Aufgabenbeispiele von Zufallsexperimente mit Zurücklegen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
mit Zurücklegen (einfach)
Beispiel:
Ein Würfel wird 3 mal geworfen. Wie groß ist die Wahrscheinlichkeit, höchstens 2 mal eine 6 zu würfeln?
Da ja ausschließlich nach '6er' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '6er' und 'nicht 6er'
Einzel-Wahrscheinlichkeiten :"6er": ; "nicht 6er": ;
Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal 6er' alle Möglichkeiten enthalten, außer eben 3 mal '6er'
Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:
P=1-P(3 mal '6er')=1- =
| Ereignis | P |
|---|---|
| 6er -> 6er -> 6er | |
| 6er -> 6er -> nicht 6er | |
| 6er -> nicht 6er -> 6er | |
| 6er -> nicht 6er -> nicht 6er | |
| nicht 6er -> 6er -> 6er | |
| nicht 6er -> 6er -> nicht 6er | |
| nicht 6er -> nicht 6er -> 6er | |
| nicht 6er -> nicht 6er -> nicht 6er |
Einzel-Wahrscheinlichkeiten: P("6er")=; P("nicht 6er")=;
Die relevanten Pfade sind:- '6er'-'6er'-'nicht 6er' (P=)
- '6er'-'nicht 6er'-'6er' (P=)
- 'nicht 6er'-'6er'-'6er' (P=)
- '6er'-'nicht 6er'-'nicht 6er' (P=)
- 'nicht 6er'-'6er'-'nicht 6er' (P=)
- 'nicht 6er'-'nicht 6er'-'6er' (P=)
- 'nicht 6er'-'nicht 6er'-'nicht 6er' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + + + + + =
Ziehen mit Zurücklegen
Beispiel:
Ein Würfel wird 3 mal geworfen. Wie groß ist die Wahrscheinlichkeit, genau 2 mal eine durch 3 teilbare Zahl zu würfeln?
| Ereignis | P |
|---|---|
| Teiler -> Teiler -> Teiler | |
| Teiler -> Teiler -> kein Teiler | |
| Teiler -> kein Teiler -> Teiler | |
| Teiler -> kein Teiler -> kein Teiler | |
| kein Teiler -> Teiler -> Teiler | |
| kein Teiler -> Teiler -> kein Teiler | |
| kein Teiler -> kein Teiler -> Teiler | |
| kein Teiler -> kein Teiler -> kein Teiler |
Einzel-Wahrscheinlichkeiten: P("Teiler")=; P("kein Teiler")=;
Die relevanten Pfade sind:- 'Teiler'-'Teiler'-'kein Teiler' (P=)
- 'Teiler'-'kein Teiler'-'Teiler' (P=)
- 'kein Teiler'-'Teiler'-'Teiler' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + =
