Aufgabenbeispiele von Bruchgleichungen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Bruchgleichungen (quadr.) einfach

Beispiel:

Bestimme erst die maximale Definitionsmenge D. Löse dann die Bruchgleichung:

- 45 x +2 = -3x

Lösung einblenden

Um die Definitionlücken (und damit die maximale Definitionsmenge) zu bestimmen, müssen wir einfach nach den Nullstellen der Nenner schauen: Hier erkennt man schnell als Nullstelle(n) der Nenner: -2

D=R\{ -2 }

Wir multiplizieren den Nenner x +2 weg!

- 45 x +2 = -3x |⋅( x +2 )
- 45 x +2 · ( x +2 ) = -3x · ( x +2 )
-45 = -3 x ( x +2 )
-45 = -3 x 2 -6x
-45 = -3 x 2 -6x | +3 x 2 +6x
3 x 2 +6x -45 = 0 |:3

x 2 +2x -15 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -2 ± 2 2 -4 · 1 · ( -15 ) 21

x1,2 = -2 ± 4 +60 2

x1,2 = -2 ± 64 2

x1 = -2 + 64 2 = -2 +8 2 = 6 2 = 3

x2 = -2 - 64 2 = -2 -8 2 = -10 2 = -5

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 1 2 - ( -15 ) = 1+ 15 = 16

x1,2 = -1 ± 16

x1 = -1 - 4 = -5

x2 = -1 + 4 = 3

(Alle Lösungen sind auch in der Definitionsmenge).

L={ -5 ; 3 }

Bruchgleichung (quadr.) 1

Beispiel:

Bestimme erst die maximale Definitionsmenge D. Löse dann die Bruchgleichung:

x +3 = 9x +1 4x

Lösung einblenden

Um die Definitionlücken (und damit die maximale Definitionsmenge) zu bestimmen, müssen wir einfach nach den Nullstellen der Nenner schauen: Hier erkennt man schnell als Nullstelle(n) der Nenner: 0

D=R\{0}

Wir multiplizieren den Nenner 4x weg!

x +3 = 9x +1 4x |⋅( 4x )
x · 4x + 3 · 4x = 9x +1 4x · 4x
4 x · x +12x = 9x +1
4 x 2 +12x = 9x +1
4 x 2 +12x = 9x +1 | -9x -1

4 x 2 +3x -1 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -3 ± 3 2 -4 · 4 · ( -1 ) 24

x1,2 = -3 ± 9 +16 8

x1,2 = -3 ± 25 8

x1 = -3 + 25 8 = -3 +5 8 = 2 8 = 0,25

x2 = -3 - 25 8 = -3 -5 8 = -8 8 = -1

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "4 " teilen:

4 x 2 +3x -1 = 0 |: 4

x 2 + 3 4 x - 1 4 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 3 8 ) 2 - ( - 1 4 ) = 9 64 + 1 4 = 9 64 + 16 64 = 25 64

x1,2 = - 3 8 ± 25 64

x1 = - 3 8 - 5 8 = - 8 8 = -1

x2 = - 3 8 + 5 8 = 2 8 = 0.25

(Alle Lösungen sind auch in der Definitionsmenge).

L={ -1 ; 0,25 }

Bruchgleichung (quadr.) 2

Beispiel:

Bestimme erst die maximale Definitionsmenge D. Löse dann die Bruchgleichung:

18x x +5 + x = 4

Lösung einblenden

Um die Definitionlücken (und damit die maximale Definitionsmenge) zu bestimmen, müssen wir einfach nach den Nullstellen der Nenner schauen: Hier erkennt man schnell als Nullstelle(n) der Nenner: -5

D=R\{ -5 }

Wir multiplizieren den Nenner x +5 weg!

18x x +5 + x = 4 |⋅( x +5 )
18x x +5 · ( x +5 ) + x · ( x +5 ) = 4 · ( x +5 )
18x + x ( x +5 ) = 4( x +5 )
18x + ( x 2 +5x ) = 4( x +5 )
x 2 +23x = 4x +20
x 2 +23x = 4x +20 | -4x -20

x 2 +19x -20 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -19 ± 19 2 -4 · 1 · ( -20 ) 21

x1,2 = -19 ± 361 +80 2

x1,2 = -19 ± 441 2

x1 = -19 + 441 2 = -19 +21 2 = 2 2 = 1

x2 = -19 - 441 2 = -19 -21 2 = -40 2 = -20

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 19 2 ) 2 - ( -20 ) = 361 4 + 20 = 361 4 + 80 4 = 441 4

x1,2 = - 19 2 ± 441 4

x1 = - 19 2 - 21 2 = - 40 2 = -20

x2 = - 19 2 + 21 2 = 2 2 = 1

(Alle Lösungen sind auch in der Definitionsmenge).

L={ -20 ; 1 }

doppelte Bruchgl. (quadr.)

Beispiel:

Löse die folgende Gleichung:

0 = - x 2x +8 - 2 x +4 - x

Lösung einblenden

D=R\{ -4 }

0 = - x 2x +8 - 2 x +4 - x
0 = - x 2( x +4 ) - 2 x +4 - x |(Nenner faktorisiert)

Wir multiplizieren den Nenner 2( x +4 ) weg!

0 = - x 2( x +4 ) - 2 x +4 - x |⋅( 2( x +4 ) )
0 = - x 2( x +4 ) · ( 2( x +4 ) ) + -2 x +4 · ( 2( x +4 ) ) -x · ( 2( x +4 ) )
0 = -x -4 -2 x ( x +4 )
0 = -2 x 2 -9x -4
0 = -2 x 2 -9x -4 | +2 x 2 +9x +4

2 x 2 +9x +4 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -9 ± 9 2 -4 · 2 · 4 22

x1,2 = -9 ± 81 -32 4

x1,2 = -9 ± 49 4

x1 = -9 + 49 4 = -9 +7 4 = -2 4 = -0,5

x2 = -9 - 49 4 = -9 -7 4 = -16 4 = -4

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "2 " teilen:

2 x 2 +9x +4 = 0 |: 2

x 2 + 9 2 x +2 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 9 4 ) 2 - 2 = 81 16 - 2 = 81 16 - 32 16 = 49 16

x1,2 = - 9 4 ± 49 16

x1 = - 9 4 - 7 4 = - 16 4 = -4

x2 = - 9 4 + 7 4 = - 2 4 = -0.5

Lösung x= -4 ist nicht in der Definitionsmenge!

L={ -0,5 }

Bruchgl. mit x-Potenzen

Beispiel:

Löse die folgende Gleichung:

0 = -1 - 2 x + 15 x 2

Lösung einblenden

D=R\{0}

Wir multiplizieren den Nenner x 2 weg!

0 = -1 - 2 x + 15 x 2 |⋅( x 2 )
0 = -1 · x 2 - 2 x · x 2 + 15 x 2 · x 2
0 = - x 2 -2x +15
0 = - x 2 -2x +15 | + x 2 +2x -15

x 2 +2x -15 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -2 ± 2 2 -4 · 1 · ( -15 ) 21

x1,2 = -2 ± 4 +60 2

x1,2 = -2 ± 64 2

x1 = -2 + 64 2 = -2 +8 2 = 6 2 = 3

x2 = -2 - 64 2 = -2 -8 2 = -10 2 = -5

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 1 2 - ( -15 ) = 1+ 15 = 16

x1,2 = -1 ± 16

x1 = -1 - 4 = -5

x2 = -1 + 4 = 3

(Alle Lösungen sind auch in der Definitionsmenge).

L={ -5 ; 3 }

Bruchgleichung mit Parameter

Beispiel:

Für x ≠ 0 und a ∈ Z\{0} ist die folgende Gleichung gegeben:

- 12 x + x = - a

Bestimme a so, dass die Gleichung zwei (verschiedene) ganzzahlige Lösungen besitzt.

Lösung einblenden

D=R\{0}

- 12 x + x = - a

Wir multiplizieren den Nenner x weg:

- 12 x + x = - a |⋅x
- 12 x · x + x · x = - a · x
-12 + x 2 = - a x
-12 + x 2 + a x = 0
x 2 + a x -12 = 0

Um jetzt ein a zu finden, für das die quadratische Gleichung zwei ganzzahlige Lösungen hat, bezeichnen wir die beiden Lösungen einfach mal mit p und q und schreiben einen faktorisierten Term mit diesen Lösungen auf:

(x-p)⋅(x-q)

Wenn wir jetzt den faktorisierten Term ausmultiplizieren, erkennen wir, dass auch hier die 1 der Koeffizient vor dem x² ist.

= x² - px - qx + pq
= x² - (p+q)x + pq

Es muss somit gelten:

x 2 + a x -12 = x² - (p+q)x + pq

Wir müssen jetzt also nur noch zwei ganze Zahlen finden, deren Produkt -12 ist, also z.B.:

Mit p = 2 und q = -6 würde es funktionieren, denn 2 · ( -6 ) = -12

Genauso muss dann auch a = -(p+q) gelten, also a = -( 2 -6 ) = 4

Zur Probe können wir ja noch mit a = 4 die quadratische Gleichung lösen, um zu überprüfen, ob die Lösungen wirklich ganzzahlig sind:

x 2 +4x -12 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -4 ± 4 2 -4 · 1 · ( -12 ) 21

x1,2 = -4 ± 16 +48 2

x1,2 = -4 ± 64 2

x1 = -4 + 64 2 = -4 +8 2 = 4 2 = 2

x2 = -4 - 64 2 = -4 -8 2 = -12 2 = -6

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 2 2 - ( -12 ) = 4+ 12 = 16

x1,2 = -2 ± 16

x1 = -2 - 4 = -6

x2 = -2 + 4 = 2

L={ -6 ; 2 }