Aufgabenbeispiele von Bruchgleichungen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Bruchgleichungen (quadr.) einfach

Beispiel:

Bestimme erst die maximale Definitionsmenge D. Löse dann die Bruchgleichung:

16 x = x

Lösung einblenden

Um die Definitionlücken (und damit die maximale Definitionsmenge) zu bestimmen, müssen wir einfach nach den Nullstellen der Nenner schauen: Hier erkennt man schnell als Nullstelle(n) der Nenner: 0

D=R\{0}

Wir multiplizieren den Nenner x weg!

16 x = x |⋅( x )
16 x · x = x · x
16 = x · x
16 = x 2
16 = x 2 | -16 - x 2
- x 2 = -16 |: ( -1 )
x 2 = 16 | 2
x1 = - 16 = -4
x2 = 16 = 4

(Alle Lösungen sind auch in der Definitionsmenge).

L={ -4 ; 4 }

Bruchgleichung (quadr.) 1

Beispiel:

Bestimme erst die maximale Definitionsmenge D. Löse dann die Bruchgleichung:

14x -16 x -2 = 2x

Lösung einblenden

Um die Definitionlücken (und damit die maximale Definitionsmenge) zu bestimmen, müssen wir einfach nach den Nullstellen der Nenner schauen: Hier erkennt man schnell als Nullstelle(n) der Nenner: 2

D=R\{ 2 }

Wir multiplizieren den Nenner x -2 weg!

14x -16 x -2 = 2x |⋅( x -2 )
14x -16 x -2 · ( x -2 ) = 2x · ( x -2 )
14x -16 = 2 x ( x -2 )
14x -16 = 2 x 2 -4x
14x -16 = 2 x 2 -4x | -2 x 2 +4x
-2 x 2 +18x -16 = 0 |:2

- x 2 +9x -8 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -9 ± 9 2 -4 · ( -1 ) · ( -8 ) 2( -1 )

x1,2 = -9 ± 81 -32 -2

x1,2 = -9 ± 49 -2

x1 = -9 + 49 -2 = -9 +7 -2 = -2 -2 = 1

x2 = -9 - 49 -2 = -9 -7 -2 = -16 -2 = 8

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- x 2 +9x -8 = 0 |: -1

x 2 -9x +8 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 9 2 ) 2 - 8 = 81 4 - 8 = 81 4 - 32 4 = 49 4

x1,2 = 9 2 ± 49 4

x1 = 9 2 - 7 2 = 2 2 = 1

x2 = 9 2 + 7 2 = 16 2 = 8

(Alle Lösungen sind auch in der Definitionsmenge).

L={ 1 ; 8 }

Bruchgleichung (quadr.) 2

Beispiel:

Bestimme erst die maximale Definitionsmenge D. Löse dann die Bruchgleichung:

x +1 = - -5x 2x -4

Lösung einblenden

Um die Definitionlücken (und damit die maximale Definitionsmenge) zu bestimmen, müssen wir einfach nach den Nullstellen der Nenner schauen: Hier erkennt man schnell als Nullstelle(n) der Nenner: 2

D=R\{ 2 }

x +1 = 5x 2( x -2 ) |(Nenner faktorisiert)

Wir multiplizieren den Nenner 2( x -2 ) weg!

x +1 = 5x 2( x -2 ) |⋅( 2( x -2 ) )
x · ( 2( x -2 ) ) + 1 · ( 2( x -2 ) ) = 5x 2( x -2 ) · ( 2( x -2 ) )
2 x ( x -2 ) +2x -4 = 5x
2 x 2 -4x +2x -4 = 5x
2 x 2 -2x -4 = 5x
2 x 2 -2x -4 = 5x | -5x

2 x 2 -7x -4 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +7 ± ( -7 ) 2 -4 · 2 · ( -4 ) 22

x1,2 = +7 ± 49 +32 4

x1,2 = +7 ± 81 4

x1 = 7 + 81 4 = 7 +9 4 = 16 4 = 4

x2 = 7 - 81 4 = 7 -9 4 = -2 4 = -0,5

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "2 " teilen:

2 x 2 -7x -4 = 0 |: 2

x 2 - 7 2 x -2 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 7 4 ) 2 - ( -2 ) = 49 16 + 2 = 49 16 + 32 16 = 81 16

x1,2 = 7 4 ± 81 16

x1 = 7 4 - 9 4 = - 2 4 = -0.5

x2 = 7 4 + 9 4 = 16 4 = 4

(Alle Lösungen sind auch in der Definitionsmenge).

L={ -0,5 ; 4 }

doppelte Bruchgl. (quadr.)

Beispiel:

Löse die folgende Gleichung:

0 = - x 4x +8 - -60,75 x +2 -4x

Lösung einblenden

D=R\{ -2 }

0 = - x 4x +8 + 60,75 x +2 -4x
0 = - x 4( x +2 ) + 60,75 x +2 -4x |(Nenner faktorisiert)

Wir multiplizieren den Nenner 4( x +2 ) weg!

0 = - x 4( x +2 ) + 60,75 x +2 -4x |⋅( 4( x +2 ) )
0 = - x 4( x +2 ) · ( 4( x +2 ) ) + 60,75 x +2 · ( 4( x +2 ) ) -4x · ( 4( x +2 ) )
0 = -x +243 -16 x ( x +2 )
0 = -16 x 2 -33x +243
0 = -16 x 2 -33x +243 | +16 x 2 +33x -243

16 x 2 +33x -243 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -33 ± 33 2 -4 · 16 · ( -243 ) 216

x1,2 = -33 ± 1089 +15552 32

x1,2 = -33 ± 16641 32

x1 = -33 + 16641 32 = -33 +129 32 = 96 32 = 3

x2 = -33 - 16641 32 = -33 -129 32 = -162 32 = - 81 16

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "16 " teilen:

16 x 2 +33x -243 = 0 |: 16

x 2 + 33 16 x - 243 16 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 33 32 ) 2 - ( - 243 16 ) = 1089 1024 + 243 16 = 1089 1024 + 15552 1024 = 16641 1024

x1,2 = - 33 32 ± 16641 1024

x1 = - 33 32 - 129 32 = - 162 32 = -5.0625

x2 = - 33 32 + 129 32 = 96 32 = 3

(Alle Lösungen sind auch in der Definitionsmenge).

L={ - 81 16 ; 3 }

Bruchgl. mit x-Potenzen

Beispiel:

Löse die folgende Gleichung:

1 x 2 - 3 x 3 - 40 x 4 = 0

Lösung einblenden

D=R\{0}

Wir multiplizieren den Nenner x 4 weg!

1 x 2 - 3 x 3 - 40 x 4 = 0 |⋅( x 4 )
1 x 2 · x 4 - 3 x 3 · x 4 - 40 x 4 · x 4 = 0
x 2 -3x -40 = 0

x 2 -3x -40 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +3 ± ( -3 ) 2 -4 · 1 · ( -40 ) 21

x1,2 = +3 ± 9 +160 2

x1,2 = +3 ± 169 2

x1 = 3 + 169 2 = 3 +13 2 = 16 2 = 8

x2 = 3 - 169 2 = 3 -13 2 = -10 2 = -5

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 3 2 ) 2 - ( -40 ) = 9 4 + 40 = 9 4 + 160 4 = 169 4

x1,2 = 3 2 ± 169 4

x1 = 3 2 - 13 2 = - 10 2 = -5

x2 = 3 2 + 13 2 = 16 2 = 8

(Alle Lösungen sind auch in der Definitionsmenge).

L={ -5 ; 8 }

Bruchgleichung mit Parameter

Beispiel:

Für x ≠ 0 und a ∈ Z\{0} ist die folgende Gleichung gegeben:

2 + a x = -x

Bestimme a so, dass die Gleichung zwei (verschiedene) ganzzahlige Lösungen besitzt.

Lösung einblenden

D=R\{0}

2 + a x = -x

Wir multiplizieren den Nenner x weg:

2 + a x = -x |⋅x
2 · x + a x · x = -x · x
2x + a = - x 2
2x + a + x 2 = 0
x 2 +2x + a = 0

Um jetzt ein a zu finden, für das die quadratische Gleichung zwei ganzzahlige Lösungen hat, bezeichnen wir die beiden Lösungen einfach mal mit p und q und schreiben einen faktorisierten Term mit diesen Lösungen auf:

(x-p)⋅(x-q)

Wenn wir jetzt den faktorisierten Term ausmultiplizieren, erkennen wir, dass auch hier die 1 der Koeffizient vor dem x² ist.

= x² - px - qx + pq
= x² - (p+q)x + pq

Es muss somit gelten:

x 2 +2x + a = x² - (p+q)x + pq

Wir müssen jetzt also nur noch zwei ganze Zahlen finden, deren Summe das Negative von 2 ist, also z.B.:

Mit p = 3 und q = -5 würde es funktionieren, denn -( 3 -5 ) = 2

Genauso muss dann auch a = p⋅q gelten, also a = 3 · ( -5 ) = -15

Zur Probe können wir ja noch mit a = -15 die quadratische Gleichung lösen, um zu überprüfen, ob die Lösungen wirklich ganzzahlig sind:

x 2 +2x -15 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -2 ± 2 2 -4 · 1 · ( -15 ) 21

x1,2 = -2 ± 4 +60 2

x1,2 = -2 ± 64 2

x1 = -2 + 64 2 = -2 +8 2 = 6 2 = 3

x2 = -2 - 64 2 = -2 -8 2 = -10 2 = -5

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 1 2 - ( -15 ) = 1+ 15 = 16

x1,2 = -1 ± 16

x1 = -1 - 4 = -5

x2 = -1 + 4 = 3

L={ -5 ; 3 }