Aufgabenbeispiele von Zufallsexperimente mit Zurücklegen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
mit Zurücklegen (einfach)
Beispiel:
In einer Urne sind 8 rote, 9 gelbe, 4 blaue und 3 schwarze Kugeln. Es wird zwei mal mit Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "genau 1 mal rot"?
Da ja ausschließlich nach 'rot' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'rot' und 'nicht rot'
Einzel-Wahrscheinlichkeiten :"rot": ; "nicht rot": ;
| Ereignis | P |
|---|---|
| rot -> rot | |
| rot -> nicht rot | |
| nicht rot -> rot | |
| nicht rot -> nicht rot |
Einzel-Wahrscheinlichkeiten: P("rot")=; P("nicht rot")=;
Die relevanten Pfade sind:- 'rot'-'nicht rot' (P=)
- 'nicht rot'-'rot' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ =
Ziehen mit Zurücklegen
Beispiel:
Beim Roulette kann man auch auf Zahlenbereiche setzen. Z.B. auf die Zahlenbereiche 1-12, 13-24 und 25-36, wobei die grüne 0 zu keinem der Bereiche gehört. Es wird zwei mal eine Kugel im Roulette gespielt. Wie groß ist die Wahrscheinlichkeit für "genau 2 mal 13-24"?
Da ja ausschließlich nach '13-24' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '13-24' und 'nicht 13-24'
Einzel-Wahrscheinlichkeiten :"13-24": ; "nicht 13-24": ;
| Ereignis | P |
|---|---|
| 13-24 -> 13-24 | |
| 13-24 -> nicht 13-24 | |
| nicht 13-24 -> 13-24 | |
| nicht 13-24 -> nicht 13-24 |
Einzel-Wahrscheinlichkeiten: P("13-24")=; P("nicht 13-24")=;
Die relevanten Pfade sind:- '13-24'-'13-24' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
=
