Aufgabenbeispiele von Zufallsexperimente mit Zurücklegen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
mit Zurücklegen (einfach)
Beispiel:
Ein Würfel wird 2 mal geworfen. Wie groß ist die Wahrscheinlichkeit, genau 0 mal eine 6 zu würfeln?
| Ereignis | P |
|---|---|
| 6er -> 6er | |
| 6er -> keine_6 | |
| keine_6 -> 6er | |
| keine_6 -> keine_6 |
Einzel-Wahrscheinlichkeiten: P("6er")=; P("keine_6")=;
Die relevanten Pfade sind:- 'keine_6'-'keine_6' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
=
Ziehen mit Zurücklegen
Beispiel:
Beim Roulette kann man auch auf Zahlenbereiche setzen. Z.B. auf die Zahlenbereiche 1-12, 13-24 und 25-36, wobei die grüne 0 zu keinem der Bereiche gehört. Es wird zwei mal eine Kugel im Roulette gespielt. Wie groß ist die Wahrscheinlichkeit für "mindestens 1 mal grüne 0"?
Da ja ausschließlich nach 'grüne 0' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'grüne 0' und 'nicht grüne 0'
Einzel-Wahrscheinlichkeiten :"grüne 0": ; "nicht grüne 0": ;
Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal grüne 0' alle Möglichkeiten enthalten, außer eben kein 'grüne 0' bzw. 0 mal 'grüne 0'
Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:
P=1-P(0 mal 'grüne 0')=1- =
| Ereignis | P |
|---|---|
| grüne 0 -> grüne 0 | |
| grüne 0 -> nicht grüne 0 | |
| nicht grüne 0 -> grüne 0 | |
| nicht grüne 0 -> nicht grüne 0 |
Einzel-Wahrscheinlichkeiten: P("grüne 0")=; P("nicht grüne 0")=;
Die relevanten Pfade sind:- 'grüne 0'-'nicht grüne 0' (P=)
- 'nicht grüne 0'-'grüne 0' (P=)
- 'grüne 0'-'grüne 0' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + =
