Aufgabenbeispiele von Zufallsexperimente ohne Zurücklegen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
ohne Zurücklegen (einfach)
Beispiel:
In einer 8-ten Klasse gibt es 7 Schüler mit NWT-Profil, 5 Schüler mit sprachlichem Profil, 10 Schüler mit Musik-Profil und 3 Schüler mit IMP-Profil. Der NWT-Lehrer hört, dass heute 2 Schüler fehlen würden. Wie groß ist die Wahrscheinlichkeit dass mindestens 1 Schüler mit NWT-Profil fehlen?
Da ja ausschließlich nach 'NWT' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'NWT' und 'nicht NWT'
Einzel-Wahrscheinlichkeiten :"NWT": ; "nicht NWT": ;
Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal NWT' alle Möglichkeiten enthalten, außer eben kein 'NWT' bzw. 0 mal 'NWT'
Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:
P=1-P(0 mal 'NWT')=1- =
| Ereignis | P |
|---|---|
| NWT -> NWT | |
| NWT -> nicht NWT | |
| nicht NWT -> NWT | |
| nicht NWT -> nicht NWT |
Einzel-Wahrscheinlichkeiten: P("NWT")=; P("nicht NWT")=;
Die relevanten Pfade sind:
'NWT'-'nicht NWT' (P=)
'nicht NWT'-'NWT' (P=)
'NWT'-'NWT' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + =
Ziehen ohne Zurücklegen
Beispiel:
In einem Kartenstapel sind 4 Karten der Farbe Kreuz, 8 der Farbe Pik, 9 der Farbe Herz und 3 der Farbe Karo. Es werden 2 Karten gleichzeitig vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit für "höchstens 1 mal Kreuz"? (Unter Farben versteht man beim Kartenspiel Herz, Kreuz, Pig und Karo - nicht rot und schwarz)
Da ja ausschließlich nach 'Kreuz' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Kreuz' und 'nicht Kreuz'
Einzel-Wahrscheinlichkeiten :"Kreuz": ; "nicht Kreuz": ;
Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal Kreuz' alle Möglichkeiten enthalten, außer eben 2 mal 'Kreuz'
Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:
P=1-P(2 mal 'Kreuz')=1- =
| Ereignis | P |
|---|---|
| Kreuz -> Kreuz | |
| Kreuz -> nicht Kreuz | |
| nicht Kreuz -> Kreuz | |
| nicht Kreuz -> nicht Kreuz |
Einzel-Wahrscheinlichkeiten: P("Kreuz")=; P("nicht Kreuz")=;
Die relevanten Pfade sind:
'Kreuz'-'nicht Kreuz' (P=)
'nicht Kreuz'-'Kreuz' (P=)
'nicht Kreuz'-'nicht Kreuz' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + =
nur Summen
Beispiel:
In einer 8. Klasse gibt es 10 SchülerInnen, die 13 Jahre alt sind, 10 14-Jährige und 4 15-Jährige. Ein Lehrer, der keine Ahnung über das Alter seiner Schüler hat, muss bei zwei SchülerInnen raten, wie alt die beiden zusammen sind. Er tippt auf 28 Jahre. Wie groß ist die Wahrscheinlichkeit, dass er zufällig richtig getippt hat?
| Ereignis | P |
|---|---|
| 13 -> 13 | |
| 13 -> 14 | |
| 13 -> 15 | |
| 14 -> 13 | |
| 14 -> 14 | |
| 14 -> 15 | |
| 15 -> 13 | |
| 15 -> 14 | |
| 15 -> 15 |
Einzel-Wahrscheinlichkeiten: P("13")=; P("14")=; P("15")=;
Die relevanten Pfade sind:
'13'-'15' (P=)
'15'-'13' (P=)
'14'-'14' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + =
Ziehen bis erstmals x kommt
Beispiel:
Werder Bremen hat mal wieder das Halbfinale des DFB-Pokals erreicht. Wie hoch ist die Wahrscheinlichkeit, dass bei der Auslosung Werder an 3. Stelle gezogen wird?
(Denk daran, den Bruch vollständig zu kürzen!)
Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:
P= ⋅ ⋅
= ⋅ ⋅
=
Ziehen ohne Zurücklegen
Beispiel:
In einer Urne sind 7 Kugeln, die mit einer 1 beschriftet sind, 3 kugel mit einer 2 und 5 Kugeln mit einer 3. Es werden zwei Kugeln gleichzeitig gezogen. Wie groß ist die Wahrscheinlichkeit, dass die Summe der Kugeln 4 ist?
| Ereignis | P |
|---|---|
| 1 -> 1 | |
| 1 -> 2 | |
| 1 -> 3 | |
| 2 -> 1 | |
| 2 -> 2 | |
| 2 -> 3 | |
| 3 -> 1 | |
| 3 -> 2 | |
| 3 -> 3 |
Einzel-Wahrscheinlichkeiten: P("1")=; P("2")=; P("3")=;
Die relevanten Pfade sind:
'1'-'3' (P=)
'3'-'1' (P=)
'2'-'2' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + =
