Aufgabenbeispiele von Zufallsexperimente mit Zurücklegen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


mit Zurücklegen (einfach)

Beispiel:

Ein Würfel wird 2 mal geworfen. Wie groß ist die Wahrscheinlichkeit, genau 0 mal eine 6 zu würfeln?

Lösung einblenden
EreignisP
6er -> 6er 1 36
6er -> keine_6 5 36
keine_6 -> 6er 5 36
keine_6 -> keine_6 25 36

Einzel-Wahrscheinlichkeiten: P("6er")= 1 6 ; P("keine_6")= 5 6 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'keine_6'-'keine_6' (P= 25 36 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

25 36 = 25 36


Ziehen mit Zurücklegen

Beispiel:

In einer Urne sind 10 rote und 5 blaue Kugeln. Es wird 3 mal mit Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "mindestens 2 mal rot"?

Lösung einblenden

Da ja ausschließlich nach 'rot' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'rot' und 'nicht rot'

Einzel-Wahrscheinlichkeiten :"rot": 2 3 ; "nicht rot": 1 3 ;

EreignisP
rot -> rot -> rot 8 27
rot -> rot -> nicht rot 4 27
rot -> nicht rot -> rot 4 27
rot -> nicht rot -> nicht rot 2 27
nicht rot -> rot -> rot 4 27
nicht rot -> rot -> nicht rot 2 27
nicht rot -> nicht rot -> rot 2 27
nicht rot -> nicht rot -> nicht rot 1 27

Einzel-Wahrscheinlichkeiten: P("rot")= 2 3 ; P("nicht rot")= 1 3 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'rot'-'rot'-'nicht rot' (P= 4 27 )
  • 'rot'-'nicht rot'-'rot' (P= 4 27 )
  • 'nicht rot'-'rot'-'rot' (P= 4 27 )
  • 'rot'-'rot'-'rot' (P= 8 27 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

4 27 + 4 27 + 4 27 + 8 27 = 20 27