Aufgabenbeispiele von Zufallsexperimente mit Zurücklegen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
mit Zurücklegen (einfach)
Beispiel:
In einer Urne sind 9 rote, 9 gelbe, 7 blaue und 5 schwarze Kugeln. Es wird zwei mal mit Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "höchstens 1 mal schwarz"?
Da ja ausschließlich nach 'schwarz' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'schwarz' und 'nicht schwarz'
Einzel-Wahrscheinlichkeiten :"schwarz": ; "nicht schwarz": ;
Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal schwarz' alle Möglichkeiten enthalten, außer eben 2 mal 'schwarz'
Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:
P=1-P(2 mal 'schwarz')=1- =
| Ereignis | P |
|---|---|
| schwarz -> schwarz | |
| schwarz -> nicht schwarz | |
| nicht schwarz -> schwarz | |
| nicht schwarz -> nicht schwarz |
Einzel-Wahrscheinlichkeiten: P("schwarz")=; P("nicht schwarz")=;
Die relevanten Pfade sind:- 'schwarz'-'nicht schwarz' (P=)
- 'nicht schwarz'-'schwarz' (P=)
- 'nicht schwarz'-'nicht schwarz' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + =
Ziehen mit Zurücklegen
Beispiel:
In einer Urne sind 7 rote und 3 blaue Kugeln. Es wird 3 mal mit Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "mindestens 1 mal blau"?
Da ja ausschließlich nach 'blau' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'blau' und 'nicht blau'
Einzel-Wahrscheinlichkeiten :"blau": ; "nicht blau": ;
Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal blau' alle Möglichkeiten enthalten, außer eben kein 'blau' bzw. 0 mal 'blau'
Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:
P=1-P(0 mal 'blau')=1- =
| Ereignis | P |
|---|---|
| blau -> blau -> blau | |
| blau -> blau -> nicht blau | |
| blau -> nicht blau -> blau | |
| blau -> nicht blau -> nicht blau | |
| nicht blau -> blau -> blau | |
| nicht blau -> blau -> nicht blau | |
| nicht blau -> nicht blau -> blau | |
| nicht blau -> nicht blau -> nicht blau |
Einzel-Wahrscheinlichkeiten: P("blau")=; P("nicht blau")=;
Die relevanten Pfade sind:- 'blau'-'nicht blau'-'nicht blau' (P=)
- 'nicht blau'-'blau'-'nicht blau' (P=)
- 'nicht blau'-'nicht blau'-'blau' (P=)
- 'blau'-'blau'-'nicht blau' (P=)
- 'blau'-'nicht blau'-'blau' (P=)
- 'nicht blau'-'blau'-'blau' (P=)
- 'blau'-'blau'-'blau' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + + + + + =
