Aufgabenbeispiele von Zufallsexperimente ohne Zurücklegen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


ohne Zurücklegen (einfach)

Beispiel:

In einem Kartenstapel sind 2 Asse, 2 Könige und 4 Damen. Es werden 2 Karten gleichzeitig vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit "genau 2 mal Dame"?

Lösung einblenden

Da ja ausschließlich nach 'Dame' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Dame' und 'nicht Dame'

Einzel-Wahrscheinlichkeiten :"Dame": 1 2 ; "nicht Dame": 1 2 ;

EreignisP
Dame -> Dame 3 14
Dame -> nicht Dame 2 7
nicht Dame -> Dame 2 7
nicht Dame -> nicht Dame 3 14

Einzel-Wahrscheinlichkeiten: P("Dame")= 1 2 ; P("nicht Dame")= 1 2 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Dame'-'Dame' (P= 3 14 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

3 14 = 3 14


Ziehen ohne Zurücklegen

Beispiel:

In einer Urne sind verschiedene Kugeln, 10 vom Typ rot und 5 vom Typ blau. Es wird 3 mal ohne Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit, 3 Kugeln gleicher Farbe zu ziehen?

Lösung einblenden
EreignisP
rot -> rot -> rot 24 91
rot -> rot -> blau 15 91
rot -> blau -> rot 15 91
rot -> blau -> blau 20 273
blau -> rot -> rot 15 91
blau -> rot -> blau 20 273
blau -> blau -> rot 20 273
blau -> blau -> blau 2 91

Einzel-Wahrscheinlichkeiten: P("rot")= 2 3 ; P("blau")= 1 3 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'rot'-'rot'-'rot' (P= 24 91 )
'blau'-'blau'-'blau' (P= 2 91 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

24 91 + 2 91 = 2 7


nur Summen

Beispiel:

In einer Urne sind 4 Kugeln, die mit einer 1 beschriftet sind, 6 kugel mit einer 2 und 5 Kugeln mit einer 3. Es werden zwei Kugeln gleichzeitig gezogen. Wie groß ist die Wahrscheinlichkeit, dass die Summe der Kugeln 5 ist?

Lösung einblenden
EreignisP
1 -> 1 2 35
1 -> 2 4 35
1 -> 3 2 21
2 -> 1 4 35
2 -> 2 1 7
2 -> 3 1 7
3 -> 1 2 21
3 -> 2 1 7
3 -> 3 2 21

Einzel-Wahrscheinlichkeiten: P("1")= 4 15 ; P("2")= 2 5 ; P("3")= 1 3 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'2'-'3' (P= 1 7 )
'3'-'2' (P= 1 7 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 7 + 1 7 = 2 7


Ziehen bis erstmals x kommt

Beispiel:

Werder Bremen hat mal wieder das Halbfinale des DFB-Pokals erreicht. Wie hoch ist die Wahrscheinlichkeit, dass bei der Auslosung Werder an 4. Stelle gezogen wird?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 3 4 2 3 1 2 1
= 1 2 1 1 2 1
= 1 4

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

ohne Zurücklegen (einfach)

Beispiel:

Bei der Auslosung zum Championsleague-Achtelfinale sind noch alle 4 deutsche Mannschaften im Lostopf mit den 16 Mannschaften. Wie groß ist die Wahrscheinlichkeit, dass von den erstem drei gezogenen Mannschaften genau 3 deutsche Mannschaften sind (wenn man mal von der falschen Annahme ausgeht, dass alle Mannschaften im gleichen Lostopf sind)?

Lösung einblenden
EreignisP
deutsch -> deutsch -> deutsch 1 140
deutsch -> deutsch -> andere 3 70
deutsch -> andere -> deutsch 3 70
deutsch -> andere -> andere 11 70
andere -> deutsch -> deutsch 3 70
andere -> deutsch -> andere 11 70
andere -> andere -> deutsch 11 70
andere -> andere -> andere 11 28

Einzel-Wahrscheinlichkeiten: P("deutsch")= 1 4 ; P("andere")= 3 4 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'deutsch'-'deutsch'-'deutsch' (P= 1 140 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 140 = 1 140