Aufgabenbeispiele von Zufallsexperimente ohne Zurücklegen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
ohne Zurücklegen (einfach)
Beispiel:
In einem Kartenstapel sind verschiedene Karten, 9 vom Typ Kreuz, 10 vom Typ Herz, 10 vom Typ Pik und 3 vom Typ Karo. Es werden 2 Karten gleichzeitig vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit, 2 Karten der gleichen Farbe zu ziehen? (Unter Farben versteht man beim Kartenspiel Herz, Kreuz, Pig und Karo - nicht rot und schwarz)
| Ereignis | P |
|---|---|
| Kreuz -> Kreuz | |
| Kreuz -> Herz | |
| Kreuz -> Pik | |
| Kreuz -> Karo | |
| Herz -> Kreuz | |
| Herz -> Herz | |
| Herz -> Pik | |
| Herz -> Karo | |
| Pik -> Kreuz | |
| Pik -> Herz | |
| Pik -> Pik | |
| Pik -> Karo | |
| Karo -> Kreuz | |
| Karo -> Herz | |
| Karo -> Pik | |
| Karo -> Karo |
Einzel-Wahrscheinlichkeiten: P("Kreuz")=; P("Herz")=; P("Pik")=; P("Karo")=;
Die relevanten Pfade sind:
'Kreuz'-'Kreuz' (P=)
'Herz'-'Herz' (P=)
'Pik'-'Pik' (P=)
'Karo'-'Karo' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + + =
Ziehen ohne Zurücklegen
Beispiel:
In einer Urne sind 5 rote und 5 blaue Kugeln. Es wird 2 mal ohne Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "genau 2 mal rot"?
| Ereignis | P |
|---|---|
| rot -> rot | |
| rot -> blau | |
| blau -> rot | |
| blau -> blau |
Einzel-Wahrscheinlichkeiten: P("rot")=; P("blau")=;
Die relevanten Pfade sind:
'rot'-'rot' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
=
nur Summen
Beispiel:
In einer 8. Klasse gibt es 10 SchülerInnen, die 13 Jahre alt sind, 5 14-Jährige und 4 15-Jährige. Ein Lehrer, der keine Ahnung über das Alter seiner Schüler hat, muss bei zwei SchülerInnen raten, wie alt die beiden zusammen sind. Er tippt auf 26 Jahre. Wie groß ist die Wahrscheinlichkeit, dass er zufällig richtig getippt hat?
Da ja ausschließlich nach '13' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '13' und 'nicht 13'
Einzel-Wahrscheinlichkeiten :"13": ; "nicht 13": ;
| Ereignis | P |
|---|---|
| 13 -> 13 | |
| 13 -> nicht 13 | |
| nicht 13 -> 13 | |
| nicht 13 -> nicht 13 |
Einzel-Wahrscheinlichkeiten: P("13")=; P("nicht 13")=;
Die relevanten Pfade sind:
'13'-'13' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
=
Ziehen bis erstmals x kommt
Beispiel:
In einer Urne sind 2 rote und 2 blaue Kugeln. Es soll (ohne Zurücklegen) solange gezogen werden, bis erstmals eine blaue Kugel erscheint. Wie hoch ist die Wahrscheinlichkeit die blaue Kugel im 2. Versuch zu ziehen?
(Denk daran, den Bruch vollständig zu kürzen!)
Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:
P= ⋅
= ⋅
=
Ziehen mit Zurücklegen
Beispiel:
Ein Würfel wird 3 mal geworfen. Wie groß ist die Wahrscheinlichkeit, mindestens 2 mal eine 6 zu würfeln?
Da ja ausschließlich nach '6er' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '6er' und 'nicht 6er'
Einzel-Wahrscheinlichkeiten :"6er": ; "nicht 6er": ;
| Ereignis | P |
|---|---|
| 6er -> 6er -> 6er | |
| 6er -> 6er -> nicht 6er | |
| 6er -> nicht 6er -> 6er | |
| 6er -> nicht 6er -> nicht 6er | |
| nicht 6er -> 6er -> 6er | |
| nicht 6er -> 6er -> nicht 6er | |
| nicht 6er -> nicht 6er -> 6er | |
| nicht 6er -> nicht 6er -> nicht 6er |
Einzel-Wahrscheinlichkeiten: P("6er")=; P("nicht 6er")=;
Die relevanten Pfade sind:- '6er'-'6er'-'nicht 6er' (P=)
- '6er'-'nicht 6er'-'6er' (P=)
- 'nicht 6er'-'6er'-'6er' (P=)
- '6er'-'6er'-'6er' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + + =
