Aufgabenbeispiele von Zufallsexperimente mit Zurücklegen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
mit Zurücklegen (einfach)
Beispiel:
Eine faire Münze (d.h. die Wahrscheinlichkeit für Zahl und Wappen ist gleich groß) wird drei mal geworfen. Wie groß ist die Wahrscheinlichkeit für "höchstens 2 mal Wappen"?
Da ja ausschließlich nach 'Wappen' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Wappen' und 'nicht Wappen'
Einzel-Wahrscheinlichkeiten :"Wappen": ; "nicht Wappen": ;
Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal Wappen' alle Möglichkeiten enthalten, außer eben 3 mal 'Wappen'
Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:
P=1-P(3 mal 'Wappen')=1- =
Ereignis | P |
---|---|
Wappen -> Wappen -> Wappen | |
Wappen -> Wappen -> nicht Wappen | |
Wappen -> nicht Wappen -> Wappen | |
Wappen -> nicht Wappen -> nicht Wappen | |
nicht Wappen -> Wappen -> Wappen | |
nicht Wappen -> Wappen -> nicht Wappen | |
nicht Wappen -> nicht Wappen -> Wappen | |
nicht Wappen -> nicht Wappen -> nicht Wappen |
Einzel-Wahrscheinlichkeiten: P("Wappen")=; P("nicht Wappen")=;
Die relevanten Pfade sind:- 'Wappen'-'Wappen'-'nicht Wappen' (P=)
- 'Wappen'-'nicht Wappen'-'Wappen' (P=)
- 'nicht Wappen'-'Wappen'-'Wappen' (P=)
- 'Wappen'-'nicht Wappen'-'nicht Wappen' (P=)
- 'nicht Wappen'-'Wappen'-'nicht Wappen' (P=)
- 'nicht Wappen'-'nicht Wappen'-'Wappen' (P=)
- 'nicht Wappen'-'nicht Wappen'-'nicht Wappen' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + + + + + =
Ziehen mit Zurücklegen
Beispiel:
Ein Würfel wird 2 mal geworfen. Wie groß ist die Wahrscheinlichkeit, genau 1 mal eine Primzahl zu würfeln?
Ereignis | P |
---|---|
prim -> prim | |
prim -> nicht prim | |
nicht prim -> prim | |
nicht prim -> nicht prim |
Einzel-Wahrscheinlichkeiten: P("prim")=; P("nicht prim")=;
Die relevanten Pfade sind:- 'prim'-'nicht prim' (P=)
- 'nicht prim'-'prim' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ =