Aufgabenbeispiele von Zufallsexperimente mit Zurücklegen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
mit Zurücklegen (einfach)
Beispiel:
Eine faire Münze (d.h. die Wahrscheinlichkeit für Zahl und Wappen ist gleich groß) wird drei mal geworfen. Wie groß ist die Wahrscheinlichkeit für "genau 2 mal Wappen"?
Lösung einblenden
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
| Ereignis | P |
|---|---|
| Zahl -> Zahl -> Zahl | |
| Zahl -> Zahl -> Wappen | |
| Zahl -> Wappen -> Zahl | |
| Zahl -> Wappen -> Wappen | |
| Wappen -> Zahl -> Zahl | |
| Wappen -> Zahl -> Wappen | |
| Wappen -> Wappen -> Zahl | |
| Wappen -> Wappen -> Wappen |
Einzel-Wahrscheinlichkeiten: P("Zahl")=; P("Wappen")=;
Die relevanten Pfade sind:- 'Zahl'-'Wappen'-'Wappen' (P=)
- 'Wappen'-'Zahl'-'Wappen' (P=)
- 'Wappen'-'Wappen'-'Zahl' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + =
Ziehen mit Zurücklegen
Beispiel:
(Alle Sektoren sind Vielfache
von Achtels-Kreisen)
Lösung einblenden
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
Da ja ausschließlich nach 'A' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'A' und 'nicht A'
Einzel-Wahrscheinlichkeiten :"A": ; "nicht A": ;
| Ereignis | P |
|---|---|
| A -> A | |
| A -> nicht A | |
| nicht A -> A | |
| nicht A -> nicht A |
Einzel-Wahrscheinlichkeiten: P("A")=; P("nicht A")=;
Die relevanten Pfade sind:- 'A'-'A' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
=
