Aufgabenbeispiele von Zufallsexperimente mit Zurücklegen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
mit Zurücklegen (einfach)
Beispiel:
Ein Würfel wird 2 mal geworfen. Wie groß ist die Wahrscheinlichkeit, genau 0 mal eine durch 3 teilbare Zahl zu würfeln?
| Ereignis | P |
|---|---|
| 3er-Zahl -> 3er-Zahl | |
| 3er-Zahl -> nicht 3er | |
| nicht 3er -> 3er-Zahl | |
| nicht 3er -> nicht 3er |
Einzel-Wahrscheinlichkeiten: P("3er-Zahl")=; P("nicht 3er")=;
Die relevanten Pfade sind:- 'nicht 3er'-'nicht 3er' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
=
Ziehen mit Zurücklegen
Beispiel:
(Alle Sektoren sind Vielfache
von Achtels-Kreisen)
Da ja ausschließlich nach 'D' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'D' und 'nicht D'
Einzel-Wahrscheinlichkeiten :"D": ; "nicht D": ;
Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal D' alle Möglichkeiten enthalten, außer eben 2 mal 'D'
Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:
P=1-P(2 mal 'D')=1- =
| Ereignis | P |
|---|---|
| D -> D | |
| D -> nicht D | |
| nicht D -> D | |
| nicht D -> nicht D |
Einzel-Wahrscheinlichkeiten: P("D")=; P("nicht D")=;
Die relevanten Pfade sind:- 'D'-'nicht D' (P=)
- 'nicht D'-'D' (P=)
- 'nicht D'-'nicht D' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + =
