Aufgabenbeispiele von Zufallsexperimente mit Zurücklegen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


mit Zurücklegen (einfach)

Beispiel:

Ein Würfel wird 2 mal geworfen. Wie groß ist die Wahrscheinlichkeit, höchstens 1 mal eine 6 zu würfeln?

Lösung einblenden

Da ja ausschließlich nach '6er' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '6er' und 'nicht 6er'

Einzel-Wahrscheinlichkeiten :"6er": 1 6 ; "nicht 6er": 5 6 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal 6er' alle Möglichkeiten enthalten, außer eben 2 mal '6er'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(2 mal '6er')=1- 1 36 = 35 36

EreignisP
6er -> 6er 1 36
6er -> nicht 6er 5 36
nicht 6er -> 6er 5 36
nicht 6er -> nicht 6er 25 36

Einzel-Wahrscheinlichkeiten: P("6er")= 1 6 ; P("nicht 6er")= 5 6 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '6er'-'nicht 6er' (P= 5 36 )
  • 'nicht 6er'-'6er' (P= 5 36 )
  • 'nicht 6er'-'nicht 6er' (P= 25 36 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

5 36 + 5 36 + 25 36 = 35 36


Ziehen mit Zurücklegen

Beispiel:

In einer Urne sind 6 rote und 4 blaue Kugeln. Es wird 3 mal mit Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "mindestens 1 mal rot"?

Lösung einblenden

Da ja ausschließlich nach 'rot' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'rot' und 'nicht rot'

Einzel-Wahrscheinlichkeiten :"rot": 3 5 ; "nicht rot": 2 5 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal rot' alle Möglichkeiten enthalten, außer eben kein 'rot' bzw. 0 mal 'rot'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(0 mal 'rot')=1- 8 125 = 117 125

EreignisP
rot -> rot -> rot 27 125
rot -> rot -> nicht rot 18 125
rot -> nicht rot -> rot 18 125
rot -> nicht rot -> nicht rot 12 125
nicht rot -> rot -> rot 18 125
nicht rot -> rot -> nicht rot 12 125
nicht rot -> nicht rot -> rot 12 125
nicht rot -> nicht rot -> nicht rot 8 125

Einzel-Wahrscheinlichkeiten: P("rot")= 3 5 ; P("nicht rot")= 2 5 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'rot'-'nicht rot'-'nicht rot' (P= 12 125 )
  • 'nicht rot'-'rot'-'nicht rot' (P= 12 125 )
  • 'nicht rot'-'nicht rot'-'rot' (P= 12 125 )
  • 'rot'-'rot'-'nicht rot' (P= 18 125 )
  • 'rot'-'nicht rot'-'rot' (P= 18 125 )
  • 'nicht rot'-'rot'-'rot' (P= 18 125 )
  • 'rot'-'rot'-'rot' (P= 27 125 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

12 125 + 12 125 + 12 125 + 18 125 + 18 125 + 18 125 + 27 125 = 117 125