Aufgabenbeispiele von Zufallsexperimente ohne Zurücklegen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
ohne Zurücklegen (einfach)
Beispiel:
In einer Urne sind 2 rote, 4 blaue , 5 gelbe und 4 schwarze Kugeln. Es wird zwei mal ohne Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "1 mal rot und 1 mal blau"?
| Ereignis | P |
|---|---|
| rot -> rot | |
| rot -> blau | |
| rot -> gelb | |
| rot -> schwarz | |
| blau -> rot | |
| blau -> blau | |
| blau -> gelb | |
| blau -> schwarz | |
| gelb -> rot | |
| gelb -> blau | |
| gelb -> gelb | |
| gelb -> schwarz | |
| schwarz -> rot | |
| schwarz -> blau | |
| schwarz -> gelb | |
| schwarz -> schwarz |
Einzel-Wahrscheinlichkeiten: P("rot")=; P("blau")=; P("gelb")=; P("schwarz")=;
Die relevanten Pfade sind:
'rot'-'blau' (P=)
'blau'-'rot' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ =
Ziehen ohne Zurücklegen
Beispiel:
In einem Kartenstapel sind 2 Asse, 4 Könige und 4 Damen. Es werden 2 Karten vom Stapel gleichzeitig gezogen. Wie groß ist die Wahrscheinlichkeit "höchstens 1 mal Dame"?
Da ja ausschließlich nach 'Dame' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Dame' und 'nicht Dame'
Einzel-Wahrscheinlichkeiten :"Dame": ; "nicht Dame": ;
Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal Dame' alle Möglichkeiten enthalten, außer eben 2 mal 'Dame'
Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:
P=1-P(2 mal 'Dame')=1- =
| Ereignis | P |
|---|---|
| Dame -> Dame | |
| Dame -> nicht Dame | |
| nicht Dame -> Dame | |
| nicht Dame -> nicht Dame |
Einzel-Wahrscheinlichkeiten: P("Dame")=; P("nicht Dame")=;
Die relevanten Pfade sind:
'Dame'-'nicht Dame' (P=)
'nicht Dame'-'Dame' (P=)
'nicht Dame'-'nicht Dame' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + =
nur Summen
Beispiel:
Ein Würfel wird zwei mal geworfen. Wie hoch ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen 8 ist?
| Ereignis | P |
|---|---|
| 1 -> 1 | |
| 1 -> 2 | |
| 1 -> 3 | |
| 1 -> 4 | |
| 1 -> 5 | |
| 1 -> 6 | |
| 2 -> 1 | |
| 2 -> 2 | |
| 2 -> 3 | |
| 2 -> 4 | |
| 2 -> 5 | |
| 2 -> 6 | |
| 3 -> 1 | |
| 3 -> 2 | |
| 3 -> 3 | |
| 3 -> 4 | |
| 3 -> 5 | |
| 3 -> 6 | |
| 4 -> 1 | |
| 4 -> 2 | |
| 4 -> 3 | |
| 4 -> 4 | |
| 4 -> 5 | |
| 4 -> 6 | |
| 5 -> 1 | |
| 5 -> 2 | |
| 5 -> 3 | |
| 5 -> 4 | |
| 5 -> 5 | |
| 5 -> 6 | |
| 6 -> 1 | |
| 6 -> 2 | |
| 6 -> 3 | |
| 6 -> 4 | |
| 6 -> 5 | |
| 6 -> 6 |
Einzel-Wahrscheinlichkeiten: P("1")=; P("2")=; P("3")=; P("4")=; P("5")=; P("6")=;
Die relevanten Pfade sind:- '2'-'6' (P=)
- '6'-'2' (P=)
- '3'-'5' (P=)
- '5'-'3' (P=)
- '4'-'4' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + + + =
Ziehen bis erstmals x kommt
Beispiel:
Aus einem Kartenstapel mit 9 Karten der Farbe Herz und 2 weiteren Karten soll solange eine Karte gezogen werden, bis eine Herz-Karte erscheint. Wie groß ist die Wahrscheinlichkeit, dass dies im 3.Versuch passiert?
(Denk daran, den Bruch vollständig zu kürzen!)
Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:
P= ⋅ ⋅
= ⋅ ⋅
=
nur Summen
Beispiel:
Ein Würfel wird zwei mal geworfen. Wie hoch ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen 3 ist?
| Ereignis | P |
|---|---|
| 1 -> 1 | |
| 1 -> 2 | |
| 1 -> 3 | |
| 1 -> 4 | |
| 1 -> 5 | |
| 1 -> 6 | |
| 2 -> 1 | |
| 2 -> 2 | |
| 2 -> 3 | |
| 2 -> 4 | |
| 2 -> 5 | |
| 2 -> 6 | |
| 3 -> 1 | |
| 3 -> 2 | |
| 3 -> 3 | |
| 3 -> 4 | |
| 3 -> 5 | |
| 3 -> 6 | |
| 4 -> 1 | |
| 4 -> 2 | |
| 4 -> 3 | |
| 4 -> 4 | |
| 4 -> 5 | |
| 4 -> 6 | |
| 5 -> 1 | |
| 5 -> 2 | |
| 5 -> 3 | |
| 5 -> 4 | |
| 5 -> 5 | |
| 5 -> 6 | |
| 6 -> 1 | |
| 6 -> 2 | |
| 6 -> 3 | |
| 6 -> 4 | |
| 6 -> 5 | |
| 6 -> 6 |
Einzel-Wahrscheinlichkeiten: P("1")=; P("2")=; P("3")=; P("4")=; P("5")=; P("6")=;
Die relevanten Pfade sind:- '1'-'2' (P=)
- '2'-'1' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ =
