Aufgabenbeispiele von Zufallsexperimente ohne Zurücklegen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
ohne Zurücklegen (einfach)
Beispiel:
In einer 8-ten Klasse gibt es 8 Schüler mit NWT-Profil, 4 Schüler mit sprachlichem Profil, 8 Schüler mit Musik-Profil und 4 Schüler mit IMP-Profil. Der NWT-Lehrer hört, dass heute 2 Schüler fehlen würden. Wie groß ist die Wahrscheinlichkeit dass genau 2 Schüler mit NWT-Profil fehlen?
Da ja ausschließlich nach 'NWT' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'NWT' und 'nicht NWT'
Einzel-Wahrscheinlichkeiten :"NWT": ; "nicht NWT": ;
| Ereignis | P |
|---|---|
| NWT -> NWT | |
| NWT -> nicht NWT | |
| nicht NWT -> NWT | |
| nicht NWT -> nicht NWT |
Einzel-Wahrscheinlichkeiten: P("NWT")=; P("nicht NWT")=;
Die relevanten Pfade sind:
'NWT'-'NWT' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
=
Ziehen ohne Zurücklegen
Beispiel:
In einem Kartenstapel sind 10 Karten der Farbe Kreuz, 3 der Farbe Pik, 5 der Farbe Herz und 6 der Farbe Karo. Es werden 2 Karten gleichzeitig vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit für "genau 1 mal Herz"? (Unter Farben versteht man beim Kartenspiel Herz, Kreuz, Pig und Karo - nicht rot und schwarz)
Da ja ausschließlich nach 'Herz' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Herz' und 'nicht Herz'
Einzel-Wahrscheinlichkeiten :"Herz": ; "nicht Herz": ;
| Ereignis | P |
|---|---|
| Herz -> Herz | |
| Herz -> nicht Herz | |
| nicht Herz -> Herz | |
| nicht Herz -> nicht Herz |
Einzel-Wahrscheinlichkeiten: P("Herz")=; P("nicht Herz")=;
Die relevanten Pfade sind:
'Herz'-'nicht Herz' (P=)
'nicht Herz'-'Herz' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ =
nur Summen
Beispiel:
In einer Urne sind 8 Kugeln, die mit einer 1 beschriftet sind, 4 2er und 3 Kugeln mit einer 3. Es wird zwei mal mit Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen gerade 6 ist?
Da ja ausschließlich nach '3' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '3' und 'nicht 3'
Einzel-Wahrscheinlichkeiten :"3": ; "nicht 3": ;
| Ereignis | P |
|---|---|
| 3 -> 3 | |
| 3 -> nicht 3 | |
| nicht 3 -> 3 | |
| nicht 3 -> nicht 3 |
Einzel-Wahrscheinlichkeiten: P("3")=; P("nicht 3")=;
Die relevanten Pfade sind:- '3'-'3' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
=
Ziehen bis erstmals x kommt
Beispiel:
Eine Lehrerin sammelt die Hausaufgaben von einigen Schülern ein, um zu kontrollieren, ob diese auch ordentlich gemacht wurden. Aus Zeitgründen möchte sie aber nicht alle, sondern nur ein paar wenige einsammeln, welche durch ein Losverfahren ausgewählt werden. Aus (der unbegründeten) Angst ungerecht behandelt zu werden, bestehen die 3 Jungs darauf, dass unbedingt immer eine Hausaufgabe eines der 18 Mädchen der Klasse eingesammelt wird. Deswegen wird solange gelost, bis das erste Mädchen gezogen wird. Wie groß ist die Wahrscheinlichkeit, dass dies beim 2. Losdurchgang passiert?
(Denk daran, den Bruch vollständig zu kürzen!)
Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:
P= ⋅
= ⋅
=
ohne Zurücklegen (einfach)
Beispiel:
In einer Urne sind 9 rote, 9 blaue , 8 gelbe und 4 schwarze Kugeln. Es wird zwei mal ohne Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "höchstens 1 mal blau"?
Da ja ausschließlich nach 'blau' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'blau' und 'nicht blau'
Einzel-Wahrscheinlichkeiten :"blau": ; "nicht blau": ;
Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal blau' alle Möglichkeiten enthalten, außer eben 2 mal 'blau'
Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:
P=1-P(2 mal 'blau')=1- =
| Ereignis | P |
|---|---|
| blau -> blau | |
| blau -> nicht blau | |
| nicht blau -> blau | |
| nicht blau -> nicht blau |
Einzel-Wahrscheinlichkeiten: P("blau")=; P("nicht blau")=;
Die relevanten Pfade sind:
'blau'-'nicht blau' (P=)
'nicht blau'-'blau' (P=)
'nicht blau'-'nicht blau' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + =
