Aufgabenbeispiele von Zufallsexperimente mit Zurücklegen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
mit Zurücklegen (einfach)
Beispiel:
In einer Urne sind 9 rote, 10 gelbe, 5 blaue und 6 schwarze Kugeln. Es wird zwei mal mit Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "genau 2 mal blau"?
Lösung einblenden
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
Da ja ausschließlich nach 'blau' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'blau' und 'nicht blau'
Einzel-Wahrscheinlichkeiten :"blau": ; "nicht blau": ;
| Ereignis | P |
|---|---|
| blau -> blau | |
| blau -> nicht blau | |
| nicht blau -> blau | |
| nicht blau -> nicht blau |
Einzel-Wahrscheinlichkeiten: P("blau")=; P("nicht blau")=;
Die relevanten Pfade sind:- 'blau'-'blau' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
=
Ziehen mit Zurücklegen
Beispiel:
Ein Würfel wird 2 mal geworfen. Wie groß ist die Wahrscheinlichkeit, genau 0 mal eine durch 3 teilbare Zahl zu würfeln?
Lösung einblenden
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
| Ereignis | P |
|---|---|
| 3er-Zahl -> 3er-Zahl | |
| 3er-Zahl -> nicht 3er | |
| nicht 3er -> 3er-Zahl | |
| nicht 3er -> nicht 3er |
Einzel-Wahrscheinlichkeiten: P("3er-Zahl")=; P("nicht 3er")=;
Die relevanten Pfade sind:- 'nicht 3er'-'nicht 3er' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
=
