Aufgabenbeispiele von Zufallsexperimente mit Zurücklegen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


mit Zurücklegen (einfach)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Das nebenstehende Glücksrad wird 2 mal gedreht. Wie groß ist die Wahrscheinlichkeit für "1 mal rot und 1 mal blau"?

Lösung einblenden
EreignisP
rot -> rot 1 16
rot -> blau 1 16
rot -> gelb 1 16
rot -> schwarz 1 16
blau -> rot 1 16
blau -> blau 1 16
blau -> gelb 1 16
blau -> schwarz 1 16
gelb -> rot 1 16
gelb -> blau 1 16
gelb -> gelb 1 16
gelb -> schwarz 1 16
schwarz -> rot 1 16
schwarz -> blau 1 16
schwarz -> gelb 1 16
schwarz -> schwarz 1 16

Einzel-Wahrscheinlichkeiten: P("rot")= 1 4 ; P("blau")= 1 4 ; P("gelb")= 1 4 ; P("schwarz")= 1 4 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'rot'-'blau' (P= 1 16 )
  • 'blau'-'rot' (P= 1 16 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 16 + 1 16 = 1 8


Ziehen mit Zurücklegen

Beispiel:

Ein Würfel wird 3 mal geworfen. Wie groß ist die Wahrscheinlichkeit, mindestens 1 mal eine durch 3 teilbare Zahl zu würfeln?

Lösung einblenden

Da ja ausschließlich nach '3er-Zahl' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '3er-Zahl' und 'nicht 3er-Zahl'

Einzel-Wahrscheinlichkeiten :"3er-Zahl": 1 3 ; "nicht 3er-Zahl": 2 3 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal 3er-Zahl' alle Möglichkeiten enthalten, außer eben kein '3er-Zahl' bzw. 0 mal '3er-Zahl'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(0 mal '3er-Zahl')=1- 8 27 = 19 27

EreignisP
3er-Zahl -> 3er-Zahl -> 3er-Zahl 1 27
3er-Zahl -> 3er-Zahl -> nicht 3er-Zahl 2 27
3er-Zahl -> nicht 3er-Zahl -> 3er-Zahl 2 27
3er-Zahl -> nicht 3er-Zahl -> nicht 3er-Zahl 4 27
nicht 3er-Zahl -> 3er-Zahl -> 3er-Zahl 2 27
nicht 3er-Zahl -> 3er-Zahl -> nicht 3er-Zahl 4 27
nicht 3er-Zahl -> nicht 3er-Zahl -> 3er-Zahl 4 27
nicht 3er-Zahl -> nicht 3er-Zahl -> nicht 3er-Zahl 8 27

Einzel-Wahrscheinlichkeiten: P("3er-Zahl")= 1 3 ; P("nicht 3er-Zahl")= 2 3 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '3er-Zahl'-'nicht 3er-Zahl'-'nicht 3er-Zahl' (P= 4 27 )
  • 'nicht 3er-Zahl'-'3er-Zahl'-'nicht 3er-Zahl' (P= 4 27 )
  • 'nicht 3er-Zahl'-'nicht 3er-Zahl'-'3er-Zahl' (P= 4 27 )
  • '3er-Zahl'-'3er-Zahl'-'nicht 3er-Zahl' (P= 2 27 )
  • '3er-Zahl'-'nicht 3er-Zahl'-'3er-Zahl' (P= 2 27 )
  • 'nicht 3er-Zahl'-'3er-Zahl'-'3er-Zahl' (P= 2 27 )
  • '3er-Zahl'-'3er-Zahl'-'3er-Zahl' (P= 1 27 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

4 27 + 4 27 + 4 27 + 2 27 + 2 27 + 2 27 + 1 27 = 19 27