Aufgabenbeispiele von Zufallsexperimente mit Zurücklegen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
mit Zurücklegen (einfach)
Beispiel:
Ein Würfel wird 2 mal geworfen. Wie groß ist die Wahrscheinlichkeit, genau 2 mal eine Primzahl zu würfeln?
| Ereignis | P |
|---|---|
| prim -> prim | |
| prim -> nicht prim | |
| nicht prim -> prim | |
| nicht prim -> nicht prim |
Einzel-Wahrscheinlichkeiten: P("prim")=; P("nicht prim")=;
Die relevanten Pfade sind:- 'prim'-'prim' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
=
Ziehen mit Zurücklegen
Beispiel:
Beim Roulette gibt es 18 rote, 18 scharze und ein grünes Feld (für die Null). Es wird zwei mal eine Kugel im Roulette gespielt. Wie groß ist die Wahrscheinlichkeit für "genau 1 mal schwarz"?
Da ja ausschließlich nach 'schwarz' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'schwarz' und 'nicht schwarz'
Einzel-Wahrscheinlichkeiten :"schwarz": ; "nicht schwarz": ;
| Ereignis | P |
|---|---|
| schwarz -> schwarz | |
| schwarz -> nicht schwarz | |
| nicht schwarz -> schwarz | |
| nicht schwarz -> nicht schwarz |
Einzel-Wahrscheinlichkeiten: P("schwarz")=; P("nicht schwarz")=;
Die relevanten Pfade sind:- 'schwarz'-'nicht schwarz' (P=)
- 'nicht schwarz'-'schwarz' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ =
