Aufgabenbeispiele von Zufallsexperimente mit Zurücklegen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
mit Zurücklegen (einfach)
Beispiel:
Ein Würfel wird 2 mal geworfen. Wie groß ist die Wahrscheinlichkeit, mindestens 1 mal eine durch 3 teilbare Zahl zu würfeln?
Da ja ausschließlich nach '3er-Zahl' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '3er-Zahl' und 'nicht 3er-Zahl'
Einzel-Wahrscheinlichkeiten :"3er-Zahl": ; "nicht 3er-Zahl": ;
Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal 3er-Zahl' alle Möglichkeiten enthalten, außer eben kein '3er-Zahl' bzw. 0 mal '3er-Zahl'
Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:
P=1-P(0 mal '3er-Zahl')=1- =
| Ereignis | P |
|---|---|
| 3er-Zahl -> 3er-Zahl | |
| 3er-Zahl -> nicht 3er-Zahl | |
| nicht 3er-Zahl -> 3er-Zahl | |
| nicht 3er-Zahl -> nicht 3er-Zahl |
Einzel-Wahrscheinlichkeiten: P("3er-Zahl")=; P("nicht 3er-Zahl")=;
Die relevanten Pfade sind:- '3er-Zahl'-'nicht 3er-Zahl' (P=)
- 'nicht 3er-Zahl'-'3er-Zahl' (P=)
- '3er-Zahl'-'3er-Zahl' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + =
Ziehen mit Zurücklegen
Beispiel:
In einer Urne sind 9 Kugeln, die mit einer 1 beschriftet sind, 4 2er und 7 Kugeln mit einer 3. Es wird zwei mal mit Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen gerade 6 ist?
Da ja ausschließlich nach '3' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '3' und 'nicht 3'
Einzel-Wahrscheinlichkeiten :"3": ; "nicht 3": ;
| Ereignis | P |
|---|---|
| 3 -> 3 | |
| 3 -> nicht 3 | |
| nicht 3 -> 3 | |
| nicht 3 -> nicht 3 |
Einzel-Wahrscheinlichkeiten: P("3")=; P("nicht 3")=;
Die relevanten Pfade sind:- '3'-'3' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
=
