Aufgabenbeispiele von Zufallsexperimente ohne Zurücklegen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


ohne Zurücklegen (einfach)

Beispiel:

In einer Urne sind 4 rote, 6 blaue , 5 gelbe und 5 schwarze Kugeln. Es wird zwei mal ohne Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "genau 1 mal rot"?

Lösung einblenden

Da ja ausschließlich nach 'rot' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'rot' und 'nicht rot'

Einzel-Wahrscheinlichkeiten :"rot": 1 5 ; "nicht rot": 4 5 ;

EreignisP
rot -> rot 3 95
rot -> nicht rot 16 95
nicht rot -> rot 16 95
nicht rot -> nicht rot 12 19

Einzel-Wahrscheinlichkeiten: P("rot")= 1 5 ; P("nicht rot")= 4 5 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'rot'-'nicht rot' (P= 16 95 )
'nicht rot'-'rot' (P= 16 95 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

16 95 + 16 95 = 32 95


Ziehen ohne Zurücklegen

Beispiel:

In einem Lostopf sind 4 Kugeln mit einer Eins beschriftet, 2 Kugeln mit einer Zwei, 10 mit Drei und 4 mit einer Vier. Es werden zwei Kugeln gleichzeitig gezogen. Wie groß ist die Wahrscheinlichkiet dass die beiden gezogenen Zahlen zusammen 3 ergeben?

Lösung einblenden
EreignisP
1 -> 1 3 95
1 -> 2 2 95
1 -> 3 2 19
1 -> 4 4 95
2 -> 1 2 95
2 -> 2 1 190
2 -> 3 1 19
2 -> 4 2 95
3 -> 1 2 19
3 -> 2 1 19
3 -> 3 9 38
3 -> 4 2 19
4 -> 1 4 95
4 -> 2 2 95
4 -> 3 2 19
4 -> 4 3 95

Einzel-Wahrscheinlichkeiten: P("1")= 1 5 ; P("2")= 1 10 ; P("3")= 1 2 ; P("4")= 1 5 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'1'-'2' (P= 2 95 )
'2'-'1' (P= 2 95 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

2 95 + 2 95 = 4 95


nur Summen

Beispiel:

Ein Würfel wird zwei mal geworfen. Wie hoch ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen 5 ist?

Lösung einblenden
EreignisP
1 -> 1 1 36
1 -> 2 1 36
1 -> 3 1 36
1 -> 4 1 36
1 -> 5 1 36
1 -> 6 1 36
2 -> 1 1 36
2 -> 2 1 36
2 -> 3 1 36
2 -> 4 1 36
2 -> 5 1 36
2 -> 6 1 36
3 -> 1 1 36
3 -> 2 1 36
3 -> 3 1 36
3 -> 4 1 36
3 -> 5 1 36
3 -> 6 1 36
4 -> 1 1 36
4 -> 2 1 36
4 -> 3 1 36
4 -> 4 1 36
4 -> 5 1 36
4 -> 6 1 36
5 -> 1 1 36
5 -> 2 1 36
5 -> 3 1 36
5 -> 4 1 36
5 -> 5 1 36
5 -> 6 1 36
6 -> 1 1 36
6 -> 2 1 36
6 -> 3 1 36
6 -> 4 1 36
6 -> 5 1 36
6 -> 6 1 36

Einzel-Wahrscheinlichkeiten: P("1")= 1 6 ; P("2")= 1 6 ; P("3")= 1 6 ; P("4")= 1 6 ; P("5")= 1 6 ; P("6")= 1 6 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '1'-'4' (P= 1 36 )
  • '4'-'1' (P= 1 36 )
  • '2'-'3' (P= 1 36 )
  • '3'-'2' (P= 1 36 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 36 + 1 36 + 1 36 + 1 36 = 1 9


Ziehen bis erstmals x kommt

Beispiel:

Aus einem Kartenstapel mit 2 Karten der Farbe Herz und 2 weiteren Karten soll solange eine Karte gezogen werden, bis eine Herz-Karte erscheint. Wie groß ist die Wahrscheinlichkeit, dass dies im 2.Versuch passiert?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 2 4 2 3
= 2 2 1 3
= 1 3

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

ohne Zurücklegen (einfach)

Beispiel:

Auf einen Schüleraustausch bewerben sich 5 Mädchen und 5 Jungs. Weil aber leider weniger Plätze zur Verfügung stehen, muss gelost werden. Wie groß ist die Wahrscheinlichkeit, dass von den ersten 3 verlosten Plätzen genau 1 an ein Mädchen gehen?

Lösung einblenden
EreignisP
Mädchen -> Mädchen -> Mädchen 1 12
Mädchen -> Mädchen -> Jungs 5 36
Mädchen -> Jungs -> Mädchen 5 36
Mädchen -> Jungs -> Jungs 5 36
Jungs -> Mädchen -> Mädchen 5 36
Jungs -> Mädchen -> Jungs 5 36
Jungs -> Jungs -> Mädchen 5 36
Jungs -> Jungs -> Jungs 1 12

Einzel-Wahrscheinlichkeiten: P("Mädchen")= 1 2 ; P("Jungs")= 1 2 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Mädchen'-'Jungs'-'Jungs' (P= 5 36 )
'Jungs'-'Mädchen'-'Jungs' (P= 5 36 )
'Jungs'-'Jungs'-'Mädchen' (P= 5 36 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

5 36 + 5 36 + 5 36 = 5 12