Aufgabenbeispiele von Zufallsexperimente ohne Zurücklegen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


ohne Zurücklegen (einfach)

Beispiel:

Auf einen Schüleraustausch bewerben sich 10 Mädchen und 5 Jungs. Weil aber leider weniger Plätze zur Verfügung stehen, muss gelost werden. Wie groß ist die Wahrscheinlichkeit, dass von den ersten 3 verlosten Plätzen genau 1 an ein Mädchen gehen?

Lösung einblenden
EreignisP
Mädchen -> Mädchen -> Mädchen 24 91
Mädchen -> Mädchen -> Jungs 15 91
Mädchen -> Jungs -> Mädchen 15 91
Mädchen -> Jungs -> Jungs 20 273
Jungs -> Mädchen -> Mädchen 15 91
Jungs -> Mädchen -> Jungs 20 273
Jungs -> Jungs -> Mädchen 20 273
Jungs -> Jungs -> Jungs 2 91

Einzel-Wahrscheinlichkeiten: P("Mädchen")= 2 3 ; P("Jungs")= 1 3 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Mädchen'-'Jungs'-'Jungs' (P= 20 273 )
'Jungs'-'Mädchen'-'Jungs' (P= 20 273 )
'Jungs'-'Jungs'-'Mädchen' (P= 20 273 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

20 273 + 20 273 + 20 273 = 20 91


Ziehen ohne Zurücklegen

Beispiel:

In einer Urne sind verschiedene Kugeln, 10 vom Typ rot, 3 vom Typ blau und 7 vom Typ gelb. Es wird 2 mal ohne Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit, 2 Kugeln gleicher Farbe zu ziehen?

Lösung einblenden
EreignisP
rot -> rot 9 38
rot -> blau 3 38
rot -> gelb 7 38
blau -> rot 3 38
blau -> blau 3 190
blau -> gelb 21 380
gelb -> rot 7 38
gelb -> blau 21 380
gelb -> gelb 21 190

Einzel-Wahrscheinlichkeiten: P("rot")= 1 2 ; P("blau")= 3 20 ; P("gelb")= 7 20 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'rot'-'rot' (P= 9 38 )
'blau'-'blau' (P= 3 190 )
'gelb'-'gelb' (P= 21 190 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

9 38 + 3 190 + 21 190 = 69 190


nur Summen

Beispiel:

Ein Würfel wird zwei mal geworfen. Wie hoch ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen 8 ist?

Lösung einblenden
EreignisP
1 -> 1 1 36
1 -> 2 1 36
1 -> 3 1 36
1 -> 4 1 36
1 -> 5 1 36
1 -> 6 1 36
2 -> 1 1 36
2 -> 2 1 36
2 -> 3 1 36
2 -> 4 1 36
2 -> 5 1 36
2 -> 6 1 36
3 -> 1 1 36
3 -> 2 1 36
3 -> 3 1 36
3 -> 4 1 36
3 -> 5 1 36
3 -> 6 1 36
4 -> 1 1 36
4 -> 2 1 36
4 -> 3 1 36
4 -> 4 1 36
4 -> 5 1 36
4 -> 6 1 36
5 -> 1 1 36
5 -> 2 1 36
5 -> 3 1 36
5 -> 4 1 36
5 -> 5 1 36
5 -> 6 1 36
6 -> 1 1 36
6 -> 2 1 36
6 -> 3 1 36
6 -> 4 1 36
6 -> 5 1 36
6 -> 6 1 36

Einzel-Wahrscheinlichkeiten: P("1")= 1 6 ; P("2")= 1 6 ; P("3")= 1 6 ; P("4")= 1 6 ; P("5")= 1 6 ; P("6")= 1 6 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '2'-'6' (P= 1 36 )
  • '6'-'2' (P= 1 36 )
  • '3'-'5' (P= 1 36 )
  • '5'-'3' (P= 1 36 )
  • '4'-'4' (P= 1 36 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 36 + 1 36 + 1 36 + 1 36 + 1 36 = 5 36


Ziehen bis erstmals x kommt

Beispiel:

In einer Urne sind 3 rote und 6 blaue Kugeln. Es soll (ohne Zurücklegen) solange gezogen werden, bis erstmals eine blaue Kugel erscheint. Wie hoch ist die Wahrscheinlichkeit die blaue Kugel im 4. Versuch zu ziehen?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 3 9 2 8 1 7 6 6
= 1 3 1 4 1 7 1
= 1 84

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Ziehen bis erstmals x kommt

Beispiel:

Werder Bremen hat mal wieder das Halbfinale des DFB-Pokals erreicht. Wie hoch ist die Wahrscheinlichkeit, dass bei der Auslosung Werder an 4. Stelle gezogen wird?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 3 4 2 3 1 2 1
= 1 2 1 1 2 1
= 1 4

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(