Aufgabenbeispiele von Zufallsexperimente ohne Zurücklegen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
ohne Zurücklegen (einfach)
Beispiel:
Bei der Auslosung zum Championsleague-Achtelfinale sind noch alle 4 deutsche Mannschaften im Lostopf mit den 16 Mannschaften. Wie groß ist die Wahrscheinlichkeit, dass von den erstem drei gezogenen Mannschaften mindestens 1 deutsche Mannschaften sind (wenn man mal von der falschen Annahme ausgeht, dass alle Mannschaften im gleichen Lostopf sind)?
Da ja ausschließlich nach 'deutsch' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'deutsch' und 'nicht deutsch'
Einzel-Wahrscheinlichkeiten :"deutsch": ; "nicht deutsch": ;
Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal deutsch' alle Möglichkeiten enthalten, außer eben kein 'deutsch' bzw. 0 mal 'deutsch'
Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:
P=1-P(0 mal 'deutsch')=1- =
Ereignis | P |
---|---|
deutsch -> deutsch -> deutsch | |
deutsch -> deutsch -> nicht deutsch | |
deutsch -> nicht deutsch -> deutsch | |
deutsch -> nicht deutsch -> nicht deutsch | |
nicht deutsch -> deutsch -> deutsch | |
nicht deutsch -> deutsch -> nicht deutsch | |
nicht deutsch -> nicht deutsch -> deutsch | |
nicht deutsch -> nicht deutsch -> nicht deutsch |
Einzel-Wahrscheinlichkeiten: deutsch: ; nicht deutsch: ;
Die relevanten Pfade sind:
'deutsch'-'nicht deutsch'-'nicht deutsch' (P=)
'nicht deutsch'-'deutsch'-'nicht deutsch' (P=)
'nicht deutsch'-'nicht deutsch'-'deutsch' (P=)
'deutsch'-'deutsch'-'nicht deutsch' (P=)
'deutsch'-'nicht deutsch'-'deutsch' (P=)
'nicht deutsch'-'deutsch'-'deutsch' (P=)
'deutsch'-'deutsch'-'deutsch' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + + + + + =
Ziehen ohne Zurücklegen
Beispiel:
Auf einen Schüleraustausch bewerben sich 7 Mädchen und 3 Jungs. Weil aber leider weniger Plätze zur Verfügung stehen, muss gelost werden. Wie groß ist die Wahrscheinlichkeit, dass von den ersten 3 verlosten Plätzen mindestens 2 an eine Mädchen gehen?
Da ja ausschließlich nach 'Mädchen' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Mädchen' und 'nicht Mädchen'
Einzel-Wahrscheinlichkeiten :"Mädchen": ; "nicht Mädchen": ;
Ereignis | P |
---|---|
Mädchen -> Mädchen -> Mädchen | |
Mädchen -> Mädchen -> nicht Mädchen | |
Mädchen -> nicht Mädchen -> Mädchen | |
Mädchen -> nicht Mädchen -> nicht Mädchen | |
nicht Mädchen -> Mädchen -> Mädchen | |
nicht Mädchen -> Mädchen -> nicht Mädchen | |
nicht Mädchen -> nicht Mädchen -> Mädchen | |
nicht Mädchen -> nicht Mädchen -> nicht Mädchen |
Einzel-Wahrscheinlichkeiten: Mädchen: ; nicht Mädchen: ;
Die relevanten Pfade sind:
'Mädchen'-'Mädchen'-'nicht Mädchen' (P=)
'Mädchen'-'nicht Mädchen'-'Mädchen' (P=)
'nicht Mädchen'-'Mädchen'-'Mädchen' (P=)
'Mädchen'-'Mädchen'-'Mädchen' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + + =
nur Summen
Beispiel:
In einer 8. Klasse gibt es 10 SchülerInnen, die 13 Jahre alt sind, 10 14-Jährige und 2 15-Jährige. Ein Lehrer, der keine Ahnung über das Alter seiner Schüler hat, muss bei zwei SchülerInnen raten, wie alt die beiden zusammen sind. Er tippt auf 28 Jahre. Wie groß ist die Wahrscheinlichkeit, dass er zufällig richtig getippt hat?
Ereignis | P |
---|---|
13 -> 13 | |
13 -> 14 | |
13 -> 15 | |
14 -> 13 | |
14 -> 14 | |
14 -> 15 | |
15 -> 13 | |
15 -> 14 | |
15 -> 15 |
Einzel-Wahrscheinlichkeiten: 13: ; 14: ; 15: ;
Die relevanten Pfade sind:
'13'-'15' (P=)
'15'-'13' (P=)
'14'-'14' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + =
Ziehen bis erstmals x kommt
Beispiel:
Eine Lehrerin sammelt die Hausaufgaben von einigen Schülern ein, um zu kontrollieren, ob diese auch ordentlich gemacht wurden. Aus Zeitgründen möchte sie aber nicht alle, sondern nur ein paar wenige einsammeln, welche durch ein Losverfahren ausgewählt werden. Aus (der unbegründeten) Angst ungerecht behandelt zu werden, bestehen die 3 Jungs darauf, dass unbedingt immer eine Hausaufgabe eines der 18 Mädchen der Klasse eingesammelt wird. Deswegen wird solange gelost, bis das erste Mädchen gezogen wird. Wie groß ist die Wahrscheinlichkeit, dass dies beim 2. Losdurchgang passiert?
(Denk daran, den Bruch vollständig zu kürzen!)
Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:
P= ⋅
= ⋅
=
nur Summen
Beispiel:
In einer 8. Klasse gibt es 10 SchülerInnen, die 13 Jahre alt sind, 5 14-Jährige und 4 15-Jährige. Ein Lehrer, der keine Ahnung über das Alter seiner Schüler hat, muss bei zwei SchülerInnen raten, wie alt die beiden zusammen sind. Er tippt auf 26 Jahre. Wie groß ist die Wahrscheinlichkeit, dass er zufällig richtig getippt hat?
Da ja ausschließlich nach '13' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '13' und 'nicht 13'
Einzel-Wahrscheinlichkeiten :"13": ; "nicht 13": ;
Ereignis | P |
---|---|
13 -> 13 | |
13 -> nicht 13 | |
nicht 13 -> 13 | |
nicht 13 -> nicht 13 |
Einzel-Wahrscheinlichkeiten: 13: ; nicht 13: ;
Die relevanten Pfade sind:
'13'-'13' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
=