Aufgabenbeispiele von Zufallsexperimente ohne Zurücklegen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


ohne Zurücklegen (einfach)

Beispiel:

In einer 8-ten Klasse gibt es 4 Schüler mit NWT-Profil, 7 Schüler mit sprachlichem Profil, 3 Schüler mit Musik-Profil und 6 Schüler mit IMP-Profil. Der NWT-Lehrer hört, dass heute 2 Schüler fehlen würden. Wie groß ist die Wahrscheinlichkeit dass höchstens 1 Schüler mit NWT-Profil fehlen?

Lösung einblenden

Da ja ausschließlich nach 'NWT' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'NWT' und 'nicht NWT'

Einzel-Wahrscheinlichkeiten :"NWT": 1 5 ; "nicht NWT": 4 5 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal NWT' alle Möglichkeiten enthalten, außer eben 2 mal 'NWT'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(2 mal 'NWT')=1- 3 95 = 92 95

EreignisP
NWT -> NWT 3 95
NWT -> nicht NWT 16 95
nicht NWT -> NWT 16 95
nicht NWT -> nicht NWT 12 19

Einzel-Wahrscheinlichkeiten: P("NWT")= 1 5 ; P("nicht NWT")= 4 5 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'NWT'-'nicht NWT' (P= 16 95 )
'nicht NWT'-'NWT' (P= 16 95 )
'nicht NWT'-'nicht NWT' (P= 12 19 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

16 95 + 16 95 + 12 19 = 92 95


Ziehen ohne Zurücklegen

Beispiel:

In einem Lostopf sind 6 Kugeln mit einer Eins beschriftet, 10 Kugeln mit einer Zwei, 6 mit Drei und 3 mit einer Vier. Es werden zwei Kugeln gleichzeitig gezogen. Wie groß ist die Wahrscheinlichkiet dass die beiden gezogenen Zahlen zusammen 5 ergeben?

Lösung einblenden
EreignisP
1 -> 1 1 20
1 -> 2 1 10
1 -> 3 3 50
1 -> 4 3 100
2 -> 1 1 10
2 -> 2 3 20
2 -> 3 1 10
2 -> 4 1 20
3 -> 1 3 50
3 -> 2 1 10
3 -> 3 1 20
3 -> 4 3 100
4 -> 1 3 100
4 -> 2 1 20
4 -> 3 3 100
4 -> 4 1 100

Einzel-Wahrscheinlichkeiten: P("1")= 6 25 ; P("2")= 2 5 ; P("3")= 6 25 ; P("4")= 3 25 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'1'-'4' (P= 3 100 )
'4'-'1' (P= 3 100 )
'2'-'3' (P= 1 10 )
'3'-'2' (P= 1 10 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

3 100 + 3 100 + 1 10 + 1 10 = 13 50


nur Summen

Beispiel:

In einer Urne sind 10 Kugeln, die mit einer 1 beschriftet sind, 7 2er und 3 Kugeln mit einer 3. Es wird zwei mal mit Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen gerade 4 ist?

Lösung einblenden
EreignisP
1 -> 1 1 4
1 -> 2 7 40
1 -> 3 3 40
2 -> 1 7 40
2 -> 2 49 400
2 -> 3 21 400
3 -> 1 3 40
3 -> 2 21 400
3 -> 3 9 400

Einzel-Wahrscheinlichkeiten: P("1")= 1 2 ; P("2")= 7 20 ; P("3")= 3 20 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '1'-'3' (P= 3 40 )
  • '3'-'1' (P= 3 40 )
  • '2'-'2' (P= 49 400 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

3 40 + 3 40 + 49 400 = 109 400


Ziehen bis erstmals x kommt

Beispiel:

Werder Bremen hat mal wieder das Halbfinale des DFB-Pokals erreicht. Wie hoch ist die Wahrscheinlichkeit, dass bei der Auslosung Werder an 2. Stelle gezogen wird?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 3 4 1 3
= 1 4 1
= 1 4

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Ziehen ohne Zurücklegen

Beispiel:

In einer Urne sind verschiedene Kugeln, 7 vom Typ rot und 3 vom Typ blau. Es wird 3 mal ohne Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit, 3 Kugeln gleicher Farbe zu ziehen?

Lösung einblenden
EreignisP
rot -> rot -> rot 7 24
rot -> rot -> blau 7 40
rot -> blau -> rot 7 40
rot -> blau -> blau 7 120
blau -> rot -> rot 7 40
blau -> rot -> blau 7 120
blau -> blau -> rot 7 120
blau -> blau -> blau 1 120

Einzel-Wahrscheinlichkeiten: P("rot")= 7 10 ; P("blau")= 3 10 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'rot'-'rot'-'rot' (P= 7 24 )
'blau'-'blau'-'blau' (P= 1 120 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

7 24 + 1 120 = 3 10