Aufgabenbeispiele von Zufallsexperimente mit Zurücklegen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


mit Zurücklegen (einfach)

Beispiel:

In einer Urne sind 9 rote, 5 gelbe, 3 blaue und 3 schwarze Kugeln. Es wird zwei mal mit Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "genau 2 mal rot"?

Lösung einblenden

Da ja ausschließlich nach 'rot' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'rot' und 'nicht rot'

Einzel-Wahrscheinlichkeiten :"rot": 9 20 ; "nicht rot": 11 20 ;

EreignisP
rot -> rot 81 400
rot -> nicht rot 99 400
nicht rot -> rot 99 400
nicht rot -> nicht rot 121 400

Einzel-Wahrscheinlichkeiten: P("rot")= 9 20 ; P("nicht rot")= 11 20 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'rot'-'rot' (P= 81 400 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

81 400 = 81 400


Ziehen mit Zurücklegen

Beispiel:

In einer Urne sind verschiedene Kugeln, 9 vom Typ rot und 3 vom Typ blau. Es wird 3 mal mit Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit, 3 Kugeln gleicher Farbe zu ziehen?

Lösung einblenden
EreignisP
rot -> rot -> rot 27 64
rot -> rot -> blau 9 64
rot -> blau -> rot 9 64
rot -> blau -> blau 3 64
blau -> rot -> rot 9 64
blau -> rot -> blau 3 64
blau -> blau -> rot 3 64
blau -> blau -> blau 1 64

Einzel-Wahrscheinlichkeiten: P("rot")= 3 4 ; P("blau")= 1 4 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'rot'-'rot'-'rot' (P= 27 64 )
  • 'blau'-'blau'-'blau' (P= 1 64 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

27 64 + 1 64 = 7 16