Aufgabenbeispiele von Zufallsexperimente ohne Zurücklegen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


ohne Zurücklegen (einfach)

Beispiel:

In einem Kartenstapel sind verschiedene Karten, 9 vom Typ Kreuz, 6 vom Typ Herz, 4 vom Typ Pik und 5 vom Typ Karo. Es werden 2 Karten gleichzeitig vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit, 2 Karten der gleichen Farbe zu ziehen? (Unter Farben versteht man beim Kartenspiel Herz, Kreuz, Pig und Karo - nicht rot und schwarz)

Lösung einblenden
EreignisP
Kreuz -> Kreuz 3 23
Kreuz -> Herz 9 92
Kreuz -> Pik 3 46
Kreuz -> Karo 15 184
Herz -> Kreuz 9 92
Herz -> Herz 5 92
Herz -> Pik 1 23
Herz -> Karo 5 92
Pik -> Kreuz 3 46
Pik -> Herz 1 23
Pik -> Pik 1 46
Pik -> Karo 5 138
Karo -> Kreuz 15 184
Karo -> Herz 5 92
Karo -> Pik 5 138
Karo -> Karo 5 138

Einzel-Wahrscheinlichkeiten: P("Kreuz")= 3 8 ; P("Herz")= 1 4 ; P("Pik")= 1 6 ; P("Karo")= 5 24 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Kreuz'-'Kreuz' (P= 3 23 )
'Herz'-'Herz' (P= 5 92 )
'Pik'-'Pik' (P= 1 46 )
'Karo'-'Karo' (P= 5 138 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

3 23 + 5 92 + 1 46 + 5 138 = 67 276


Ziehen ohne Zurücklegen

Beispiel:

In einer Urne sind verschiedene Kugeln, 6 vom Typ rot und 4 vom Typ blau. Es wird 3 mal ohne Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit, 3 Kugeln gleicher Farbe zu ziehen?

Lösung einblenden
EreignisP
rot -> rot -> rot 1 6
rot -> rot -> blau 1 6
rot -> blau -> rot 1 6
rot -> blau -> blau 1 10
blau -> rot -> rot 1 6
blau -> rot -> blau 1 10
blau -> blau -> rot 1 10
blau -> blau -> blau 1 30

Einzel-Wahrscheinlichkeiten: P("rot")= 3 5 ; P("blau")= 2 5 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'rot'-'rot'-'rot' (P= 1 6 )
'blau'-'blau'-'blau' (P= 1 30 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 6 + 1 30 = 1 5


nur Summen

Beispiel:

In einer 8. Klasse gibt es 10 SchülerInnen, die 13 Jahre alt sind, 10 14-Jährige und 2 15-Jährige. Ein Lehrer, der keine Ahnung über das Alter seiner Schüler hat, muss bei zwei SchülerInnen raten, wie alt die beiden zusammen sind. Er tippt auf 27 Jahre. Wie groß ist die Wahrscheinlichkeit, dass er zufällig richtig getippt hat?

Lösung einblenden
EreignisP
13 -> 13 15 77
13 -> 14 50 231
13 -> 15 10 231
14 -> 13 50 231
14 -> 14 15 77
14 -> 15 10 231
15 -> 13 10 231
15 -> 14 10 231
15 -> 15 1 231

Einzel-Wahrscheinlichkeiten: P("13")= 5 11 ; P("14")= 5 11 ; P("15")= 1 11 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'13'-'14' (P= 50 231 )
'14'-'13' (P= 50 231 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

50 231 + 50 231 = 100 231


Ziehen bis erstmals x kommt

Beispiel:

In einer Urne sind 2 rote und 4 blaue Kugeln. Es soll (ohne Zurücklegen) solange gezogen werden, bis erstmals eine rote Kugel erscheint. Wie hoch ist die Wahrscheinlichkeit die rote Kugel im 3. Versuch zu ziehen?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 4 6 3 5 2 4
= 1 1 5 1
= 1 5

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

mit Zurücklegen (einfach)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Das nebenstehende Glücksrad wird 2 mal gedreht. Wie groß ist die Wahrscheinlichkeit für "mindestens 1 mal rot"?

Lösung einblenden

Da ja ausschließlich nach 'rot' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'rot' und 'nicht rot'

Einzel-Wahrscheinlichkeiten :"rot": 3 4 ; "nicht rot": 1 4 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal rot' alle Möglichkeiten enthalten, außer eben kein 'rot' bzw. 0 mal 'rot'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(0 mal 'rot')=1- 1 16 = 15 16

EreignisP
rot -> rot 9 16
rot -> nicht rot 3 16
nicht rot -> rot 3 16
nicht rot -> nicht rot 1 16

Einzel-Wahrscheinlichkeiten: P("rot")= 3 4 ; P("nicht rot")= 1 4 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'rot'-'nicht rot' (P= 3 16 )
  • 'nicht rot'-'rot' (P= 3 16 )
  • 'rot'-'rot' (P= 9 16 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

3 16 + 3 16 + 9 16 = 15 16