Aufgabenbeispiele von Bruchgleichungen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Bruchgleichungen (quadr.) einfach

Beispiel:

Bestimme erst die maximale Definitionsmenge D. Löse dann die Bruchgleichung:

- 32 x = -2x

Lösung einblenden

Um die Definitionlücken (und damit die maximale Definitionsmenge) zu bestimmen, müssen wir einfach nach den Nullstellen der Nenner schauen: Hier erkennt man schnell als Nullstelle(n) der Nenner: 0

D=R\{0}

Wir multiplizieren den Nenner x weg!

- 32 x = -2x |⋅( x )
- 32 x · x = -2x · x
-32 = -2 x · x
-32 = -2 x 2
-32 = -2 x 2 | +32 +2 x 2
2 x 2 = 32 |:2
x 2 = 16 | 2
x1 = - 16 = -4
x2 = 16 = 4

(Alle Lösungen sind auch in der Definitionsmenge).

L={ -4 ; 4 }

Bruchgleichung (quadr.) 1

Beispiel:

Bestimme erst die maximale Definitionsmenge D. Löse dann die Bruchgleichung:

-8x -10 x +2 = 2x

Lösung einblenden

Um die Definitionlücken (und damit die maximale Definitionsmenge) zu bestimmen, müssen wir einfach nach den Nullstellen der Nenner schauen: Hier erkennt man schnell als Nullstelle(n) der Nenner: -2

D=R\{ -2 }

Wir multiplizieren den Nenner x +2 weg!

-8x -10 x +2 = 2x |⋅( x +2 )
-8x -10 x +2 · ( x +2 ) = 2x · ( x +2 )
-8x -10 = 2 x ( x +2 )
-8x -10 = 2 x 2 +4x
-8x -10 = 2 x 2 +4x | -2 x 2 -4x
-2 x 2 -12x -10 = 0 |:2

- x 2 -6x -5 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +6 ± ( -6 ) 2 -4 · ( -1 ) · ( -5 ) 2( -1 )

x1,2 = +6 ± 36 -20 -2

x1,2 = +6 ± 16 -2

x1 = 6 + 16 -2 = 6 +4 -2 = 10 -2 = -5

x2 = 6 - 16 -2 = 6 -4 -2 = 2 -2 = -1

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- x 2 -6x -5 = 0 |: -1

x 2 +6x +5 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 3 2 - 5 = 9 - 5 = 4

x1,2 = -3 ± 4

x1 = -3 - 2 = -5

x2 = -3 + 2 = -1

(Alle Lösungen sind auch in der Definitionsmenge).

L={ -5 ; -1 }

Bruchgleichung (quadr.) 2

Beispiel:

Bestimme erst die maximale Definitionsmenge D. Löse dann die Bruchgleichung:

-6x 2x -4 +2 = -x

Lösung einblenden

Um die Definitionlücken (und damit die maximale Definitionsmenge) zu bestimmen, müssen wir einfach nach den Nullstellen der Nenner schauen: Hier erkennt man schnell als Nullstelle(n) der Nenner: 2

D=R\{ 2 }

- 6x 2x -4 +2 = -x
- 6x 2( x -2 ) +2 = -x |(Nenner faktorisiert)

Wir multiplizieren den Nenner x -2 weg!

- 6x 2( x -2 ) +2 = -x |⋅( x -2 )
- 6x 2( x -2 ) · ( x -2 ) + 2 · ( x -2 ) = -x · ( x -2 )
-3x +2x -4 = - x ( x -2 )
-x -4 = - x 2 +2x
-x -4 = - x 2 +2x | + x 2 -2x

x 2 -3x -4 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +3 ± ( -3 ) 2 -4 · 1 · ( -4 ) 21

x1,2 = +3 ± 9 +16 2

x1,2 = +3 ± 25 2

x1 = 3 + 25 2 = 3 +5 2 = 8 2 = 4

x2 = 3 - 25 2 = 3 -5 2 = -2 2 = -1

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 3 2 ) 2 - ( -4 ) = 9 4 + 4 = 9 4 + 16 4 = 25 4

x1,2 = 3 2 ± 25 4

x1 = 3 2 - 5 2 = - 2 2 = -1

x2 = 3 2 + 5 2 = 8 2 = 4

(Alle Lösungen sind auch in der Definitionsmenge).

L={ -1 ; 4 }

doppelte Bruchgl. (quadr.)

Beispiel:

Löse die folgende Gleichung:

x 3x +9 = - 34 2x +6 + x

Lösung einblenden

D=R\{ -3 }

x 3x +9 = - 34 2x +6 + x
x 3( x +3 ) = - 34 2( x +3 ) + x |(Nenner faktorisiert)

Wir multiplizieren den Nenner 3( x +3 ) weg!

x 3( x +3 ) = - 34 2( x +3 ) + x |⋅( 3( x +3 ) )
x 3( x +3 ) · ( 3( x +3 ) ) = -34 2( x +3 ) · ( 3( x +3 ) ) + x · ( 3( x +3 ) )
x = -51 +3 x ( x +3 )
x = 3 x 2 +9x -51
x = 3 x 2 +9x -51 | -3 x 2 -9x +51

-3 x 2 -8x +51 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +8 ± ( -8 ) 2 -4 · ( -3 ) · 51 2( -3 )

x1,2 = +8 ± 64 +612 -6

x1,2 = +8 ± 676 -6

x1 = 8 + 676 -6 = 8 +26 -6 = 34 -6 = - 17 3 ≈ -5.67

x2 = 8 - 676 -6 = 8 -26 -6 = -18 -6 = 3

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-3 " teilen:

-3 x 2 -8x +51 = 0 |: -3

x 2 + 8 3 x -17 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 4 3 ) 2 - ( -17 ) = 16 9 + 17 = 16 9 + 153 9 = 169 9

x1,2 = - 4 3 ± 169 9

x1 = - 4 3 - 13 3 = - 17 3 = -5.6666666666667

x2 = - 4 3 + 13 3 = 9 3 = 3

(Alle Lösungen sind auch in der Definitionsmenge).

L={ - 17 3 ; 3 }

Bruchgl. mit x-Potenzen

Beispiel:

Löse die folgende Gleichung:

1 - 3 x = 28 x 2

Lösung einblenden

D=R\{0}

Wir multiplizieren den Nenner x 2 weg!

1 - 3 x = 28 x 2 |⋅( x 2 )
1 · x 2 - 3 x · x 2 = 28 x 2 · x 2
x 2 -3x = 28
x 2 -3x = 28 | -28

x 2 -3x -28 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +3 ± ( -3 ) 2 -4 · 1 · ( -28 ) 21

x1,2 = +3 ± 9 +112 2

x1,2 = +3 ± 121 2

x1 = 3 + 121 2 = 3 +11 2 = 14 2 = 7

x2 = 3 - 121 2 = 3 -11 2 = -8 2 = -4

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 3 2 ) 2 - ( -28 ) = 9 4 + 28 = 9 4 + 112 4 = 121 4

x1,2 = 3 2 ± 121 4

x1 = 3 2 - 11 2 = - 8 2 = -4

x2 = 3 2 + 11 2 = 14 2 = 7

(Alle Lösungen sind auch in der Definitionsmenge).

L={ -4 ; 7 }

Bruchgleichung mit Parameter

Beispiel:

Für x ≠ 0 und a ∈ Z\{0} ist die folgende Gleichung gegeben:

x -10 = - a x

Bestimme a so, dass die Gleichung zwei (verschiedene) ganzzahlige Lösungen besitzt.

Lösung einblenden

D=R\{0}

x -10 = - a x

Wir multiplizieren den Nenner x weg:

x -10 = - a x |⋅x
x · x -10 · x = - a x · x
x 2 -10x = - a
x 2 -10x + a = 0
x 2 -10x + a = 0

Um jetzt ein a zu finden, für das die quadratische Gleichung zwei ganzzahlige Lösungen hat, bezeichnen wir die beiden Lösungen einfach mal mit p und q und schreiben einen faktorisierten Term mit diesen Lösungen auf:

(x-p)⋅(x-q)

Wenn wir jetzt den faktorisierten Term ausmultiplizieren, erkennen wir, dass auch hier die 1 der Koeffizient vor dem x² ist.

= x² - px - qx + pq
= x² - (p+q)x + pq

Es muss somit gelten:

x 2 -10x + a = x² - (p+q)x + pq

Wir müssen jetzt also nur noch zwei ganze Zahlen finden, deren Summe das Negative von -10 ist, also z.B.:

Mit p = 2 und q = 8 würde es funktionieren, denn -( 2 +8 ) = -10

Genauso muss dann auch a = p⋅q gelten, also a = 2 · 8 = 16

Zur Probe können wir ja noch mit a = 16 die quadratische Gleichung lösen, um zu überprüfen, ob die Lösungen wirklich ganzzahlig sind:

x 2 -10x +16 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +10 ± ( -10 ) 2 -4 · 1 · 16 21

x1,2 = +10 ± 100 -64 2

x1,2 = +10 ± 36 2

x1 = 10 + 36 2 = 10 +6 2 = 16 2 = 8

x2 = 10 - 36 2 = 10 -6 2 = 4 2 = 2

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -5 ) 2 - 16 = 25 - 16 = 9

x1,2 = 5 ± 9

x1 = 5 - 3 = 2

x2 = 5 + 3 = 8

L={ 2 ; 8 }