Aufgabenbeispiele von Zufallsexperimente mit Zurücklegen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


mit Zurücklegen (einfach)

Beispiel:

Eine faire Münze (d.h. die Wahrscheinlichkeit für Zahl und Wappen ist gleich groß) wird drei mal geworfen. Wie groß ist die Wahrscheinlichkeit für "höchstens 1 mal Wappen"?

Lösung einblenden

Da ja ausschließlich nach 'Wappen' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Wappen' und 'nicht Wappen'

Einzel-Wahrscheinlichkeiten :"Wappen": 1 2 ; "nicht Wappen": 1 2 ;

EreignisP
Wappen -> Wappen -> Wappen 1 8
Wappen -> Wappen -> nicht Wappen 1 8
Wappen -> nicht Wappen -> Wappen 1 8
Wappen -> nicht Wappen -> nicht Wappen 1 8
nicht Wappen -> Wappen -> Wappen 1 8
nicht Wappen -> Wappen -> nicht Wappen 1 8
nicht Wappen -> nicht Wappen -> Wappen 1 8
nicht Wappen -> nicht Wappen -> nicht Wappen 1 8

Einzel-Wahrscheinlichkeiten: P("Wappen")= 1 2 ; P("nicht Wappen")= 1 2 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'Wappen'-'nicht Wappen'-'nicht Wappen' (P= 1 8 )
  • 'nicht Wappen'-'Wappen'-'nicht Wappen' (P= 1 8 )
  • 'nicht Wappen'-'nicht Wappen'-'Wappen' (P= 1 8 )
  • 'nicht Wappen'-'nicht Wappen'-'nicht Wappen' (P= 1 8 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 8 + 1 8 + 1 8 + 1 8 = 1 2


Ziehen mit Zurücklegen

Beispiel:

In einer Urne sind verschiedene Kugeln, 8 vom Typ rot, 4 vom Typ blau, 3 vom Typ gelb und 5 vom Typ schwarz. Es wird 2 mal mit Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit, 2 Kugeln gleicher Farbe zu ziehen?

Lösung einblenden
EreignisP
rot -> rot 4 25
rot -> blau 2 25
rot -> gelb 3 50
rot -> schwarz 1 10
blau -> rot 2 25
blau -> blau 1 25
blau -> gelb 3 100
blau -> schwarz 1 20
gelb -> rot 3 50
gelb -> blau 3 100
gelb -> gelb 9 400
gelb -> schwarz 3 80
schwarz -> rot 1 10
schwarz -> blau 1 20
schwarz -> gelb 3 80
schwarz -> schwarz 1 16

Einzel-Wahrscheinlichkeiten: P("rot")= 2 5 ; P("blau")= 1 5 ; P("gelb")= 3 20 ; P("schwarz")= 1 4 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'rot'-'rot' (P= 4 25 )
  • 'blau'-'blau' (P= 1 25 )
  • 'gelb'-'gelb' (P= 9 400 )
  • 'schwarz'-'schwarz' (P= 1 16 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

4 25 + 1 25 + 9 400 + 1 16 = 57 200