Aufgabenbeispiele von Zufallsexperimente mit Zurücklegen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
mit Zurücklegen (einfach)
Beispiel:
(Alle Sektoren sind Vielfache
von Achtels-Kreisen)
| Ereignis | P |
|---|---|
| rot -> rot | |
| rot -> blau | |
| blau -> rot | |
| blau -> blau |
Einzel-Wahrscheinlichkeiten: P("rot")=; P("blau")=;
Die relevanten Pfade sind:- 'blau'-'blau' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
=
Ziehen mit Zurücklegen
Beispiel:
Beim Roulette kann man auch auf Zahlenbereiche setzen. Z.B. auf die Zahlenbereiche 1-12, 13-24 und 25-36, wobei die grüne 0 zu keinem der Bereiche gehört. Es wird zwei mal eine Kugel im Roulette gespielt. Wie groß ist die Wahrscheinlichkeit für "mindestens 1 mal 25-36"?
Da ja ausschließlich nach '25-36' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '25-36' und 'nicht 25-36'
Einzel-Wahrscheinlichkeiten :"25-36": ; "nicht 25-36": ;
Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal 25-36' alle Möglichkeiten enthalten, außer eben kein '25-36' bzw. 0 mal '25-36'
Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:
P=1-P(0 mal '25-36')=1- =
| Ereignis | P |
|---|---|
| 25-36 -> 25-36 | |
| 25-36 -> nicht 25-36 | |
| nicht 25-36 -> 25-36 | |
| nicht 25-36 -> nicht 25-36 |
Einzel-Wahrscheinlichkeiten: P("25-36")=; P("nicht 25-36")=;
Die relevanten Pfade sind:- '25-36'-'nicht 25-36' (P=)
- 'nicht 25-36'-'25-36' (P=)
- '25-36'-'25-36' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + =
