Aufgabenbeispiele von Zufallsexperimente ohne Zurücklegen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


ohne Zurücklegen (einfach)

Beispiel:

Auf einen Schüleraustausch bewerben sich 5 Mädchen und 5 Jungs. Weil aber leider weniger Plätze zur Verfügung stehen, muss gelost werden. Wie groß ist die Wahrscheinlichkeit, dass von den ersten 3 verlosten Plätzen genau 0 an ein Mädchen gehen?

Lösung einblenden
EreignisP
Mädchen -> Mädchen -> Mädchen 1 12
Mädchen -> Mädchen -> Jungs 5 36
Mädchen -> Jungs -> Mädchen 5 36
Mädchen -> Jungs -> Jungs 5 36
Jungs -> Mädchen -> Mädchen 5 36
Jungs -> Mädchen -> Jungs 5 36
Jungs -> Jungs -> Mädchen 5 36
Jungs -> Jungs -> Jungs 1 12

Einzel-Wahrscheinlichkeiten: P("Mädchen")= 1 2 ; P("Jungs")= 1 2 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Jungs'-'Jungs'-'Jungs' (P= 1 12 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 12 = 1 12


Ziehen ohne Zurücklegen

Beispiel:

Auf einen Schüleraustausch bewerben sich 4 Mädchen und 6 Jungs. Weil aber leider weniger Plätze zur Verfügung stehen, muss gelost werden. Wie groß ist die Wahrscheinlichkeit, dass von den ersten 3 verlosten Plätzen höchstens 1 an eine Mädchen gehen?

Lösung einblenden

Da ja ausschließlich nach 'Mädchen' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Mädchen' und 'nicht Mädchen'

Einzel-Wahrscheinlichkeiten :"Mädchen": 2 5 ; "nicht Mädchen": 3 5 ;

EreignisP
Mädchen -> Mädchen -> Mädchen 1 30
Mädchen -> Mädchen -> nicht Mädchen 1 10
Mädchen -> nicht Mädchen -> Mädchen 1 10
Mädchen -> nicht Mädchen -> nicht Mädchen 1 6
nicht Mädchen -> Mädchen -> Mädchen 1 10
nicht Mädchen -> Mädchen -> nicht Mädchen 1 6
nicht Mädchen -> nicht Mädchen -> Mädchen 1 6
nicht Mädchen -> nicht Mädchen -> nicht Mädchen 1 6

Einzel-Wahrscheinlichkeiten: P("Mädchen")= 2 5 ; P("nicht Mädchen")= 3 5 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Mädchen'-'nicht Mädchen'-'nicht Mädchen' (P= 1 6 )
'nicht Mädchen'-'Mädchen'-'nicht Mädchen' (P= 1 6 )
'nicht Mädchen'-'nicht Mädchen'-'Mädchen' (P= 1 6 )
'nicht Mädchen'-'nicht Mädchen'-'nicht Mädchen' (P= 1 6 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 6 + 1 6 + 1 6 + 1 6 = 2 3


nur Summen

Beispiel:

Ein Würfel wird zwei mal geworfen. Wie hoch ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen 3 ist?

Lösung einblenden
EreignisP
1 -> 1 1 36
1 -> 2 1 36
1 -> 3 1 36
1 -> 4 1 36
1 -> 5 1 36
1 -> 6 1 36
2 -> 1 1 36
2 -> 2 1 36
2 -> 3 1 36
2 -> 4 1 36
2 -> 5 1 36
2 -> 6 1 36
3 -> 1 1 36
3 -> 2 1 36
3 -> 3 1 36
3 -> 4 1 36
3 -> 5 1 36
3 -> 6 1 36
4 -> 1 1 36
4 -> 2 1 36
4 -> 3 1 36
4 -> 4 1 36
4 -> 5 1 36
4 -> 6 1 36
5 -> 1 1 36
5 -> 2 1 36
5 -> 3 1 36
5 -> 4 1 36
5 -> 5 1 36
5 -> 6 1 36
6 -> 1 1 36
6 -> 2 1 36
6 -> 3 1 36
6 -> 4 1 36
6 -> 5 1 36
6 -> 6 1 36

Einzel-Wahrscheinlichkeiten: P("1")= 1 6 ; P("2")= 1 6 ; P("3")= 1 6 ; P("4")= 1 6 ; P("5")= 1 6 ; P("6")= 1 6 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '1'-'2' (P= 1 36 )
  • '2'-'1' (P= 1 36 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 36 + 1 36 = 1 18


Ziehen bis erstmals x kommt

Beispiel:

Eine Lehrerin sammelt die Hausaufgaben von einigen Schülern ein, um zu kontrollieren, ob diese auch ordentlich gemacht wurden. Aus Zeitgründen möchte sie aber nicht alle, sondern nur ein paar wenige einsammeln, welche durch ein Losverfahren ausgewählt werden. Aus (der unbegründeten) Angst ungerecht behandelt zu werden, bestehen die 3 Jungs darauf, dass unbedingt immer eine Hausaufgabe eines der 21 Mädchen der Klasse eingesammelt wird. Deswegen wird solange gelost, bis das erste Mädchen gezogen wird. Wie groß ist die Wahrscheinlichkeit, dass dies beim 3. Losdurchgang passiert?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 3 24 2 23 21 22
= 3 4 1 23 7 22
= 21 2024

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

ohne Zurücklegen (einfach)

Beispiel:

In einem Kartenstapel sind verschiedene Karten, 4 vom Typ Kreuz, 3 vom Typ Herz, 2 vom Typ Pik und 3 vom Typ Karo. Es werden 2 Karten gleichzeitig vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit, 2 Karten der gleichen Farbe zu ziehen? (Unter Farben versteht man beim Kartenspiel Herz, Kreuz, Pig und Karo - nicht rot und schwarz)

Lösung einblenden
EreignisP
Kreuz -> Kreuz 1 11
Kreuz -> Herz 1 11
Kreuz -> Pik 2 33
Kreuz -> Karo 1 11
Herz -> Kreuz 1 11
Herz -> Herz 1 22
Herz -> Pik 1 22
Herz -> Karo 3 44
Pik -> Kreuz 2 33
Pik -> Herz 1 22
Pik -> Pik 1 66
Pik -> Karo 1 22
Karo -> Kreuz 1 11
Karo -> Herz 3 44
Karo -> Pik 1 22
Karo -> Karo 1 22

Einzel-Wahrscheinlichkeiten: P("Kreuz")= 1 3 ; P("Herz")= 1 4 ; P("Pik")= 1 6 ; P("Karo")= 1 4 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Kreuz'-'Kreuz' (P= 1 11 )
'Herz'-'Herz' (P= 1 22 )
'Pik'-'Pik' (P= 1 66 )
'Karo'-'Karo' (P= 1 22 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 11 + 1 22 + 1 66 + 1 22 = 13 66