammelt wird. Deswegen wird solange gelost, bis das erste Mädchen gezogen wird. Wie groß ist die Wahrscheinlichkeit, dass dies beim 4. Losdurchgang passiert?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 3 21 2 20 1 19 18 18
= 1 7 1 10 1 19 3 3
= 1 1330

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

nur Summen

Beispiel:

In einer Urne sind 6 Kugeln, die mit einer 1 beschriftet sind, 2 2er und 4 Kugeln mit einer 3. Es wird zwei mal mit Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen gerade 4 ist?

Lösung einblenden
EreignisP
1 -> 1 1 4
1 -> 2 1 12
1 -> 3 1 6
2 -> 1 1 12
2 -> 2 1 36
2 -> 3 1 18
3 -> 1 1 6
3 -> 2 1 18
3 -> 3 1 9

Einzel-Wahrscheinlichkeiten: P("1")= 1 2 ; P("2")= 1 6 ; P("3")= 1 3 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '1'-'3' (P= 1 6 )
  • '3'-'1' (P= 1 6 )
  • '2'-'2' (P= 1 36 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 6 + 1 6 + 1 36 = 13 36