Aufgabenbeispiele von Zufallsexperimente mit Zurücklegen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


mit Zurücklegen (einfach)

Beispiel:

Ein Würfel wird 2 mal geworfen. Wie groß ist die Wahrscheinlichkeit, höchstens 1 mal eine Primzahl zu würfeln?

Lösung einblenden

Da ja ausschließlich nach 'prim' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'prim' und 'nicht prim'

Einzel-Wahrscheinlichkeiten :"prim": 1 2 ; "nicht prim": 1 2 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal prim' alle Möglichkeiten enthalten, außer eben 2 mal 'prim'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(2 mal 'prim')=1- 1 4 = 3 4

EreignisP
prim -> prim 1 4
prim -> nicht prim 1 4
nicht prim -> prim 1 4
nicht prim -> nicht prim 1 4

Einzel-Wahrscheinlichkeiten: P("prim")= 1 2 ; P("nicht prim")= 1 2 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'prim'-'nicht prim' (P= 1 4 )
  • 'nicht prim'-'prim' (P= 1 4 )
  • 'nicht prim'-'nicht prim' (P= 1 4 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 4 + 1 4 + 1 4 = 3 4


Ziehen mit Zurücklegen

Beispiel:

Beim Roulette kann man auch auf Zahlenbereiche setzen. Z.B. auf die Zahlenbereiche 1-12, 13-24 und 25-36, wobei die grüne 0 zu keinem der Bereiche gehört. Es wird zwei mal eine Kugel im Roulette gespielt. Wie groß ist die Wahrscheinlichkeit für "genau 2 mal 13-24"?

Lösung einblenden

Da ja ausschließlich nach '13-24' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '13-24' und 'nicht 13-24'

Einzel-Wahrscheinlichkeiten :"13-24": 12 37 ; "nicht 13-24": 25 37 ;

EreignisP
13-24 -> 13-24 144 1369
13-24 -> nicht 13-24 300 1369
nicht 13-24 -> 13-24 300 1369
nicht 13-24 -> nicht 13-24 625 1369

Einzel-Wahrscheinlichkeiten: P("13-24")= 12 37 ; P("nicht 13-24")= 25 37 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '13-24'-'13-24' (P= 144 1369 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

144 1369 = 144 1369