Aufgabenbeispiele von Zufallsexperimente ohne Zurücklegen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


ohne Zurücklegen (einfach)

Beispiel:

In einer Urne sind 10 rote, 9 blaue , 3 gelbe und 3 schwarze Kugeln. Es wird zwei mal ohne Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "höchstens 1 mal gelb"?

Lösung einblenden

Da ja ausschließlich nach 'gelb' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'gelb' und 'nicht gelb'

Einzel-Wahrscheinlichkeiten :"gelb": 3 25 ; "nicht gelb": 22 25 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal gelb' alle Möglichkeiten enthalten, außer eben 2 mal 'gelb'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(2 mal 'gelb')=1- 1 100 = 99 100

EreignisP
gelb -> gelb 1 100
gelb -> nicht gelb 11 100
nicht gelb -> gelb 11 100
nicht gelb -> nicht gelb 77 100

Einzel-Wahrscheinlichkeiten: P("gelb")= 3 25 ; P("nicht gelb")= 22 25 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'gelb'-'nicht gelb' (P= 11 100 )
'nicht gelb'-'gelb' (P= 11 100 )
'nicht gelb'-'nicht gelb' (P= 77 100 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

11 100 + 11 100 + 77 100 = 99 100


Ziehen ohne Zurücklegen

Beispiel:

Auf einen Schüleraustausch bewerben sich 5 Mädchen und 5 Jungs. Weil aber leider weniger Plätze zur Verfügung stehen, muss gelost werden. Wie groß ist die Wahrscheinlichkeit, dass von den ersten 3 verlosten Plätzen genau 3 an eine Mädchen gehen?

Lösung einblenden
EreignisP
Mädchen -> Mädchen -> Mädchen 1 12
Mädchen -> Mädchen -> Jungs 5 36
Mädchen -> Jungs -> Mädchen 5 36
Mädchen -> Jungs -> Jungs 5 36
Jungs -> Mädchen -> Mädchen 5 36
Jungs -> Mädchen -> Jungs 5 36
Jungs -> Jungs -> Mädchen 5 36
Jungs -> Jungs -> Jungs 1 12

Einzel-Wahrscheinlichkeiten: P("Mädchen")= 1 2 ; P("Jungs")= 1 2 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Mädchen'-'Mädchen'-'Mädchen' (P= 1 12 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 12 = 1 12


nur Summen

Beispiel:

Ein Würfel wird zwei mal geworfen. Wie hoch ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen 9 ist?

Lösung einblenden
EreignisP
1 -> 1 1 36
1 -> 2 1 36
1 -> 3 1 36
1 -> 4 1 36
1 -> 5 1 36
1 -> 6 1 36
2 -> 1 1 36
2 -> 2 1 36
2 -> 3 1 36
2 -> 4 1 36
2 -> 5 1 36
2 -> 6 1 36
3 -> 1 1 36
3 -> 2 1 36
3 -> 3 1 36
3 -> 4 1 36
3 -> 5 1 36
3 -> 6 1 36
4 -> 1 1 36
4 -> 2 1 36
4 -> 3 1 36
4 -> 4 1 36
4 -> 5 1 36
4 -> 6 1 36
5 -> 1 1 36
5 -> 2 1 36
5 -> 3 1 36
5 -> 4 1 36
5 -> 5 1 36
5 -> 6 1 36
6 -> 1 1 36
6 -> 2 1 36
6 -> 3 1 36
6 -> 4 1 36
6 -> 5 1 36
6 -> 6 1 36

Einzel-Wahrscheinlichkeiten: P("1")= 1 6 ; P("2")= 1 6 ; P("3")= 1 6 ; P("4")= 1 6 ; P("5")= 1 6 ; P("6")= 1 6 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '3'-'6' (P= 1 36 )
  • '6'-'3' (P= 1 36 )
  • '4'-'5' (P= 1 36 )
  • '5'-'4' (P= 1 36 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 36 + 1 36 + 1 36 + 1 36 = 1 9


Ziehen bis erstmals x kommt

Beispiel:

Aus einem Kartenstapel mit 11 Karten der Farbe Herz und 4 weiteren Karten soll solange eine Karte gezogen werden, bis eine Herz-Karte erscheint. Wie groß ist die Wahrscheinlichkeit, dass dies im 2.Versuch passiert?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 4 15 11 14
= 2 15 11 7
= 22 105

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Ziehen ohne Zurücklegen

Beispiel:

In einer Urne sind verschiedene Kugeln, 2 vom Typ rot, 9 vom Typ blau, 2 vom Typ gelb und 7 vom Typ schwarz. Es wird 2 mal ohne Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit, 2 Kugeln gleicher Farbe zu ziehen?

Lösung einblenden
EreignisP
rot -> rot 1 190
rot -> blau 9 190
rot -> gelb 1 95
rot -> schwarz 7 190
blau -> rot 9 190
blau -> blau 18 95
blau -> gelb 9 190
blau -> schwarz 63 380
gelb -> rot 1 95
gelb -> blau 9 190
gelb -> gelb 1 190
gelb -> schwarz 7 190
schwarz -> rot 7 190
schwarz -> blau 63 380
schwarz -> gelb 7 190
schwarz -> schwarz 21 190

Einzel-Wahrscheinlichkeiten: P("rot")= 1 10 ; P("blau")= 9 20 ; P("gelb")= 1 10 ; P("schwarz")= 7 20 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'rot'-'rot' (P= 1 190 )
'blau'-'blau' (P= 18 95 )
'gelb'-'gelb' (P= 1 190 )
'schwarz'-'schwarz' (P= 21 190 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 190 + 18 95 + 1 190 + 21 190 = 59 190