Aufgabenbeispiele von Zufallsexperimente mit Zurücklegen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
mit Zurücklegen (einfach)
Beispiel:
Ein Würfel wird 3 mal geworfen. Wie groß ist die Wahrscheinlichkeit, genau 2 mal eine Primzahl zu würfeln?
Lösung einblenden
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
| Ereignis | P |
|---|---|
| prim -> prim -> prim | |
| prim -> prim -> nicht prim | |
| prim -> nicht prim -> prim | |
| prim -> nicht prim -> nicht prim | |
| nicht prim -> prim -> prim | |
| nicht prim -> prim -> nicht prim | |
| nicht prim -> nicht prim -> prim | |
| nicht prim -> nicht prim -> nicht prim |
Einzel-Wahrscheinlichkeiten: P("prim")=; P("nicht prim")=;
Die relevanten Pfade sind:- 'prim'-'prim'-'nicht prim' (P=)
- 'prim'-'nicht prim'-'prim' (P=)
- 'nicht prim'-'prim'-'prim' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + =
Ziehen mit Zurücklegen
Beispiel:
In einer Urne sind verschiedene Kugeln, 10 vom Typ rot, 6 vom Typ blau, 5 vom Typ gelb und 3 vom Typ schwarz. Es wird 2 mal mit Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit, 2 Kugeln gleicher Farbe zu ziehen?
Lösung einblenden
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
| Ereignis | P |
|---|---|
| rot -> rot | |
| rot -> blau | |
| rot -> gelb | |
| rot -> schwarz | |
| blau -> rot | |
| blau -> blau | |
| blau -> gelb | |
| blau -> schwarz | |
| gelb -> rot | |
| gelb -> blau | |
| gelb -> gelb | |
| gelb -> schwarz | |
| schwarz -> rot | |
| schwarz -> blau | |
| schwarz -> gelb | |
| schwarz -> schwarz |
Einzel-Wahrscheinlichkeiten: P("rot")=; P("blau")=; P("gelb")=; P("schwarz")=;
Die relevanten Pfade sind:- 'rot'-'rot' (P=)
- 'blau'-'blau' (P=)
- 'gelb'-'gelb' (P=)
- 'schwarz'-'schwarz' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + + =
