Aufgabenbeispiele von Zufallsexperimente mit Zurücklegen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


mit Zurücklegen (einfach)

Beispiel:

Ein Würfel wird 2 mal geworfen. Wie groß ist die Wahrscheinlichkeit, höchstens 1 mal eine durch 3 teilbare Zahl zu würfeln?

Lösung einblenden

Da ja ausschließlich nach '3er-Zahl' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '3er-Zahl' und 'nicht 3er-Zahl'

Einzel-Wahrscheinlichkeiten :"3er-Zahl": 1 3 ; "nicht 3er-Zahl": 2 3 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal 3er-Zahl' alle Möglichkeiten enthalten, außer eben 2 mal '3er-Zahl'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(2 mal '3er-Zahl')=1- 1 9 = 8 9

EreignisP
3er-Zahl -> 3er-Zahl 1 9
3er-Zahl -> nicht 3er-Zahl 2 9
nicht 3er-Zahl -> 3er-Zahl 2 9
nicht 3er-Zahl -> nicht 3er-Zahl 4 9

Einzel-Wahrscheinlichkeiten: P("3er-Zahl")= 1 3 ; P("nicht 3er-Zahl")= 2 3 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '3er-Zahl'-'nicht 3er-Zahl' (P= 2 9 )
  • 'nicht 3er-Zahl'-'3er-Zahl' (P= 2 9 )
  • 'nicht 3er-Zahl'-'nicht 3er-Zahl' (P= 4 9 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

2 9 + 2 9 + 4 9 = 8 9


Ziehen mit Zurücklegen

Beispiel:

In einer Urne sind 3 rote und 7 blaue Kugeln. Es wird 3 mal mit Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "mindestens 2 mal rot"?

Lösung einblenden

Da ja ausschließlich nach 'rot' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'rot' und 'nicht rot'

Einzel-Wahrscheinlichkeiten :"rot": 3 10 ; "nicht rot": 7 10 ;

EreignisP
rot -> rot -> rot 27 1000
rot -> rot -> nicht rot 63 1000
rot -> nicht rot -> rot 63 1000
rot -> nicht rot -> nicht rot 147 1000
nicht rot -> rot -> rot 63 1000
nicht rot -> rot -> nicht rot 147 1000
nicht rot -> nicht rot -> rot 147 1000
nicht rot -> nicht rot -> nicht rot 343 1000

Einzel-Wahrscheinlichkeiten: P("rot")= 3 10 ; P("nicht rot")= 7 10 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'rot'-'rot'-'nicht rot' (P= 63 1000 )
  • 'rot'-'nicht rot'-'rot' (P= 63 1000 )
  • 'nicht rot'-'rot'-'rot' (P= 63 1000 )
  • 'rot'-'rot'-'rot' (P= 27 1000 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

63 1000 + 63 1000 + 63 1000 + 27 1000 = 27 125