Aufgabenbeispiele von Zufallsexperimente mit Zurücklegen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
mit Zurücklegen (einfach)
Beispiel:
In einer Urne sind 3 rote, 4 gelbe, 10 blaue und 3 schwarze Kugeln. Es wird zwei mal mit Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "1 mal rot und 1 mal schwarz"?
Lösung einblenden
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
| Ereignis | P |
|---|---|
| rot -> rot | |
| rot -> blau | |
| rot -> gelb | |
| rot -> schwarz | |
| blau -> rot | |
| blau -> blau | |
| blau -> gelb | |
| blau -> schwarz | |
| gelb -> rot | |
| gelb -> blau | |
| gelb -> gelb | |
| gelb -> schwarz | |
| schwarz -> rot | |
| schwarz -> blau | |
| schwarz -> gelb | |
| schwarz -> schwarz |
Einzel-Wahrscheinlichkeiten: P("rot")=; P("blau")=; P("gelb")=; P("schwarz")=;
Die relevanten Pfade sind:- 'rot'-'schwarz' (P=)
- 'schwarz'-'rot' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ =
Ziehen mit Zurücklegen
Beispiel:
Ein Würfel wird 2 mal geworfen. Wie groß ist die Wahrscheinlichkeit, genau 2 mal eine Primzahl zu würfeln?
Lösung einblenden
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
| Ereignis | P |
|---|---|
| prim -> prim | |
| prim -> nicht prim | |
| nicht prim -> prim | |
| nicht prim -> nicht prim |
Einzel-Wahrscheinlichkeiten: P("prim")=; P("nicht prim")=;
Die relevanten Pfade sind:- 'prim'-'prim' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
=
