Aufgabenbeispiele von Zufallsexperimente mit Zurücklegen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
mit Zurücklegen (einfach)
Beispiel:
(Alle Sektoren sind Vielfache
von Achtels-Kreisen)
Lösung einblenden
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
Da ja ausschließlich nach 'blau' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'blau' und 'nicht blau'
Einzel-Wahrscheinlichkeiten :"blau": ; "nicht blau": ;
| Ereignis | P |
|---|---|
| blau -> blau | |
| blau -> nicht blau | |
| nicht blau -> blau | |
| nicht blau -> nicht blau |
Einzel-Wahrscheinlichkeiten: P("blau")=; P("nicht blau")=;
Die relevanten Pfade sind:- 'blau'-'blau' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
=
Ziehen mit Zurücklegen
Beispiel:
Beim Roulette gibt es 18 rote, 18 scharze und ein grünes Feld (für die Null). Es wird zwei mal eine Kugel im Roulette gespielt. Wie groß ist die Wahrscheinlichkeit für "1 mal schwarz und 1 mal grün"?
Lösung einblenden
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
| Ereignis | P |
|---|---|
| rot -> rot | |
| rot -> schwarz | |
| rot -> grün | |
| schwarz -> rot | |
| schwarz -> schwarz | |
| schwarz -> grün | |
| grün -> rot | |
| grün -> schwarz | |
| grün -> grün |
Einzel-Wahrscheinlichkeiten: P("rot")=; P("schwarz")=; P("grün")=;
Die relevanten Pfade sind:- 'schwarz'-'grün' (P=)
- 'grün'-'schwarz' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ =
