Aufgabenbeispiele von Zufallsexperimente mit Zurücklegen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
mit Zurücklegen (einfach)
Beispiel:
In einer Urne sind 9 rote, 5 gelbe, 8 blaue und 3 schwarze Kugeln. Es wird zwei mal mit Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "1 mal rot und 1 mal blau"?
| Ereignis | P |
|---|---|
| rot -> rot | |
| rot -> blau | |
| rot -> gelb | |
| rot -> schwarz | |
| blau -> rot | |
| blau -> blau | |
| blau -> gelb | |
| blau -> schwarz | |
| gelb -> rot | |
| gelb -> blau | |
| gelb -> gelb | |
| gelb -> schwarz | |
| schwarz -> rot | |
| schwarz -> blau | |
| schwarz -> gelb | |
| schwarz -> schwarz |
Einzel-Wahrscheinlichkeiten: P("rot")=; P("blau")=; P("gelb")=; P("schwarz")=;
Die relevanten Pfade sind:- 'rot'-'blau' (P=)
- 'blau'-'rot' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ =
Ziehen mit Zurücklegen
Beispiel:
In einer Urne sind 8 rote, 5 gelbe, 5 blaue und 6 schwarze Kugeln. Es wird zwei mal mit Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "höchstens 1 mal gelb"?
Da ja ausschließlich nach 'gelb' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'gelb' und 'nicht gelb'
Einzel-Wahrscheinlichkeiten :"gelb": ; "nicht gelb": ;
Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal gelb' alle Möglichkeiten enthalten, außer eben 2 mal 'gelb'
Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:
P=1-P(2 mal 'gelb')=1- =
| Ereignis | P |
|---|---|
| gelb -> gelb | |
| gelb -> nicht gelb | |
| nicht gelb -> gelb | |
| nicht gelb -> nicht gelb |
Einzel-Wahrscheinlichkeiten: P("gelb")=; P("nicht gelb")=;
Die relevanten Pfade sind:- 'gelb'-'nicht gelb' (P=)
- 'nicht gelb'-'gelb' (P=)
- 'nicht gelb'-'nicht gelb' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + =
