Aufgabenbeispiele von Bruchgleichungen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Bruchgleichungen (quadr.) einfach

Beispiel:

Bestimme erst die maximale Definitionsmenge D. Löse dann die Bruchgleichung:

- 50 x = -2x

Lösung einblenden

Um die Definitionlücken (und damit die maximale Definitionsmenge) zu bestimmen, müssen wir einfach nach den Nullstellen der Nenner schauen: Hier erkennt man schnell als Nullstelle(n) der Nenner: 0

D=R\{0}

Wir multiplizieren den Nenner x weg!

- 50 x = -2x |⋅( x )
- 50 x · x = -2x · x
-50 = -2 x · x
-50 = -2 x 2
-50 = -2 x 2 | +50 +2 x 2
2 x 2 = 50 |:2
x 2 = 25 | 2
x1 = - 25 = -5
x2 = 25 = 5

(Alle Lösungen sind auch in der Definitionsmenge).

L={ -5 ; 5 }

Bruchgleichung (quadr.) 1

Beispiel:

Bestimme erst die maximale Definitionsmenge D. Löse dann die Bruchgleichung:

x -1 = 5 - 5 x

Lösung einblenden

Um die Definitionlücken (und damit die maximale Definitionsmenge) zu bestimmen, müssen wir einfach nach den Nullstellen der Nenner schauen: Hier erkennt man schnell als Nullstelle(n) der Nenner: 0

D=R\{0}

Wir multiplizieren den Nenner x weg!

x -1 = 5 - 5 x |⋅( x )
x · x -1 · x = 5 · x - 5 x · x
x · x - x = 5x -5
x 2 - x = 5x -5
x 2 - x = 5x -5 | -5x +5

x 2 -6x +5 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +6 ± ( -6 ) 2 -4 · 1 · 5 21

x1,2 = +6 ± 36 -20 2

x1,2 = +6 ± 16 2

x1 = 6 + 16 2 = 6 +4 2 = 10 2 = 5

x2 = 6 - 16 2 = 6 -4 2 = 2 2 = 1

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -3 ) 2 - 5 = 9 - 5 = 4

x1,2 = 3 ± 4

x1 = 3 - 2 = 1

x2 = 3 + 2 = 5

(Alle Lösungen sind auch in der Definitionsmenge).

L={ 1 ; 5 }

Bruchgleichung (quadr.) 2

Beispiel:

Bestimme erst die maximale Definitionsmenge D. Löse dann die Bruchgleichung:

-24x x +3 +3x +3 = 0

Lösung einblenden

Um die Definitionlücken (und damit die maximale Definitionsmenge) zu bestimmen, müssen wir einfach nach den Nullstellen der Nenner schauen: Hier erkennt man schnell als Nullstelle(n) der Nenner: -3

D=R\{ -3 }

- 24x x +3 +3x +3 = 0

Wir multiplizieren den Nenner x +3 weg!

- 24x x +3 +3x +3 = 0 |⋅( x +3 )
- 24x x +3 · ( x +3 ) + 3x · ( x +3 ) + 3 · ( x +3 ) = 0
-24x +3 x ( x +3 ) +3x +9 = 0
-24x + ( 3 x 2 +9x ) +3x +9 = 0
3 x 2 -12x +9 = 0
3 x 2 -12x +9 = 0 |:3

x 2 -4x +3 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +4 ± ( -4 ) 2 -4 · 1 · 3 21

x1,2 = +4 ± 16 -12 2

x1,2 = +4 ± 4 2

x1 = 4 + 4 2 = 4 +2 2 = 6 2 = 3

x2 = 4 - 4 2 = 4 -2 2 = 2 2 = 1

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -2 ) 2 - 3 = 4 - 3 = 1

x1,2 = 2 ± 1

x1 = 2 - 1 = 1

x2 = 2 + 1 = 3

(Alle Lösungen sind auch in der Definitionsmenge).

L={ 1 ; 3 }

doppelte Bruchgl. (quadr.)

Beispiel:

Löse die folgende Gleichung:

x 5x +5 + 0,2 x +1 = -x

Lösung einblenden

D=R\{ -1 }

x 5x +5 + 0,2 x +1 = -x
x 5( x +1 ) + 0,2 x +1 = -x |(Nenner faktorisiert)

Wir multiplizieren den Nenner 5( x +1 ) weg!

x 5( x +1 ) + 0,2 x +1 = -x |⋅( 5( x +1 ) )
x 5( x +1 ) · ( 5( x +1 ) ) + 0,2 x +1 · ( 5( x +1 ) ) = -x · ( 5( x +1 ) )
x +1 = -5 x ( x +1 )
x +1 = -5 x 2 -5x
x +1 = -5 x 2 -5x | +5 x 2 +5x

5 x 2 +6x +1 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -6 ± 6 2 -4 · 5 · 1 25

x1,2 = -6 ± 36 -20 10

x1,2 = -6 ± 16 10

x1 = -6 + 16 10 = -6 +4 10 = -2 10 = -0,2

x2 = -6 - 16 10 = -6 -4 10 = -10 10 = -1

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "5 " teilen:

5 x 2 +6x +1 = 0 |: 5

x 2 + 6 5 x + 1 5 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 3 5 ) 2 - ( 1 5 ) = 9 25 - 1 5 = 9 25 - 5 25 = 4 25

x1,2 = - 3 5 ± 4 25

x1 = - 3 5 - 2 5 = - 5 5 = -1

x2 = - 3 5 + 2 5 = - 1 5 = -0.2

Lösung x= -1 ist nicht in der Definitionsmenge!

L={ -0,2 }

Bruchgl. mit x-Potenzen

Beispiel:

Löse die folgende Gleichung:

- 1 x 2 = -15x +54 x 4

Lösung einblenden

D=R\{0}

Wir multiplizieren den Nenner x 4 weg!

- 1 x 2 = -15x +54 x 4 |⋅( x 4 )
- 1 x 2 · x 4 = -15x +54 x 4 · x 4
- x 2 = -15x +54
- x 2 = -15x +54 | +15x -54

- x 2 +15x -54 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -15 ± 15 2 -4 · ( -1 ) · ( -54 ) 2( -1 )

x1,2 = -15 ± 225 -216 -2

x1,2 = -15 ± 9 -2

x1 = -15 + 9 -2 = -15 +3 -2 = -12 -2 = 6

x2 = -15 - 9 -2 = -15 -3 -2 = -18 -2 = 9

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- x 2 +15x -54 = 0 |: -1

x 2 -15x +54 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 15 2 ) 2 - 54 = 225 4 - 54 = 225 4 - 216 4 = 9 4

x1,2 = 15 2 ± 9 4

x1 = 15 2 - 3 2 = 12 2 = 6

x2 = 15 2 + 3 2 = 18 2 = 9

(Alle Lösungen sind auch in der Definitionsmenge).

L={ 6 ; 9 }

Bruchgleichung mit Parameter

Beispiel:

Für x ≠ 0 und a ∈ Z\{0} ist die folgende Gleichung gegeben:

3 + x = - a x

Bestimme a so, dass die Gleichung zwei (verschiedene) ganzzahlige Lösungen besitzt.

Lösung einblenden

D=R\{0}

3 + x = - a x

Wir multiplizieren den Nenner x weg:

3 + x = - a x |⋅x
3 · x + x · x = - a x · x
3x + x 2 = - a
3x + x 2 + a = 0
x 2 +3x + a = 0

Um jetzt ein a zu finden, für das die quadratische Gleichung zwei ganzzahlige Lösungen hat, bezeichnen wir die beiden Lösungen einfach mal mit p und q und schreiben einen faktorisierten Term mit diesen Lösungen auf:

(x-p)⋅(x-q)

Wenn wir jetzt den faktorisierten Term ausmultiplizieren, erkennen wir, dass auch hier die 1 der Koeffizient vor dem x² ist.

= x² - px - qx + pq
= x² - (p+q)x + pq

Es muss somit gelten:

x 2 +3x + a = x² - (p+q)x + pq

Wir müssen jetzt also nur noch zwei ganze Zahlen finden, deren Summe das Negative von 3 ist, also z.B.:

Mit p = 2 und q = -5 würde es funktionieren, denn -( 2 -5 ) = 3

Genauso muss dann auch a = p⋅q gelten, also a = 2 · ( -5 ) = -10

Zur Probe können wir ja noch mit a = -10 die quadratische Gleichung lösen, um zu überprüfen, ob die Lösungen wirklich ganzzahlig sind:

x 2 +3x -10 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -3 ± 3 2 -4 · 1 · ( -10 ) 21

x1,2 = -3 ± 9 +40 2

x1,2 = -3 ± 49 2

x1 = -3 + 49 2 = -3 +7 2 = 4 2 = 2

x2 = -3 - 49 2 = -3 -7 2 = -10 2 = -5

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 3 2 ) 2 - ( -10 ) = 9 4 + 10 = 9 4 + 40 4 = 49 4

x1,2 = - 3 2 ± 49 4

x1 = - 3 2 - 7 2 = - 10 2 = -5

x2 = - 3 2 + 7 2 = 4 2 = 2

L={ -5 ; 2 }