Aufgabenbeispiele von Zufallsexperimente ohne Zurücklegen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


ohne Zurücklegen (einfach)

Beispiel:

In einer Urne sind 2 rote, 3 blaue , 5 gelbe und 5 schwarze Kugeln. Es wird zwei mal ohne Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "genau 2 mal rot"?

Lösung einblenden

Da ja ausschließlich nach 'rot' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'rot' und 'nicht rot'

Einzel-Wahrscheinlichkeiten :"rot": 2 15 ; "nicht rot": 13 15 ;

EreignisP
rot -> rot 1 105
rot -> nicht rot 13 105
nicht rot -> rot 13 105
nicht rot -> nicht rot 26 35

Einzel-Wahrscheinlichkeiten: P("rot")= 2 15 ; P("nicht rot")= 13 15 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'rot'-'rot' (P= 1 105 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 105 = 1 105


Ziehen ohne Zurücklegen

Beispiel:

In einem Stapel sind 2 Karten vom Wert 7, 2 Karten vom Wert 8 und 4 9er. Man zieht 2 Karten gleichzeitig aus dem Stapel. Wie groß ist die Wahrscheinlichkeit, dass die Summe der beiden Karten gerade 16 ist?

Lösung einblenden
EreignisP
7 -> 7 1 28
7 -> 8 1 14
7 -> 9 1 7
8 -> 7 1 14
8 -> 8 1 28
8 -> 9 1 7
9 -> 7 1 7
9 -> 8 1 7
9 -> 9 3 14

Einzel-Wahrscheinlichkeiten: P("7")= 1 4 ; P("8")= 1 4 ; P("9")= 1 2 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'7'-'9' (P= 1 7 )
'9'-'7' (P= 1 7 )
'8'-'8' (P= 1 28 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 7 + 1 7 + 1 28 = 9 28


nur Summen

Beispiel:

In einer Urne sind 3 Kugeln, die mit einer 1 beschriftet sind, 4 2er und 3 Kugeln mit einer 3. Es wird zwei mal mit Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen gerade 5 ist?

Lösung einblenden
EreignisP
1 -> 1 9 100
1 -> 2 3 25
1 -> 3 9 100
2 -> 1 3 25
2 -> 2 4 25
2 -> 3 3 25
3 -> 1 9 100
3 -> 2 3 25
3 -> 3 9 100

Einzel-Wahrscheinlichkeiten: P("1")= 3 10 ; P("2")= 2 5 ; P("3")= 3 10 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '2'-'3' (P= 3 25 )
  • '3'-'2' (P= 3 25 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

3 25 + 3 25 = 6 25


Ziehen bis erstmals x kommt

Beispiel:

In einer Urne sind 3 rote und 4 blaue Kugeln. Es soll (ohne Zurücklegen) solange gezogen werden, bis erstmals eine rote Kugel erscheint. Wie hoch ist die Wahrscheinlichkeit die rote Kugel im 2. Versuch zu ziehen?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 4 7 3 6
= 2 7 3 3
= 2 7

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Ziehen mit Zurücklegen

Beispiel:

Ein Würfel wird 3 mal geworfen. Wie groß ist die Wahrscheinlichkeit, mindestens 1 mal eine 6 zu würfeln?

Lösung einblenden

Da ja ausschließlich nach '6er' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '6er' und 'nicht 6er'

Einzel-Wahrscheinlichkeiten :"6er": 1 6 ; "nicht 6er": 5 6 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal 6er' alle Möglichkeiten enthalten, außer eben kein '6er' bzw. 0 mal '6er'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(0 mal '6er')=1- 125 216 = 91 216

EreignisP
6er -> 6er -> 6er 1 216
6er -> 6er -> nicht 6er 5 216
6er -> nicht 6er -> 6er 5 216
6er -> nicht 6er -> nicht 6er 25 216
nicht 6er -> 6er -> 6er 5 216
nicht 6er -> 6er -> nicht 6er 25 216
nicht 6er -> nicht 6er -> 6er 25 216
nicht 6er -> nicht 6er -> nicht 6er 125 216

Einzel-Wahrscheinlichkeiten: P("6er")= 1 6 ; P("nicht 6er")= 5 6 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '6er'-'nicht 6er'-'nicht 6er' (P= 25 216 )
  • 'nicht 6er'-'6er'-'nicht 6er' (P= 25 216 )
  • 'nicht 6er'-'nicht 6er'-'6er' (P= 25 216 )
  • '6er'-'6er'-'nicht 6er' (P= 5 216 )
  • '6er'-'nicht 6er'-'6er' (P= 5 216 )
  • 'nicht 6er'-'6er'-'6er' (P= 5 216 )
  • '6er'-'6er'-'6er' (P= 1 216 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

25 216 + 25 216 + 25 216 + 5 216 + 5 216 + 5 216 + 1 216 = 91 216