Aufgabenbeispiele von Zufallsexperimente ohne Zurücklegen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


ohne Zurücklegen (einfach)

Beispiel:

In einer 8-ten Klasse gibt es 10 Schüler mit NWT-Profil, 3 Schüler mit sprachlichem Profil, 3 Schüler mit Musik-Profil und 4 Schüler mit IMP-Profil. Der NWT-Lehrer hört, dass heute 2 Schüler fehlen würden. Wie groß ist die Wahrscheinlichkeit dass höchstens 1 Schüler mit NWT-Profil fehlen?

Lösung einblenden

Da ja ausschließlich nach 'NWT' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'NWT' und 'nicht NWT'

Einzel-Wahrscheinlichkeiten :"NWT": 1 2 ; "nicht NWT": 1 2 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal NWT' alle Möglichkeiten enthalten, außer eben 2 mal 'NWT'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(2 mal 'NWT')=1- 9 38 = 29 38

EreignisP
NWT -> NWT 9 38
NWT -> nicht NWT 5 19
nicht NWT -> NWT 5 19
nicht NWT -> nicht NWT 9 38

Einzel-Wahrscheinlichkeiten: P("NWT")= 1 2 ; P("nicht NWT")= 1 2 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'NWT'-'nicht NWT' (P= 5 19 )
'nicht NWT'-'NWT' (P= 5 19 )
'nicht NWT'-'nicht NWT' (P= 9 38 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

5 19 + 5 19 + 9 38 = 29 38


Ziehen ohne Zurücklegen

Beispiel:

In einem Kartenstapel sind verschiedene Karten, 8 vom Typ Kreuz, 3 vom Typ Herz, 10 vom Typ Pik und 3 vom Typ Karo. Es werden 2 Karten gleichzeitig vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit, 2 Karten der gleichen Farbe zu ziehen? (Unter Farben versteht man beim Kartenspiel Herz, Kreuz, Pig und Karo - nicht rot und schwarz)

Lösung einblenden
EreignisP
Kreuz -> Kreuz 7 69
Kreuz -> Herz 1 23
Kreuz -> Pik 10 69
Kreuz -> Karo 1 23
Herz -> Kreuz 1 23
Herz -> Herz 1 92
Herz -> Pik 5 92
Herz -> Karo 3 184
Pik -> Kreuz 10 69
Pik -> Herz 5 92
Pik -> Pik 15 92
Pik -> Karo 5 92
Karo -> Kreuz 1 23
Karo -> Herz 3 184
Karo -> Pik 5 92
Karo -> Karo 1 92

Einzel-Wahrscheinlichkeiten: P("Kreuz")= 1 3 ; P("Herz")= 1 8 ; P("Pik")= 5 12 ; P("Karo")= 1 8 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Kreuz'-'Kreuz' (P= 7 69 )
'Herz'-'Herz' (P= 1 92 )
'Pik'-'Pik' (P= 15 92 )
'Karo'-'Karo' (P= 1 92 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

7 69 + 1 92 + 15 92 + 1 92 = 79 276


nur Summen

Beispiel:

In einem Stapel sind 4 Karten vom Wert 7, 4 Karten vom Wert 8 und 4 9er. Man zieht 2 Karten aus dem Stapel. Wie groß ist die Wahrscheinlichkeit, dass die Summe der beiden Karten gerade 18 ist?

Lösung einblenden

Da ja ausschließlich nach '9' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '9' und 'nicht 9'

Einzel-Wahrscheinlichkeiten :"9": 1 3 ; "nicht 9": 2 3 ;

EreignisP
9 -> 9 1 11
9 -> nicht 9 8 33
nicht 9 -> 9 8 33
nicht 9 -> nicht 9 14 33

Einzel-Wahrscheinlichkeiten: P("9")= 1 3 ; P("nicht 9")= 2 3 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'9'-'9' (P= 1 11 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 11 = 1 11


Ziehen bis erstmals x kommt

Beispiel:

Werder Bremen hat mal wieder das Halbfinale des DFB-Pokals erreicht. Wie hoch ist die Wahrscheinlichkeit, dass bei der Auslosung Werder an 3. Stelle gezogen wird?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 3 4 2 3 1 2
= 1 2 1 1 2
= 1 4

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

ohne Zurücklegen (einfach)

Beispiel:

In einer 8-ten Klasse gibt es 8 Schüler mit NWT-Profil, 4 Schüler mit sprachlichem Profil, 7 Schüler mit Musik-Profil und 5 Schüler mit IMP-Profil. Der NWT-Lehrer hört, dass heute 2 Schüler fehlen würden. Wie groß ist die Wahrscheinlichkeit dass genau 1 Schüler mit NWT-Profil fehlen?

Lösung einblenden

Da ja ausschließlich nach 'NWT' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'NWT' und 'nicht NWT'

Einzel-Wahrscheinlichkeiten :"NWT": 1 3 ; "nicht NWT": 2 3 ;

EreignisP
NWT -> NWT 7 69
NWT -> nicht NWT 16 69
nicht NWT -> NWT 16 69
nicht NWT -> nicht NWT 10 23

Einzel-Wahrscheinlichkeiten: P("NWT")= 1 3 ; P("nicht NWT")= 2 3 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'NWT'-'nicht NWT' (P= 16 69 )
'nicht NWT'-'NWT' (P= 16 69 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

16 69 + 16 69 = 32 69