Aufgabenbeispiele von Zufallsexperimente ohne Zurücklegen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


ohne Zurücklegen (einfach)

Beispiel:

In einer 8-ten Klasse gibt es 8 Schüler mit NWT-Profil, 3 Schüler mit sprachlichem Profil, 8 Schüler mit Musik-Profil und 5 Schüler mit IMP-Profil. Der NWT-Lehrer hört, dass heute 2 Schüler fehlen würden. Wie groß ist die Wahrscheinlichkeit dass höchstens 1 Schüler mit NWT-Profil fehlen?

Lösung einblenden

Da ja ausschließlich nach 'NWT' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'NWT' und 'nicht NWT'

Einzel-Wahrscheinlichkeiten :"NWT": 1 3 ; "nicht NWT": 2 3 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal NWT' alle Möglichkeiten enthalten, außer eben 2 mal 'NWT'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(2 mal 'NWT')=1- 7 69 = 62 69

EreignisP
NWT -> NWT 7 69
NWT -> nicht NWT 16 69
nicht NWT -> NWT 16 69
nicht NWT -> nicht NWT 10 23

Einzel-Wahrscheinlichkeiten: P("NWT")= 1 3 ; P("nicht NWT")= 2 3 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'NWT'-'nicht NWT' (P= 16 69 )
'nicht NWT'-'NWT' (P= 16 69 )
'nicht NWT'-'nicht NWT' (P= 10 23 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

16 69 + 16 69 + 10 23 = 62 69


Ziehen ohne Zurücklegen

Beispiel:

In einem Kartenstapel sind verschiedene Karten, 10 vom Typ Kreuz, 2 vom Typ Herz, 10 vom Typ Pik und 3 vom Typ Karo. Es werden 2 Karten gleichzeitig vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit, 2 Karten der gleichen Farbe zu ziehen? (Unter Farben versteht man beim Kartenspiel Herz, Kreuz, Pig und Karo - nicht rot und schwarz)

Lösung einblenden
EreignisP
Kreuz -> Kreuz 3 20
Kreuz -> Herz 1 30
Kreuz -> Pik 1 6
Kreuz -> Karo 1 20
Herz -> Kreuz 1 30
Herz -> Herz 1 300
Herz -> Pik 1 30
Herz -> Karo 1 100
Pik -> Kreuz 1 6
Pik -> Herz 1 30
Pik -> Pik 3 20
Pik -> Karo 1 20
Karo -> Kreuz 1 20
Karo -> Herz 1 100
Karo -> Pik 1 20
Karo -> Karo 1 100

Einzel-Wahrscheinlichkeiten: P("Kreuz")= 2 5 ; P("Herz")= 2 25 ; P("Pik")= 2 5 ; P("Karo")= 3 25 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Kreuz'-'Kreuz' (P= 3 20 )
'Herz'-'Herz' (P= 1 300 )
'Pik'-'Pik' (P= 3 20 )
'Karo'-'Karo' (P= 1 100 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

3 20 + 1 300 + 3 20 + 1 100 = 47 150


nur Summen

Beispiel:

In einer Urne sind 2 Kugeln, die mit einer 1 beschriftet sind, 5 2er und 3 Kugeln mit einer 3. Es wird zwei mal mit Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen gerade 5 ist?

Lösung einblenden
EreignisP
1 -> 1 1 25
1 -> 2 1 10
1 -> 3 3 50
2 -> 1 1 10
2 -> 2 1 4
2 -> 3 3 20
3 -> 1 3 50
3 -> 2 3 20
3 -> 3 9 100

Einzel-Wahrscheinlichkeiten: P("1")= 1 5 ; P("2")= 1 2 ; P("3")= 3 10 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '2'-'3' (P= 3 20 )
  • '3'-'2' (P= 3 20 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

3 20 + 3 20 = 3 10


Ziehen bis erstmals x kommt

Beispiel:

Eine Lehrerin sammelt die Hausaufgaben von einigen Schülern ein, um zu kontrollieren, ob diese auch ordentlich gemacht wurden. Aus Zeitgründen möchte sie aber nicht alle, sondern nur ein paar wenige einsammeln, welche durch ein Losverfahren ausgewählt werden. Aus (der unbegründeten) Angst ungerecht behandelt zu werden, bestehen die 3 Jungs darauf, dass unbedingt immer eine Hausaufgabe eines der 21 Mädchen der Klasse eingesammelt wird. Deswegen wird solange gelost, bis das erste Mädchen gezogen wird. Wie groß ist die Wahrscheinlichkeit, dass dies beim 4. Losdurchgang passiert?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 3 24 2 23 1 22 21 21
= 1 4 1 23 1 22 7 7
= 1 2024

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Ziehen mit Zurücklegen

Beispiel:

Ein Würfel wird 2 mal geworfen. Wie groß ist die Wahrscheinlichkeit, höchstens 1 mal eine durch 3 teilbare Zahl zu würfeln?

Lösung einblenden

Da ja ausschließlich nach '3er-Zahl' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '3er-Zahl' und 'nicht 3er-Zahl'

Einzel-Wahrscheinlichkeiten :"3er-Zahl": 1 3 ; "nicht 3er-Zahl": 2 3 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal 3er-Zahl' alle Möglichkeiten enthalten, außer eben 2 mal '3er-Zahl'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(2 mal '3er-Zahl')=1- 1 9 = 8 9

EreignisP
3er-Zahl -> 3er-Zahl 1 9
3er-Zahl -> nicht 3er-Zahl 2 9
nicht 3er-Zahl -> 3er-Zahl 2 9
nicht 3er-Zahl -> nicht 3er-Zahl 4 9

Einzel-Wahrscheinlichkeiten: P("3er-Zahl")= 1 3 ; P("nicht 3er-Zahl")= 2 3 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '3er-Zahl'-'nicht 3er-Zahl' (P= 2 9 )
  • 'nicht 3er-Zahl'-'3er-Zahl' (P= 2 9 )
  • 'nicht 3er-Zahl'-'nicht 3er-Zahl' (P= 4 9 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

2 9 + 2 9 + 4 9 = 8 9