Aufgabenbeispiele von Zufallsexperimente ohne Zurücklegen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


ohne Zurücklegen (einfach)

Beispiel:

Auf einen Schüleraustausch bewerben sich 4 Mädchen und 6 Jungs. Weil aber leider weniger Plätze zur Verfügung stehen, muss gelost werden. Wie groß ist die Wahrscheinlichkeit, dass von den ersten 3 verlosten Plätzen genau 1 an ein Mädchen gehen?

Lösung einblenden
EreignisP
Mädchen -> Mädchen -> Mädchen 1 30
Mädchen -> Mädchen -> Jungs 1 10
Mädchen -> Jungs -> Mädchen 1 10
Mädchen -> Jungs -> Jungs 1 6
Jungs -> Mädchen -> Mädchen 1 10
Jungs -> Mädchen -> Jungs 1 6
Jungs -> Jungs -> Mädchen 1 6
Jungs -> Jungs -> Jungs 1 6

Einzel-Wahrscheinlichkeiten: P("Mädchen")= 2 5 ; P("Jungs")= 3 5 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Mädchen'-'Jungs'-'Jungs' (P= 1 6 )
'Jungs'-'Mädchen'-'Jungs' (P= 1 6 )
'Jungs'-'Jungs'-'Mädchen' (P= 1 6 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 6 + 1 6 + 1 6 = 1 2


Ziehen ohne Zurücklegen

Beispiel:

In einer Urne sind 10 rote und 5 blaue Kugeln. Es wird 3 mal ohne Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "höchstens 2 mal blau"?

Lösung einblenden

Da ja ausschließlich nach 'blau' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'blau' und 'nicht blau'

Einzel-Wahrscheinlichkeiten :"blau": 1 3 ; "nicht blau": 2 3 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal blau' alle Möglichkeiten enthalten, außer eben 3 mal 'blau'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(3 mal 'blau')=1- 2 91 = 89 91

EreignisP
blau -> blau -> blau 2 91
blau -> blau -> nicht blau 20 273
blau -> nicht blau -> blau 20 273
blau -> nicht blau -> nicht blau 15 91
nicht blau -> blau -> blau 20 273
nicht blau -> blau -> nicht blau 15 91
nicht blau -> nicht blau -> blau 15 91
nicht blau -> nicht blau -> nicht blau 24 91

Einzel-Wahrscheinlichkeiten: P("blau")= 1 3 ; P("nicht blau")= 2 3 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'blau'-'blau'-'nicht blau' (P= 20 273 )
'blau'-'nicht blau'-'blau' (P= 20 273 )
'nicht blau'-'blau'-'blau' (P= 20 273 )
'blau'-'nicht blau'-'nicht blau' (P= 15 91 )
'nicht blau'-'blau'-'nicht blau' (P= 15 91 )
'nicht blau'-'nicht blau'-'blau' (P= 15 91 )
'nicht blau'-'nicht blau'-'nicht blau' (P= 24 91 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

20 273 + 20 273 + 20 273 + 15 91 + 15 91 + 15 91 + 24 91 = 89 91


nur Summen

Beispiel:

In einer Urne sind 5 Kugeln, die mit einer 1 beschriftet sind, 5 kugel mit einer 2 und 5 Kugeln mit einer 3. Es werden zwei Kugeln gleichzeitig gezogen. Wie groß ist die Wahrscheinlichkeit, dass die Summe der Kugeln 4 ist?

Lösung einblenden
EreignisP
1 -> 1 2 21
1 -> 2 5 42
1 -> 3 5 42
2 -> 1 5 42
2 -> 2 2 21
2 -> 3 5 42
3 -> 1 5 42
3 -> 2 5 42
3 -> 3 2 21

Einzel-Wahrscheinlichkeiten: P("1")= 1 3 ; P("2")= 1 3 ; P("3")= 1 3 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'1'-'3' (P= 5 42 )
'3'-'1' (P= 5 42 )
'2'-'2' (P= 2 21 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

5 42 + 5 42 + 2 21 = 1 3


Ziehen bis erstmals x kommt

Beispiel:

In einer Urne sind 7 rote und 2 blaue Kugeln. Es soll (ohne Zurücklegen) solange gezogen werden, bis erstmals eine rote Kugel erscheint. Wie hoch ist die Wahrscheinlichkeit die rote Kugel im 2. Versuch zu ziehen?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 2 9 7 8
= 1 9 7 4
= 7 36

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

ohne Zurücklegen (einfach)

Beispiel:

In einem Kartenstapel sind 2 Asse, 4 Könige und 2 Damen. Es werden 2 Karten gleichzeitig vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit "mindestens 1 mal König"?

Lösung einblenden

Da ja ausschließlich nach 'König' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'König' und 'nicht König'

Einzel-Wahrscheinlichkeiten :"König": 1 2 ; "nicht König": 1 2 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal König' alle Möglichkeiten enthalten, außer eben kein 'König' bzw. 0 mal 'König'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(0 mal 'König')=1- 3 14 = 11 14

EreignisP
König -> König 3 14
König -> nicht König 2 7
nicht König -> König 2 7
nicht König -> nicht König 3 14

Einzel-Wahrscheinlichkeiten: P("König")= 1 2 ; P("nicht König")= 1 2 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'König'-'nicht König' (P= 2 7 )
'nicht König'-'König' (P= 2 7 )
'König'-'König' (P= 3 14 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

2 7 + 2 7 + 3 14 = 11 14