Aufgabenbeispiele von Zufallsexperimente ohne Zurücklegen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


ohne Zurücklegen (einfach)

Beispiel:

In einem Kartenstapel sind verschiedene Karten, 9 vom Typ Kreuz, 10 vom Typ Herz, 10 vom Typ Pik und 3 vom Typ Karo. Es werden 2 Karten gleichzeitig vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit, 2 Karten der gleichen Farbe zu ziehen? (Unter Farben versteht man beim Kartenspiel Herz, Kreuz, Pig und Karo - nicht rot und schwarz)

Lösung einblenden
EreignisP
Kreuz -> Kreuz 9 124
Kreuz -> Herz 45 496
Kreuz -> Pik 45 496
Kreuz -> Karo 27 992
Herz -> Kreuz 45 496
Herz -> Herz 45 496
Herz -> Pik 25 248
Herz -> Karo 15 496
Pik -> Kreuz 45 496
Pik -> Herz 25 248
Pik -> Pik 45 496
Pik -> Karo 15 496
Karo -> Kreuz 27 992
Karo -> Herz 15 496
Karo -> Pik 15 496
Karo -> Karo 3 496

Einzel-Wahrscheinlichkeiten: P("Kreuz")= 9 32 ; P("Herz")= 5 16 ; P("Pik")= 5 16 ; P("Karo")= 3 32 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Kreuz'-'Kreuz' (P= 9 124 )
'Herz'-'Herz' (P= 45 496 )
'Pik'-'Pik' (P= 45 496 )
'Karo'-'Karo' (P= 3 496 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

9 124 + 45 496 + 45 496 + 3 496 = 129 496


Ziehen ohne Zurücklegen

Beispiel:

In einer Urne sind 5 rote und 5 blaue Kugeln. Es wird 2 mal ohne Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "genau 2 mal rot"?

Lösung einblenden
EreignisP
rot -> rot 2 9
rot -> blau 5 18
blau -> rot 5 18
blau -> blau 2 9

Einzel-Wahrscheinlichkeiten: P("rot")= 1 2 ; P("blau")= 1 2 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'rot'-'rot' (P= 2 9 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

2 9 = 2 9


nur Summen

Beispiel:

In einer 8. Klasse gibt es 10 SchülerInnen, die 13 Jahre alt sind, 5 14-Jährige und 4 15-Jährige. Ein Lehrer, der keine Ahnung über das Alter seiner Schüler hat, muss bei zwei SchülerInnen raten, wie alt die beiden zusammen sind. Er tippt auf 26 Jahre. Wie groß ist die Wahrscheinlichkeit, dass er zufällig richtig getippt hat?

Lösung einblenden

Da ja ausschließlich nach '13' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '13' und 'nicht 13'

Einzel-Wahrscheinlichkeiten :"13": 10 19 ; "nicht 13": 9 19 ;

EreignisP
13 -> 13 5 19
13 -> nicht 13 5 19
nicht 13 -> 13 5 19
nicht 13 -> nicht 13 4 19

Einzel-Wahrscheinlichkeiten: P("13")= 10 19 ; P("nicht 13")= 9 19 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'13'-'13' (P= 5 19 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

5 19 = 5 19


Ziehen bis erstmals x kommt

Beispiel:

In einer Urne sind 2 rote und 2 blaue Kugeln. Es soll (ohne Zurücklegen) solange gezogen werden, bis erstmals eine blaue Kugel erscheint. Wie hoch ist die Wahrscheinlichkeit die blaue Kugel im 2. Versuch zu ziehen?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 2 4 2 3
= 2 2 1 3
= 1 3

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Ziehen mit Zurücklegen

Beispiel:

Ein Würfel wird 3 mal geworfen. Wie groß ist die Wahrscheinlichkeit, mindestens 2 mal eine 6 zu würfeln?

Lösung einblenden

Da ja ausschließlich nach '6er' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '6er' und 'nicht 6er'

Einzel-Wahrscheinlichkeiten :"6er": 1 6 ; "nicht 6er": 5 6 ;

EreignisP
6er -> 6er -> 6er 1 216
6er -> 6er -> nicht 6er 5 216
6er -> nicht 6er -> 6er 5 216
6er -> nicht 6er -> nicht 6er 25 216
nicht 6er -> 6er -> 6er 5 216
nicht 6er -> 6er -> nicht 6er 25 216
nicht 6er -> nicht 6er -> 6er 25 216
nicht 6er -> nicht 6er -> nicht 6er 125 216

Einzel-Wahrscheinlichkeiten: P("6er")= 1 6 ; P("nicht 6er")= 5 6 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '6er'-'6er'-'nicht 6er' (P= 5 216 )
  • '6er'-'nicht 6er'-'6er' (P= 5 216 )
  • 'nicht 6er'-'6er'-'6er' (P= 5 216 )
  • '6er'-'6er'-'6er' (P= 1 216 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

5 216 + 5 216 + 5 216 + 1 216 = 2 27