Aufgabenbeispiele von Zufallsexperimente mit Zurücklegen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
mit Zurücklegen (einfach)
Beispiel:
Ein Würfel wird 2 mal geworfen. Wie groß ist die Wahrscheinlichkeit, genau 1 mal eine durch 3 teilbare Zahl zu würfeln?
| Ereignis | P |
|---|---|
| 3er-Zahl -> 3er-Zahl | |
| 3er-Zahl -> nicht 3er | |
| nicht 3er -> 3er-Zahl | |
| nicht 3er -> nicht 3er |
Einzel-Wahrscheinlichkeiten: P("3er-Zahl")=; P("nicht 3er")=;
Die relevanten Pfade sind:- '3er-Zahl'-'nicht 3er' (P=)
- 'nicht 3er'-'3er-Zahl' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ =
Ziehen mit Zurücklegen
Beispiel:
Ein Würfel wird 3 mal geworfen. Wie groß ist die Wahrscheinlichkeit, höchstens 2 mal eine durch 3 teilbare Zahl zu würfeln?
Da ja ausschließlich nach 'Teiler' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Teiler' und 'nicht Teiler'
Einzel-Wahrscheinlichkeiten :"Teiler": ; "nicht Teiler": ;
Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal Teiler' alle Möglichkeiten enthalten, außer eben 3 mal 'Teiler'
Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:
P=1-P(3 mal 'Teiler')=1- =
| Ereignis | P |
|---|---|
| Teiler -> Teiler -> Teiler | |
| Teiler -> Teiler -> nicht Teiler | |
| Teiler -> nicht Teiler -> Teiler | |
| Teiler -> nicht Teiler -> nicht Teiler | |
| nicht Teiler -> Teiler -> Teiler | |
| nicht Teiler -> Teiler -> nicht Teiler | |
| nicht Teiler -> nicht Teiler -> Teiler | |
| nicht Teiler -> nicht Teiler -> nicht Teiler |
Einzel-Wahrscheinlichkeiten: P("Teiler")=; P("nicht Teiler")=;
Die relevanten Pfade sind:- 'Teiler'-'Teiler'-'nicht Teiler' (P=)
- 'Teiler'-'nicht Teiler'-'Teiler' (P=)
- 'nicht Teiler'-'Teiler'-'Teiler' (P=)
- 'Teiler'-'nicht Teiler'-'nicht Teiler' (P=)
- 'nicht Teiler'-'Teiler'-'nicht Teiler' (P=)
- 'nicht Teiler'-'nicht Teiler'-'Teiler' (P=)
- 'nicht Teiler'-'nicht Teiler'-'nicht Teiler' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + + + + + =
