Aufgabenbeispiele von Bruchgleichungen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Bruchgleichungen (quadr.) einfach

Beispiel:

Bestimme erst die maximale Definitionsmenge D. Löse dann die Bruchgleichung:

- 9 x = -x

Lösung einblenden

Um die Definitionlücken (und damit die maximale Definitionsmenge) zu bestimmen, müssen wir einfach nach den Nullstellen der Nenner schauen: Hier erkennt man schnell als Nullstelle(n) der Nenner: 0

D=R\{0}

Wir multiplizieren den Nenner x weg!

- 9 x = -x |⋅( x )
- 9 x · x = -x · x
-9 = - x · x
-9 = - x 2
-9 = - x 2 | +9 + x 2
x 2 = 9 | 2
x1 = - 9 = -3
x2 = 9 = 3

(Alle Lösungen sind auch in der Definitionsmenge).

L={ -3 ; 3 }

Bruchgleichung (quadr.) 1

Beispiel:

Bestimme erst die maximale Definitionsmenge D. Löse dann die Bruchgleichung:

-5 + 2 x = x -4

Lösung einblenden

Um die Definitionlücken (und damit die maximale Definitionsmenge) zu bestimmen, müssen wir einfach nach den Nullstellen der Nenner schauen: Hier erkennt man schnell als Nullstelle(n) der Nenner: 0

D=R\{0}

Wir multiplizieren den Nenner x weg!

-5 + 2 x = x -4 |⋅( x )
-5 · x + 2 x · x = x · x -4 · x
-5x +2 = x · x -4x
-5x +2 = x 2 -4x | - x 2 +4x

- x 2 - x +2 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +1 ± ( -1 ) 2 -4 · ( -1 ) · 2 2( -1 )

x1,2 = +1 ± 1 +8 -2

x1,2 = +1 ± 9 -2

x1 = 1 + 9 -2 = 1 +3 -2 = 4 -2 = -2

x2 = 1 - 9 -2 = 1 -3 -2 = -2 -2 = 1

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- x 2 - x +2 = 0 |: -1

x 2 + x -2 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 1 2 ) 2 - ( -2 ) = 1 4 + 2 = 1 4 + 8 4 = 9 4

x1,2 = - 1 2 ± 9 4

x1 = - 1 2 - 3 2 = - 4 2 = -2

x2 = - 1 2 + 3 2 = 2 2 = 1

(Alle Lösungen sind auch in der Definitionsmenge).

L={ -2 ; 1 }

Bruchgleichung (quadr.) 2

Beispiel:

Bestimme erst die maximale Definitionsmenge D. Löse dann die Bruchgleichung:

2x x +2 + x = -3

Lösung einblenden

Um die Definitionlücken (und damit die maximale Definitionsmenge) zu bestimmen, müssen wir einfach nach den Nullstellen der Nenner schauen: Hier erkennt man schnell als Nullstelle(n) der Nenner: -2

D=R\{ -2 }

Wir multiplizieren den Nenner x +2 weg!

2x x +2 + x = -3 |⋅( x +2 )
2x x +2 · ( x +2 ) + x · ( x +2 ) = -3 · ( x +2 )
2x + x ( x +2 ) = -3( x +2 )
2x + ( x 2 +2x ) = -3( x +2 )
x 2 +4x = -3x -6
x 2 +4x = -3x -6 | +3x +6

x 2 +7x +6 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -7 ± 7 2 -4 · 1 · 6 21

x1,2 = -7 ± 49 -24 2

x1,2 = -7 ± 25 2

x1 = -7 + 25 2 = -7 +5 2 = -2 2 = -1

x2 = -7 - 25 2 = -7 -5 2 = -12 2 = -6

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 7 2 ) 2 - 6 = 49 4 - 6 = 49 4 - 24 4 = 25 4

x1,2 = - 7 2 ± 25 4

x1 = - 7 2 - 5 2 = - 12 2 = -6

x2 = - 7 2 + 5 2 = - 2 2 = -1

(Alle Lösungen sind auch in der Definitionsmenge).

L={ -6 ; -1 }

doppelte Bruchgl. (quadr.)

Beispiel:

Löse die folgende Gleichung:

x 4x +16 + 23 2x +8 - x = 0

Lösung einblenden

D=R\{ -4 }

x 4x +16 + 23 2x +8 - x = 0
x 4( x +4 ) + 23 2( x +4 ) - x = 0 |(Nenner faktorisiert)

Wir multiplizieren den Nenner 4( x +4 ) weg!

x 4( x +4 ) + 23 2( x +4 ) - x = 0 |⋅( 4( x +4 ) )
x 4( x +4 ) · ( 4( x +4 ) ) + 23 2( x +4 ) · ( 4( x +4 ) ) -x · ( 4( x +4 ) ) = 0
x +46 -4 x ( x +4 ) = 0
x +46 + ( -4 x 2 -16x ) = 0
-4 x 2 -15x +46 = 0

-4 x 2 -15x +46 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +15 ± ( -15 ) 2 -4 · ( -4 ) · 46 2( -4 )

x1,2 = +15 ± 225 +736 -8

x1,2 = +15 ± 961 -8

x1 = 15 + 961 -8 = 15 +31 -8 = 46 -8 = -5,75

x2 = 15 - 961 -8 = 15 -31 -8 = -16 -8 = 2

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-4 " teilen:

-4 x 2 -15x +46 = 0 |: -4

x 2 + 15 4 x - 23 2 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 15 8 ) 2 - ( - 23 2 ) = 225 64 + 23 2 = 225 64 + 736 64 = 961 64

x1,2 = - 15 8 ± 961 64

x1 = - 15 8 - 31 8 = - 46 8 = -5.75

x2 = - 15 8 + 31 8 = 16 8 = 2

(Alle Lösungen sind auch in der Definitionsmenge).

L={ -5,75 ; 2 }

Bruchgl. mit x-Potenzen

Beispiel:

Löse die folgende Gleichung:

1 = 2 x + 24 x 2

Lösung einblenden

D=R\{0}

Wir multiplizieren den Nenner x 2 weg!

1 = 2 x + 24 x 2 |⋅( x 2 )
1 · x 2 = 2 x · x 2 + 24 x 2 · x 2
x 2 = 2x +24
x 2 = 2x +24 | -2x -24

x 2 -2x -24 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +2 ± ( -2 ) 2 -4 · 1 · ( -24 ) 21

x1,2 = +2 ± 4 +96 2

x1,2 = +2 ± 100 2

x1 = 2 + 100 2 = 2 +10 2 = 12 2 = 6

x2 = 2 - 100 2 = 2 -10 2 = -8 2 = -4

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -1 ) 2 - ( -24 ) = 1+ 24 = 25

x1,2 = 1 ± 25

x1 = 1 - 5 = -4

x2 = 1 + 5 = 6

(Alle Lösungen sind auch in der Definitionsmenge).

L={ -4 ; 6 }

Bruchgleichung mit Parameter

Beispiel:

Für x ≠ 0 und a ∈ Z\{0} ist die folgende Gleichung gegeben:

4 + a x = -x

Bestimme a so, dass die Gleichung zwei (verschiedene) ganzzahlige Lösungen besitzt.

Lösung einblenden

D=R\{0}

4 + a x = -x

Wir multiplizieren den Nenner x weg:

4 + a x = -x |⋅x
4 · x + a x · x = -x · x
4x + a = - x 2
4x + a + x 2 = 0
x 2 +4x + a = 0

Um jetzt ein a zu finden, für das die quadratische Gleichung zwei ganzzahlige Lösungen hat, bezeichnen wir die beiden Lösungen einfach mal mit p und q und schreiben einen faktorisierten Term mit diesen Lösungen auf:

(x-p)⋅(x-q)

Wenn wir jetzt den faktorisierten Term ausmultiplizieren, erkennen wir, dass auch hier die 1 der Koeffizient vor dem x² ist.

= x² - px - qx + pq
= x² - (p+q)x + pq

Es muss somit gelten:

x 2 +4x + a = x² - (p+q)x + pq

Wir müssen jetzt also nur noch zwei ganze Zahlen finden, deren Summe das Negative von 4 ist, also z.B.:

Mit p = 3 und q = -7 würde es funktionieren, denn -( 3 -7 ) = 4

Genauso muss dann auch a = p⋅q gelten, also a = 3 · ( -7 ) = -21

Zur Probe können wir ja noch mit a = -21 die quadratische Gleichung lösen, um zu überprüfen, ob die Lösungen wirklich ganzzahlig sind:

x 2 +4x -21 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -4 ± 4 2 -4 · 1 · ( -21 ) 21

x1,2 = -4 ± 16 +84 2

x1,2 = -4 ± 100 2

x1 = -4 + 100 2 = -4 +10 2 = 6 2 = 3

x2 = -4 - 100 2 = -4 -10 2 = -14 2 = -7

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 2 2 - ( -21 ) = 4+ 21 = 25

x1,2 = -2 ± 25

x1 = -2 - 5 = -7

x2 = -2 + 5 = 3

L={ -7 ; 3 }