Aufgabenbeispiele von Zufallsexperimente mit Zurücklegen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


mit Zurücklegen (einfach)

Beispiel:

In einer Urne sind 6 rote, 7 gelbe, 3 blaue und 4 schwarze Kugeln. Es wird zwei mal mit Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "mindestens 1 mal rot"?

Lösung einblenden

Da ja ausschließlich nach 'rot' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'rot' und 'nicht rot'

Einzel-Wahrscheinlichkeiten :"rot": 3 10 ; "nicht rot": 7 10 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal rot' alle Möglichkeiten enthalten, außer eben kein 'rot' bzw. 0 mal 'rot'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(0 mal 'rot')=1- 49 100 = 51 100

EreignisP
rot -> rot 9 100
rot -> nicht rot 21 100
nicht rot -> rot 21 100
nicht rot -> nicht rot 49 100

Einzel-Wahrscheinlichkeiten: P("rot")= 3 10 ; P("nicht rot")= 7 10 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'rot'-'nicht rot' (P= 21 100 )
  • 'nicht rot'-'rot' (P= 21 100 )
  • 'rot'-'rot' (P= 9 100 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

21 100 + 21 100 + 9 100 = 51 100


Ziehen mit Zurücklegen

Beispiel:

In einer Urne sind 5 rote, 4 gelbe, 6 blaue und 5 schwarze Kugeln. Es wird zwei mal mit Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "höchstens 1 mal gelb"?

Lösung einblenden

Da ja ausschließlich nach 'gelb' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'gelb' und 'nicht gelb'

Einzel-Wahrscheinlichkeiten :"gelb": 1 5 ; "nicht gelb": 4 5 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal gelb' alle Möglichkeiten enthalten, außer eben 2 mal 'gelb'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(2 mal 'gelb')=1- 1 25 = 24 25

EreignisP
gelb -> gelb 1 25
gelb -> nicht gelb 4 25
nicht gelb -> gelb 4 25
nicht gelb -> nicht gelb 16 25

Einzel-Wahrscheinlichkeiten: P("gelb")= 1 5 ; P("nicht gelb")= 4 5 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'gelb'-'nicht gelb' (P= 4 25 )
  • 'nicht gelb'-'gelb' (P= 4 25 )
  • 'nicht gelb'-'nicht gelb' (P= 16 25 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

4 25 + 4 25 + 16 25 = 24 25