Aufgabenbeispiele von Zufallsexperimente mit Zurücklegen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
mit Zurücklegen (einfach)
Beispiel:
Ein Würfel wird 2 mal geworfen. Wie groß ist die Wahrscheinlichkeit, mindestens 1 mal eine 6 zu würfeln?
Da ja ausschließlich nach '6er' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '6er' und 'nicht 6er'
Einzel-Wahrscheinlichkeiten :"6er": ; "nicht 6er": ;
Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal 6er' alle Möglichkeiten enthalten, außer eben kein '6er' bzw. 0 mal '6er'
Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:
P=1-P(0 mal '6er')=1- =
| Ereignis | P |
|---|---|
| 6er -> 6er | |
| 6er -> nicht 6er | |
| nicht 6er -> 6er | |
| nicht 6er -> nicht 6er |
Einzel-Wahrscheinlichkeiten: P("6er")=; P("nicht 6er")=;
Die relevanten Pfade sind:- '6er'-'nicht 6er' (P=)
- 'nicht 6er'-'6er' (P=)
- '6er'-'6er' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + =
Ziehen mit Zurücklegen
Beispiel:
Beim Roulette kann man auch auf Zahlenbereiche setzen. Z.B. auf die Zahlenbereiche 1-12, 13-24 und 25-36, wobei die grüne 0 zu keinem der Bereiche gehört. Es wird zwei mal eine Kugel im Roulette gespielt. Wie groß ist die Wahrscheinlichkeit für "höchstens 1 mal 25-36"?
Da ja ausschließlich nach '25-36' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '25-36' und 'nicht 25-36'
Einzel-Wahrscheinlichkeiten :"25-36": ; "nicht 25-36": ;
Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal 25-36' alle Möglichkeiten enthalten, außer eben 2 mal '25-36'
Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:
P=1-P(2 mal '25-36')=1- =
| Ereignis | P |
|---|---|
| 25-36 -> 25-36 | |
| 25-36 -> nicht 25-36 | |
| nicht 25-36 -> 25-36 | |
| nicht 25-36 -> nicht 25-36 |
Einzel-Wahrscheinlichkeiten: P("25-36")=; P("nicht 25-36")=;
Die relevanten Pfade sind:- '25-36'-'nicht 25-36' (P=)
- 'nicht 25-36'-'25-36' (P=)
- 'nicht 25-36'-'nicht 25-36' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + =
