Aufgabenbeispiele von in Körpern

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Raumdiagonale

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Ein Quader hat die Kantenlängen a = 2 cm, b = 8 cm und c = 9 cm.
Berechne die Länge der Raumdiagonale.

Lösung einblenden

Die Bodendiagonale d1 ist die Hypotenuse eines rechtwinklingen Dreiecks mit den Katheten a = 2 cm und b = 8 cm, folglich gilt nach dem Satz des Pythagoras:

d12 = a² +b² = (2 cm)2 + (8 cm)2 = 4 cm² + 64 cm² = 68 cm²

d1 = 68 cm ≈ 8.246 cm

Die gesuchte Raumdiagonale ist d ist die Hypotenuse des rechtwinklingen Dreiecks mit den Katheten d1 und c, folglich gilt nach dem Satz des Pythagoras:

d2 = d1² + c² = ( 68 cm)2 + (9 cm)2 = 68 cm² + 81 cm² = 149 cm²

Da d12 = a2 +b2 gilt, kann man die Raumdiagonale auch schneller mit der Formel
d2 = a2 + b2 + c2 = 4 cm² + 64 cm² + 81 cm² = 149 cm²
berechnen.

d = 149 cm ≈ 12.207 cm

Dreiecke im Quader

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Ein Quader hat die Kantenlängen a = 6 m, b = 6 m und c = 4 m.
Berechne den Umfang U und den Flächeninhalt A des abgebildeten (grünen) Dreiecks.

Lösung einblenden

Die Bodendiagonale d1 ist die Hypotenuse eines rechtwinklingen Dreiecks mit den Katheten a= 6 m und b = 6 m, folglich gilt nach dem Satz des Pythagoras:

d12 = a² + b² = (6 m)2 + (6 m)2 = 36 m² + 36 m² = 72 m²

d1 = 72 m ≈ 8.485 m

Die Raumdiagonale ist d ist die Hypotenuse des rechtwinklingen Dreiecks mit den Katheten d1 und c, folglich gilt nach dem Satz des Pythagoras:

d2 = d1² + c² = ( 72 m)2 + (4 m)2 = 72 m² + 16 m² = 88 m²

d = 88 m ≈ 9.381 m

Für den Umfang U gilt somit:
U = d1 + d + c ≈ 8.49 m + 9.38 m + 4 m ≈ 21.87 m

Für den Flächeninhalt A gilt dann wegen des rechten Winkels zwischen d1 und 4:
A = 1 2 d1 ⋅c ≈ 1 2 ⋅8.49 m⋅ 4 m ≈ 16.97 m²

Kanten bei einer Pyramide nur vorwärts

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Eine gerade Pyramide hat eine rechteckige Grundfläche mit den folgenden Längen: a = 6 cm, b = 6 cm, h = 5 cm.
Berechne hb und s.

Lösung einblenden

Wir suchen nach rechtwinkligen Dreiecken in der Pyramide um den Satz des Pythagoras anwenden zu können:

Wir erkennen in der Skizze ein rechtwinkliges Dreieck mit der Hypotenuse hb, einer Kathete h und der anderen Kathete 1 2 a (gestrichelt dargestellt auf der Bodenfläche). Also gilt:

hb2 = h2 + ( 1 2 a)2

Da ja h und a gegeben sind, können wir einfach einsetzen:

hb2 = 52 + 3 2 = 25 + 9 = 34

Also gilt hb = 34 cm ≈ 5,8 cm

Wir erkennen in der Skizze ein rechtwinkliges Dreieck mit der Hypotenuse s, einer Kathete hb und der anderen Kathete 1 2 b (rechts nach hinten auf der Bodenfläche dargestellt). Also gilt:

s2 = hb2 + ( 1 2 b)2

Da ja hb und b gegeben sind, können wir einfach einsetzen:

s = 5,832 + 32 = 33,99 + 9 = 43

Also gilt s = 42.99 cm ≈ 6,5 cm

Kanten bei einer Pyramide

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Eine gerade Pyramide hat eine rechteckige Grundfläche mit den folgenden Längen: a = 8 m, b = 4 m, h = 6 m.
Berechne hb und s.

Lösung einblenden

Wir suchen nach rechtwinkligen Dreiecken in der Pyramide um den Satz des Pythagoras anwenden zu können:

Wir erkennen in der Skizze ein rechtwinkliges Dreieck mit der Hypotenuse hb, einer Kathete h und der anderen Kathete 1 2 a (gestrichelt dargestellt auf der Bodenfläche). Also gilt:

hb2 = h2 + ( 1 2 a)2

Da ja h und a gegeben sind, können wir einfach einsetzen:

hb2 = 62 + 4 2 = 36 + 16 = 52

Also gilt hb = 52 m ≈ 7,2 m

Wir erkennen in der Skizze ein rechtwinkliges Dreieck mit der Hypotenuse s, einer Kathete hb und der anderen Kathete 1 2 b (rechts nach hinten auf der Bodenfläche dargestellt). Also gilt:

s2 = hb2 + ( 1 2 b)2

Da ja hb und b gegeben sind, können wir einfach einsetzen:

s = 7,212 + 22 = 51,98 + 4 = 56

Also gilt s = 55.98 m ≈ 7,5 m

Anwendungen Pythagoras

Beispiel:

Ein Haus hat eine Gesamthöhe von 13m. Die (fünfeckigen) Stirnseiten sind 12m breit. Die rechteckigen Seitenflächen sind 14m lang und vom Boden bis zur Dachkante 9m hoch. Berechne die Fläche des Hausdachs.

Lösung einblenden

Es gilt:

42 + 62 =h2

16 +36 = h2

52 = h2 |

7.21 ≈ h

Um die gesuchte Fläche zu berechnen, muss nun zunächst diese Hypotenuse mit 14m multipliziert werden.

Somit erhalten wir für eine Hälfte der gesuchten Fläche: AH ≈ 100.96m2

Für die Gesamtfläche gilt dann:
A ≈ 201.91m2

Pyramide (Oberflächenberechnung)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Eine gerade Pyramide hat eine quadratische Grundfläche mit den folgenden Größen:
Grundfläche G = 64 m² und Höhe der Seitenfläche ha = 7,21 m.
Berechne die Oberfläche O und die Mantelfläche M.

Lösung einblenden

Bestimmung der Oberfläche O

Um die Oberfläche dieser Pyramide zu bestimmen, müssen wir einfach den Mantel und die Grundfläche addieren:

Die Mantelfläche M besteht aus den 4 gleich großen Flächeninhalten der Seitenflächen dieser Pyramide. Diese soll nun berechnet werden:

Um ha zu berechnen, müssen wir zuerst die Grundseitenlänge a berechnen:

Die Grundfläche G ist ja mit G = 64 m² bereits bekannt.

Und da diese Grundfläche ja ein Quadrat mit Seitenlänge a ist, gilt: G = a² oder eben:

a = G = 64 m = 8 m

Den Flächeninhalt einer Seitenfläche können wir ja einfach mit der Formel AS= 1 2 a⋅ha berechen:

AS = 1 2 ⋅8 m⋅7,21 m ≈ 28,84 m²

Für die Mantelfläche müssen wir nun diese 4 Flächeninhalte noch zusammenzählen:

M = 4⋅28,84 m² = 115,38 m²

Die Grundfläche G ist ja mit G = 64 m² bereits bekannt.

somit gilt: O = M + G = 115,38 m² + 64 m² = 179,38 m²

Bestimmung der Mantelfläche M

Die Mantelfläche M wurde ja bereits oben als M = 115,38 m² berechnet.

Pyramide (Volumenberechnung)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Eine gerade Pyramide hat eine quadratische Grundfläche mit den folgenden Größen:
Volumen V = 58,33 cm und Pyramidenhöhe h = 7 cm.
Berechne die Höhe der Seitenfläche ha und die Grundflächenlänge a.

Lösung einblenden

Bestimmung der Höhe der Seitenfläche ha

Um ha zu berechnen, müssen wir zuerst die Grundseitenlänge a berechnen:

Um a zu berechnen, müssen wir zuerst die Grundfläche G berechnen:

Da sich ja das Volumen V = 1 3 G ⋅ h zusammensetzt, können wir diese Formel nach G umstellen und erhalten
G = 3⋅V h :

Das Volumen V ist ja mit V = 58,33 cm³ bereits bekannt.

somit gilt: G = 3⋅V h = 3⋅58,33 cm³ 7 cm ≈ 25 cm²

Und da diese Grundfläche ja ein Quadrat mit Seitenlänge a ist, gilt: G = a² oder eben:

a = G = 25 cm = 5 cm

Die Pyramindenhöhe h ist ja mit h = 7 cm bereits bekannt.

Wir erkennen in der Skizze ein rechtwinkliges Dreieck mit der Hypotenuse ha, einer Kathete h und der anderen Kathete 1 2 a (gestrichelt dargestellt auf der Bodenfläche). Also gilt:

ha2 = h2 + ( 1 2 a)2

Da ja h und a gegeben sind, können wir einfach einsetzen:

ha2 = 72 + 2,5 2 = 49 + 6,25 = 55,25

Also gilt ha = 55.25 cm ≈ 7,43 cm

Bestimmung der Grundflächenlänge a

Die Grundflächenlänge a wurde ja bereits oben als a = 5 cm berechnet.