Aufgabenbeispiele von Zufallsexperimente mit Zurücklegen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


mit Zurücklegen (einfach)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Das nebenstehende Glücksrad wird 2 mal gedreht. Wie groß ist die Wahrscheinlichkeit für "höchstens 1 mal rot"?

Lösung einblenden

Da ja ausschließlich nach 'rot' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'rot' und 'nicht rot'

Einzel-Wahrscheinlichkeiten :"rot": 3 8 ; "nicht rot": 5 8 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal rot' alle Möglichkeiten enthalten, außer eben 2 mal 'rot'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(2 mal 'rot')=1- 9 64 = 55 64

EreignisP
rot -> rot 9 64
rot -> nicht rot 15 64
nicht rot -> rot 15 64
nicht rot -> nicht rot 25 64

Einzel-Wahrscheinlichkeiten: P("rot")= 3 8 ; P("nicht rot")= 5 8 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'rot'-'nicht rot' (P= 15 64 )
  • 'nicht rot'-'rot' (P= 15 64 )
  • 'nicht rot'-'nicht rot' (P= 25 64 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

15 64 + 15 64 + 25 64 = 55 64


Ziehen mit Zurücklegen

Beispiel:

In einer Urne sind 4 rote und 6 blaue Kugeln. Es wird 3 mal mit Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "mindestens 1 mal blau"?

Lösung einblenden

Da ja ausschließlich nach 'blau' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'blau' und 'nicht blau'

Einzel-Wahrscheinlichkeiten :"blau": 3 5 ; "nicht blau": 2 5 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal blau' alle Möglichkeiten enthalten, außer eben kein 'blau' bzw. 0 mal 'blau'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(0 mal 'blau')=1- 8 125 = 117 125

EreignisP
blau -> blau -> blau 27 125
blau -> blau -> nicht blau 18 125
blau -> nicht blau -> blau 18 125
blau -> nicht blau -> nicht blau 12 125
nicht blau -> blau -> blau 18 125
nicht blau -> blau -> nicht blau 12 125
nicht blau -> nicht blau -> blau 12 125
nicht blau -> nicht blau -> nicht blau 8 125

Einzel-Wahrscheinlichkeiten: P("blau")= 3 5 ; P("nicht blau")= 2 5 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'blau'-'nicht blau'-'nicht blau' (P= 12 125 )
  • 'nicht blau'-'blau'-'nicht blau' (P= 12 125 )
  • 'nicht blau'-'nicht blau'-'blau' (P= 12 125 )
  • 'blau'-'blau'-'nicht blau' (P= 18 125 )
  • 'blau'-'nicht blau'-'blau' (P= 18 125 )
  • 'nicht blau'-'blau'-'blau' (P= 18 125 )
  • 'blau'-'blau'-'blau' (P= 27 125 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

12 125 + 12 125 + 12 125 + 18 125 + 18 125 + 18 125 + 27 125 = 117 125