Aufgabenbeispiele von Bruchgleichungen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Bruchgleichungen (quadr.) einfach

Beispiel:

Bestimme erst die maximale Definitionsmenge D. Löse dann die Bruchgleichung:

36 x +1 = 3x

Lösung einblenden

Um die Definitionlücken (und damit die maximale Definitionsmenge) zu bestimmen, müssen wir einfach nach den Nullstellen der Nenner schauen: Hier erkennt man schnell als Nullstelle(n) der Nenner: -1

D=R\{ -1 }

Wir multiplizieren den Nenner x +1 weg!

36 x +1 = 3x |⋅( x +1 )
36 x +1 · ( x +1 ) = 3x · ( x +1 )
36 = 3 x ( x +1 )
36 = 3 x 2 +3x
36 = 3 x 2 +3x | -3 x 2 -3x
-3 x 2 -3x +36 = 0 |:3

- x 2 - x +12 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +1 ± ( -1 ) 2 -4 · ( -1 ) · 12 2( -1 )

x1,2 = +1 ± 1 +48 -2

x1,2 = +1 ± 49 -2

x1 = 1 + 49 -2 = 1 +7 -2 = 8 -2 = -4

x2 = 1 - 49 -2 = 1 -7 -2 = -6 -2 = 3

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- x 2 - x +12 = 0 |: -1

x 2 + x -12 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 1 2 ) 2 - ( -12 ) = 1 4 + 12 = 1 4 + 48 4 = 49 4

x1,2 = - 1 2 ± 49 4

x1 = - 1 2 - 7 2 = - 8 2 = -4

x2 = - 1 2 + 7 2 = 6 2 = 3

(Alle Lösungen sind auch in der Definitionsmenge).

L={ -4 ; 3 }

Bruchgleichung (quadr.) 1

Beispiel:

Bestimme erst die maximale Definitionsmenge D. Löse dann die Bruchgleichung:

3 + 6 x = x +2

Lösung einblenden

Um die Definitionlücken (und damit die maximale Definitionsmenge) zu bestimmen, müssen wir einfach nach den Nullstellen der Nenner schauen: Hier erkennt man schnell als Nullstelle(n) der Nenner: 0

D=R\{0}

Wir multiplizieren den Nenner x weg!

3 + 6 x = x +2 |⋅( x )
3 · x + 6 x · x = x · x + 2 · x
3x +6 = x · x +2x
3x +6 = x 2 +2x | - x 2 -2x

- x 2 + x +6 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -1 ± 1 2 -4 · ( -1 ) · 6 2( -1 )

x1,2 = -1 ± 1 +24 -2

x1,2 = -1 ± 25 -2

x1 = -1 + 25 -2 = -1 +5 -2 = 4 -2 = -2

x2 = -1 - 25 -2 = -1 -5 -2 = -6 -2 = 3

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- x 2 + x +6 = 0 |: -1

x 2 - x -6 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 1 2 ) 2 - ( -6 ) = 1 4 + 6 = 1 4 + 24 4 = 25 4

x1,2 = 1 2 ± 25 4

x1 = 1 2 - 5 2 = - 4 2 = -2

x2 = 1 2 + 5 2 = 6 2 = 3

(Alle Lösungen sind auch in der Definitionsmenge).

L={ -2 ; 3 }

Bruchgleichung (quadr.) 2

Beispiel:

Bestimme erst die maximale Definitionsmenge D. Löse dann die Bruchgleichung:

-9x x +4 +3x -3 = 0

Lösung einblenden

Um die Definitionlücken (und damit die maximale Definitionsmenge) zu bestimmen, müssen wir einfach nach den Nullstellen der Nenner schauen: Hier erkennt man schnell als Nullstelle(n) der Nenner: -4

D=R\{ -4 }

- 9x x +4 +3x -3 = 0

Wir multiplizieren den Nenner x +4 weg!

- 9x x +4 +3x -3 = 0 |⋅( x +4 )
- 9x x +4 · ( x +4 ) + 3x · ( x +4 ) -3 · ( x +4 ) = 0
-9x +3 x ( x +4 ) -3x -12 = 0
-9x + ( 3 x 2 +12x ) -3x -12 = 0
3 x 2 -12 = 0
3 x 2 -12 = 0 | +12
3 x 2 = 12 |:3
x 2 = 4 | 2
x1 = - 4 = -2
x2 = 4 = 2

(Alle Lösungen sind auch in der Definitionsmenge).

L={ -2 ; 2 }

doppelte Bruchgl. (quadr.)

Beispiel:

Löse die folgende Gleichung:

4x = - x 5x -10 - -59,4 x -2

Lösung einblenden

D=R\{ 2 }

4x = - x 5x -10 + 59,4 x -2
4x = - x 5( x -2 ) + 59,4 x -2 |(Nenner faktorisiert)

Wir multiplizieren den Nenner 5( x -2 ) weg!

4x = - x 5( x -2 ) + 59,4 x -2 |⋅( 5( x -2 ) )
4x · ( 5( x -2 ) ) = - x 5( x -2 ) · ( 5( x -2 ) ) + 59,4 x -2 · ( 5( x -2 ) )
20 x ( x -2 ) = -x +297
20 x · x +20 x · ( -2 ) = -x +297
20 x · x -40x = -x +297
20 x 2 -40x = -x +297
20 x 2 -40x = -x +297 | + x -297

20 x 2 -39x -297 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +39 ± ( -39 ) 2 -4 · 20 · ( -297 ) 220

x1,2 = +39 ± 1521 +23760 40

x1,2 = +39 ± 25281 40

x1 = 39 + 25281 40 = 39 +159 40 = 198 40 = 4,95

x2 = 39 - 25281 40 = 39 -159 40 = -120 40 = -3

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "20 " teilen:

20 x 2 -39x -297 = 0 |: 20

x 2 - 39 20 x - 297 20 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 39 40 ) 2 - ( - 297 20 ) = 1521 1600 + 297 20 = 1521 1600 + 23760 1600 = 25281 1600

x1,2 = 39 40 ± 25281 1600

x1 = 39 40 - 159 40 = - 120 40 = -3

x2 = 39 40 + 159 40 = 198 40 = 4.95

(Alle Lösungen sind auch in der Definitionsmenge).

L={ -3 ; 4,95 }

Bruchgl. mit x-Potenzen

Beispiel:

Löse die folgende Gleichung:

4 x 2 = - 1 x + 12 x 3

Lösung einblenden

D=R\{0}

Wir multiplizieren den Nenner x 3 weg!

4 x 2 = - 1 x + 12 x 3 |⋅( x 3 )
4 x 2 · x 3 = - 1 x · x 3 + 12 x 3 · x 3
4x = - x 2 +12
4x = - x 2 +12 | + x 2 -12

x 2 +4x -12 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -4 ± 4 2 -4 · 1 · ( -12 ) 21

x1,2 = -4 ± 16 +48 2

x1,2 = -4 ± 64 2

x1 = -4 + 64 2 = -4 +8 2 = 4 2 = 2

x2 = -4 - 64 2 = -4 -8 2 = -12 2 = -6

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 2 2 - ( -12 ) = 4+ 12 = 16

x1,2 = -2 ± 16

x1 = -2 - 4 = -6

x2 = -2 + 4 = 2

(Alle Lösungen sind auch in der Definitionsmenge).

L={ -6 ; 2 }

Bruchgleichung mit Parameter

Beispiel:

Für x ≠ 0 und a ∈ Z\{0} ist die folgende Gleichung gegeben:

a x -3 = -x

Bestimme a so, dass die Gleichung zwei (verschiedene) ganzzahlige Lösungen besitzt.

Lösung einblenden

D=R\{0}

a x -3 = -x

Wir multiplizieren den Nenner x weg:

a x -3 = -x |⋅x
a x · x -3 · x = -x · x
a -3x = - x 2
a -3x + x 2 = 0
x 2 -3x + a = 0

Um jetzt ein a zu finden, für das die quadratische Gleichung zwei ganzzahlige Lösungen hat, bezeichnen wir die beiden Lösungen einfach mal mit p und q und schreiben einen faktorisierten Term mit diesen Lösungen auf:

(x-p)⋅(x-q)

Wenn wir jetzt den faktorisierten Term ausmultiplizieren, erkennen wir, dass auch hier die 1 der Koeffizient vor dem x² ist.

= x² - px - qx + pq
= x² - (p+q)x + pq

Es muss somit gelten:

x 2 -3x + a = x² - (p+q)x + pq

Wir müssen jetzt also nur noch zwei ganze Zahlen finden, deren Summe das Negative von -3 ist, also z.B.:

Mit p = 2 und q = 1 würde es funktionieren, denn -( 2 +1 ) = -3

Genauso muss dann auch a = p⋅q gelten, also a = 2 · 1 = 2

Zur Probe können wir ja noch mit a = 2 die quadratische Gleichung lösen, um zu überprüfen, ob die Lösungen wirklich ganzzahlig sind:

x 2 -3x +2 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +3 ± ( -3 ) 2 -4 · 1 · 2 21

x1,2 = +3 ± 9 -8 2

x1,2 = +3 ± 1 2

x1 = 3 + 1 2 = 3 +1 2 = 4 2 = 2

x2 = 3 - 1 2 = 3 -1 2 = 2 2 = 1

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 3 2 ) 2 - 2 = 9 4 - 2 = 9 4 - 8 4 = 1 4

x1,2 = 3 2 ± 1 4

x1 = 3 2 - 1 2 = 2 2 = 1

x2 = 3 2 + 1 2 = 4 2 = 2

L={ 1 ; 2 }