Aufgabenbeispiele von Zufallsexperimente mit Zurücklegen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


mit Zurücklegen (einfach)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Das nebenstehende Glücksrad wird 2 mal gedreht. Wie groß ist die Wahrscheinlichkeit für "höchstens 1 mal rot"?

Lösung einblenden

Da ja ausschließlich nach 'rot' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'rot' und 'nicht rot'

Einzel-Wahrscheinlichkeiten :"rot": 3 4 ; "nicht rot": 1 4 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal rot' alle Möglichkeiten enthalten, außer eben 2 mal 'rot'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(2 mal 'rot')=1- 9 16 = 7 16

EreignisP
rot -> rot 9 16
rot -> nicht rot 3 16
nicht rot -> rot 3 16
nicht rot -> nicht rot 1 16

Einzel-Wahrscheinlichkeiten: P("rot")= 3 4 ; P("nicht rot")= 1 4 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'rot'-'nicht rot' (P= 3 16 )
  • 'nicht rot'-'rot' (P= 3 16 )
  • 'nicht rot'-'nicht rot' (P= 1 16 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

3 16 + 3 16 + 1 16 = 7 16


Ziehen mit Zurücklegen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Ein Glücksrad wie in der Abbildung rechts wird zwei mal gedreht. Wie hoch ist die Wahrscheinlichkeit für "höchstens 1 mal C"?

Lösung einblenden

Da ja ausschließlich nach 'C' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'C' und 'nicht C'

Einzel-Wahrscheinlichkeiten :"C": 1 8 ; "nicht C": 7 8 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal C' alle Möglichkeiten enthalten, außer eben 2 mal 'C'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(2 mal 'C')=1- 1 64 = 63 64

EreignisP
C -> C 1 64
C -> nicht C 7 64
nicht C -> C 7 64
nicht C -> nicht C 49 64

Einzel-Wahrscheinlichkeiten: P("C")= 1 8 ; P("nicht C")= 7 8 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'C'-'nicht C' (P= 7 64 )
  • 'nicht C'-'C' (P= 7 64 )
  • 'nicht C'-'nicht C' (P= 49 64 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

7 64 + 7 64 + 49 64 = 63 64