Aufgabenbeispiele von in Körpern

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Raumdiagonale

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Ein Quader hat die Kantenlängen a = 6 m, b = 2 m und c = 5 m.
Berechne die Länge der Raumdiagonale.

Lösung einblenden

Die Bodendiagonale d1 ist die Hypotenuse eines rechtwinklingen Dreiecks mit den Katheten a = 6 m und b = 2 m, folglich gilt nach dem Satz des Pythagoras:

d12 = a² +b² = (6 m)2 + (2 m)2 = 36 m² + 4 m² = 40 m²

d1 = 40 m ≈ 6.325 m

Die gesuchte Raumdiagonale ist d ist die Hypotenuse des rechtwinklingen Dreiecks mit den Katheten d1 und c, folglich gilt nach dem Satz des Pythagoras:

d2 = d1² + c² = ( 40 m)2 + (5 m)2 = 40 m² + 25 m² = 65 m²

Da d12 = a2 +b2 gilt, kann man die Raumdiagonale auch schneller mit der Formel
d2 = a2 + b2 + c2 = 36 m² + 4 m² + 25 m² = 65 m²
berechnen.

d = 65 m ≈ 8.062 m

Dreiecke im Quader

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Ein Quader hat die Kantenlängen a = 4 m, b = 7 m und c = 8 m.
Berechne den Umfang U und den Flächeninhalt A des abgebildeten (grünen) Dreiecks.

Lösung einblenden

Die Bodendiagonale d1 ist die Hypotenuse eines rechtwinklingen Dreiecks mit den Katheten a= 4 m und b = 7 m, folglich gilt nach dem Satz des Pythagoras:

d12 = a² + b² = (4 m)2 + (7 m)2 = 16 m² + 49 m² = 65 m²

d1 = 65 m ≈ 8.062 m

Die Raumdiagonale ist d ist die Hypotenuse des rechtwinklingen Dreiecks mit den Katheten d1 und c, folglich gilt nach dem Satz des Pythagoras:

d2 = d1² + c² = ( 65 m)2 + (8 m)2 = 65 m² + 64 m² = 129 m²

d = 129 m ≈ 11.358 m

Für den Umfang U gilt somit:
U = d1 + d + c ≈ 8.06 m + 11.36 m + 8 m ≈ 27.42 m

Für den Flächeninhalt A gilt dann wegen des rechten Winkels zwischen d1 und 8:
A = 1 2 d1 ⋅c ≈ 1 2 ⋅8.06 m⋅ 8 m ≈ 32.25 m²

Kanten bei einer Pyramide nur vorwärts

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Eine gerade Pyramide hat eine rechteckige Grundfläche mit den folgenden Längen: a = 8 cm, b = 8 cm, h = 8 cm.
Berechne hb und s.

Lösung einblenden

Wir suchen nach rechtwinkligen Dreiecken in der Pyramide um den Satz des Pythagoras anwenden zu können:

Wir erkennen in der Skizze ein rechtwinkliges Dreieck mit der Hypotenuse hb, einer Kathete h und der anderen Kathete 1 2 a (gestrichelt dargestellt auf der Bodenfläche). Also gilt:

hb2 = h2 + ( 1 2 a)2

Da ja h und a gegeben sind, können wir einfach einsetzen:

hb2 = 82 + 4 2 = 64 + 16 = 80

Also gilt hb = 80 cm ≈ 8,9 cm

Wir erkennen in der Skizze ein rechtwinkliges Dreieck mit der Hypotenuse s, einer Kathete hb und der anderen Kathete 1 2 b (rechts nach hinten auf der Bodenfläche dargestellt). Also gilt:

s2 = hb2 + ( 1 2 b)2

Da ja hb und b gegeben sind, können wir einfach einsetzen:

s = 8,942 + 42 = 79,92 + 16 = 96

Also gilt s = 95.92 cm ≈ 9,8 cm

Kanten bei einer Pyramide

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Eine gerade Pyramide hat eine rechteckige Grundfläche mit den folgenden Längen: b = 8 mm, h = 8 mm, s = 9.8 mm.
Berechne a und hb.

Lösung einblenden

Wir suchen nach rechtwinkligen Dreiecken in der Pyramide um den Satz des Pythagoras anwenden zu können:

Wir erkennen in der Skizze ein rechtwinkliges Dreieck mit der Hypotenuse s, einer Kathete hb und der anderen Kathete 1 2 b (rechts nach hinten auf der Bodenfläche dargestellt). Also gilt:

s2 = hb2 + ( 1 2 b)2

Weil wir hb suchen, stellen wir nach hb um:

s2 - ( 1 2 b)2 = hb 2

hb2 = 9,82 - 42 = 96,04 - 16 = 80,04

Also gilt hb = 80.04 mm ≈ 8,9 mm

Wir erkennen in der Skizze ein rechtwinkliges Dreieck mit der Hypotenuse hb, einer Kathete h und der anderen Kathete 1 2 a (gestrichelt dargestellt auf der Bodenfläche). Also gilt:

hb2 = h2 + ( 1 2 a)2

Weil wir a suchen, stellen wir nach a um:

( 1 2 a)2 = hb2 - h2

( 1 2 a)2 = 8,952 - 82 = 80,04 - 64 = 16,04

Also gilt 1 2 a = 16.04 mm ≈ 4 mm

Somit gilt: a ≈ 8 mm

Anwendungen Pythagoras

Beispiel:

Ein Kegel ist 45 cm hoch. Sein Grundkreis hat einen Durchmesser von 50 cm. Wie lang ist die Strecke von einem Punkt auf dem Grundkreis zur Spitze?

Lösung einblenden

Es gilt:

252 + 452 =h2

625 +2025 = h2

2650 = h2 |

51.48 ≈ h

Somit gilt für die gesuchte Hypotenuse:
h ≈ 51.48cm

Pyramide (Oberflächenberechnung)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Eine gerade Pyramide hat eine quadratische Grundfläche mit den folgenden Größen:
Grundflächenlänge a = 8 cm und Höhe der Seitenfläche ha = 8,94 cm.
Berechne die Mantelfläche M und die Kantenlänge s.

Lösung einblenden

Bestimmung der Mantelfläche M

Die Mantelfläche M besteht aus den 4 gleich großen Flächeninhalten der Seitenflächen dieser Pyramide. Diese soll nun berechnet werden:

Die Grundflächelänge a ist ja mit a = 8 cm bereits bekannt.

Den Flächeninhalt einer Seitenfläche können wir ja einfach mit der Formel AS= 1 2 a⋅ha berechen:

AS = 1 2 ⋅8 cm⋅8,94 cm ≈ 35,78 cm²

Für die Mantelfläche müssen wir nun diese 4 Flächeninhalte noch zusammenzählen:

M = 4⋅35,78 cm² = 143,11 cm²

Bestimmung der Kantenlänge s

Die Höhe einer Seitenfläche ist ja mit ha = 8,94 cm bereits bekannt.

Die Grundflächelänge a ist ja mit a = 8 cm bereits bekannt.

Wir erkennen in der Skizze ein rechtwinkliges Dreieck mit der Hypotenuse s, einer Kathete ha und der anderen Kathete 1 2 a (rechts nach hinten auf der Bodenfläche dargestellt). Also gilt:

s2 = ha2 + ( 1 2 a)2

Da ja ha und a gegeben sind, können wir einfach einsetzen:

s = 8,942 + 42 = 80 + 16 = 16

Also gilt s = 16 cm ≈ 9,8 cm

Pyramide (Volumenberechnung)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Eine gerade Pyramide hat eine quadratische Grundfläche mit den folgenden Größen:
Höhe der Seitenfläche ha = 7,83 mm und Grundflächenlänge a = 7 mm.
Berechne das Volumen V und die Grundfläche G.

Lösung einblenden

Bestimmung des Volumen V

Um das Volumen dieser Pyramide zu bestimmen, müssen wir die Volumenformel einer Pyramide anwenden: V = 1 3 G ⋅ h

Um die Grundfläche dieser Pyramide zu bestimmen, müssen wir einfach die Grundflächenlänge a zum Quadrat nehmen:

Die Grundflächelänge a ist ja mit a = 7 mm bereits bekannt.

somit gilt: G = a² = (7 mm)² = 49 mm²

Die Höhe einer Seitenfläche ist ja mit ha = 7,83 mm bereits bekannt.

Die Grundflächelänge a ist ja mit a = 7 mm bereits bekannt.

Wir erkennen in der Skizze ein rechtwinkliges Dreieck mit der Hypotenuse ha, einer Kathete h und der anderen Kathete 1 2 a (gestrichelt dargestellt auf der Bodenfläche). Also gilt:

ha2 = h2 + ( 1 2 a)2

Weil wir h suchen, stellen wir nach h um:

ha2 - ( 1 2 a)2 = h2

h2 = 7,832 - 3,52 = 61,25 - 12,25 = 49

Also gilt h = 49 mm ≈ 7 mm

somit gilt: V = 1 3 G ⋅ h = 1 3 ⋅49 mm² ⋅ 7 mm ≈ 114,33 mm³

Bestimmung der Grundfläche G

Die Grundfläche G wurde ja bereits oben als G = 49 mm² berechnet.