Aufgabenbeispiele von Zufallsexperimente mit Zurücklegen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


mit Zurücklegen (einfach)

Beispiel:

Ein Würfel wird 3 mal geworfen. Wie groß ist die Wahrscheinlichkeit, genau 0 mal eine durch 3 teilbare Zahl zu würfeln?

Lösung einblenden
EreignisP
3er-Zahl -> 3er-Zahl -> 3er-Zahl 1 27
3er-Zahl -> 3er-Zahl -> nicht 3er 2 27
3er-Zahl -> nicht 3er -> 3er-Zahl 2 27
3er-Zahl -> nicht 3er -> nicht 3er 4 27
nicht 3er -> 3er-Zahl -> 3er-Zahl 2 27
nicht 3er -> 3er-Zahl -> nicht 3er 4 27
nicht 3er -> nicht 3er -> 3er-Zahl 4 27
nicht 3er -> nicht 3er -> nicht 3er 8 27

Einzel-Wahrscheinlichkeiten: P("3er-Zahl")= 1 3 ; P("nicht 3er")= 2 3 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'nicht 3er'-'nicht 3er'-'nicht 3er' (P= 8 27 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

8 27 = 8 27


Ziehen mit Zurücklegen

Beispiel:

In einer Urne sind 6 Kugeln, die mit einer 1 beschriftet sind, 2 2er und 4 Kugeln mit einer 3. Es wird zwei mal mit Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen gerade 4 ist?

Lösung einblenden
EreignisP
1 -> 1 1 4
1 -> 2 1 12
1 -> 3 1 6
2 -> 1 1 12
2 -> 2 1 36
2 -> 3 1 18
3 -> 1 1 6
3 -> 2 1 18
3 -> 3 1 9

Einzel-Wahrscheinlichkeiten: P("1")= 1 2 ; P("2")= 1 6 ; P("3")= 1 3 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '1'-'3' (P= 1 6 )
  • '3'-'1' (P= 1 6 )
  • '2'-'2' (P= 1 36 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 6 + 1 6 + 1 36 = 13 36