Aufgabenbeispiele von Bruchgleichungen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Bruchgleichungen (quadr.) einfach

Beispiel:

Bestimme erst die maximale Definitionsmenge D. Löse dann die Bruchgleichung:

- 18 x = -2x

Lösung einblenden

Um die Definitionlücken (und damit die maximale Definitionsmenge) zu bestimmen, müssen wir einfach nach den Nullstellen der Nenner schauen: Hier erkennt man schnell als Nullstelle(n) der Nenner: 0

D=R\{0}

Wir multiplizieren den Nenner x weg!

- 18 x = -2x |⋅( x )
- 18 x · x = -2x · x
-18 = -2 x · x
-18 = -2 x 2
-18 = -2 x 2 | +18 +2 x 2
2 x 2 = 18 |:2
x 2 = 9 | 2
x1 = - 9 = -3
x2 = 9 = 3

(Alle Lösungen sind auch in der Definitionsmenge).

L={ -3 ; 3 }

Bruchgleichung (quadr.) 1

Beispiel:

Bestimme erst die maximale Definitionsmenge D. Löse dann die Bruchgleichung:

20x -8 x +5 = 2x

Lösung einblenden

Um die Definitionlücken (und damit die maximale Definitionsmenge) zu bestimmen, müssen wir einfach nach den Nullstellen der Nenner schauen: Hier erkennt man schnell als Nullstelle(n) der Nenner: -5

D=R\{ -5 }

Wir multiplizieren den Nenner x +5 weg!

20x -8 x +5 = 2x |⋅( x +5 )
20x -8 x +5 · ( x +5 ) = 2x · ( x +5 )
20x -8 = 2 x ( x +5 )
20x -8 = 2 x 2 +10x
20x -8 = 2 x 2 +10x | -2 x 2 -10x
-2 x 2 +10x -8 = 0 |:2

- x 2 +5x -4 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -5 ± 5 2 -4 · ( -1 ) · ( -4 ) 2( -1 )

x1,2 = -5 ± 25 -16 -2

x1,2 = -5 ± 9 -2

x1 = -5 + 9 -2 = -5 +3 -2 = -2 -2 = 1

x2 = -5 - 9 -2 = -5 -3 -2 = -8 -2 = 4

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- x 2 +5x -4 = 0 |: -1

x 2 -5x +4 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 5 2 ) 2 - 4 = 25 4 - 4 = 25 4 - 16 4 = 9 4

x1,2 = 5 2 ± 9 4

x1 = 5 2 - 3 2 = 2 2 = 1

x2 = 5 2 + 3 2 = 8 2 = 4

(Alle Lösungen sind auch in der Definitionsmenge).

L={ 1 ; 4 }

Bruchgleichung (quadr.) 2

Beispiel:

Bestimme erst die maximale Definitionsmenge D. Löse dann die Bruchgleichung:

3x x -3 +2x = -2

Lösung einblenden

Um die Definitionlücken (und damit die maximale Definitionsmenge) zu bestimmen, müssen wir einfach nach den Nullstellen der Nenner schauen: Hier erkennt man schnell als Nullstelle(n) der Nenner: 3

D=R\{ 3 }

Wir multiplizieren den Nenner x -3 weg!

3x x -3 +2x = -2 |⋅( x -3 )
3x x -3 · ( x -3 ) + 2x · ( x -3 ) = -2 · ( x -3 )
3x +2 x ( x -3 ) = -2( x -3 )
3x + ( 2 x 2 -6x ) = -2( x -3 )
2 x 2 -3x = -2x +6
2 x 2 -3x = -2x +6 | +2x -6

2 x 2 - x -6 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +1 ± ( -1 ) 2 -4 · 2 · ( -6 ) 22

x1,2 = +1 ± 1 +48 4

x1,2 = +1 ± 49 4

x1 = 1 + 49 4 = 1 +7 4 = 8 4 = 2

x2 = 1 - 49 4 = 1 -7 4 = -6 4 = -1,5

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "2 " teilen:

2 x 2 - x -6 = 0 |: 2

x 2 - 1 2 x -3 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 1 4 ) 2 - ( -3 ) = 1 16 + 3 = 1 16 + 48 16 = 49 16

x1,2 = 1 4 ± 49 16

x1 = 1 4 - 7 4 = - 6 4 = -1.5

x2 = 1 4 + 7 4 = 8 4 = 2

(Alle Lösungen sind auch in der Definitionsmenge).

L={ -1,5 ; 2 }

doppelte Bruchgl. (quadr.)

Beispiel:

Löse die folgende Gleichung:

x 4x -8 = - 7 x -2 + x

Lösung einblenden

D=R\{ 2 }

x 4x -8 = - 7 x -2 + x
x 4( x -2 ) = - 7 x -2 + x |(Nenner faktorisiert)

Wir multiplizieren den Nenner 4( x -2 ) weg!

x 4( x -2 ) = - 7 x -2 + x |⋅( 4( x -2 ) )
x 4( x -2 ) · ( 4( x -2 ) ) = -7 x -2 · ( 4( x -2 ) ) + x · ( 4( x -2 ) )
x = -28 +4 x ( x -2 )
x = 4 x 2 -8x -28
x = 4 x 2 -8x -28 | -4 x 2 +8x +28

-4 x 2 +9x +28 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -9 ± 9 2 -4 · ( -4 ) · 28 2( -4 )

x1,2 = -9 ± 81 +448 -8

x1,2 = -9 ± 529 -8

x1 = -9 + 529 -8 = -9 +23 -8 = 14 -8 = -1,75

x2 = -9 - 529 -8 = -9 -23 -8 = -32 -8 = 4

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-4 " teilen:

-4 x 2 +9x +28 = 0 |: -4

x 2 - 9 4 x -7 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 9 8 ) 2 - ( -7 ) = 81 64 + 7 = 81 64 + 448 64 = 529 64

x1,2 = 9 8 ± 529 64

x1 = 9 8 - 23 8 = - 14 8 = -1.75

x2 = 9 8 + 23 8 = 32 8 = 4

(Alle Lösungen sind auch in der Definitionsmenge).

L={ -1,75 ; 4 }

Bruchgl. mit x-Potenzen

Beispiel:

Löse die folgende Gleichung:

- 8 x 2 = -1 + 7 x

Lösung einblenden

D=R\{0}

Wir multiplizieren den Nenner x 2 weg!

- 8 x 2 = -1 + 7 x |⋅( x 2 )
- 8 x 2 · x 2 = -1 · x 2 + 7 x · x 2
-8 = - x 2 +7x
-8 = - x 2 +7x | + x 2 -7x

x 2 -7x -8 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +7 ± ( -7 ) 2 -4 · 1 · ( -8 ) 21

x1,2 = +7 ± 49 +32 2

x1,2 = +7 ± 81 2

x1 = 7 + 81 2 = 7 +9 2 = 16 2 = 8

x2 = 7 - 81 2 = 7 -9 2 = -2 2 = -1

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 7 2 ) 2 - ( -8 ) = 49 4 + 8 = 49 4 + 32 4 = 81 4

x1,2 = 7 2 ± 81 4

x1 = 7 2 - 9 2 = - 2 2 = -1

x2 = 7 2 + 9 2 = 16 2 = 8

(Alle Lösungen sind auch in der Definitionsmenge).

L={ -1 ; 8 }

Bruchgleichung mit Parameter

Beispiel:

Für x ≠ 0 und a ∈ Z\{0} ist die folgende Gleichung gegeben:

- 12 x + x = - a

Bestimme a so, dass die Gleichung zwei (verschiedene) ganzzahlige Lösungen besitzt.

Lösung einblenden

D=R\{0}

- 12 x + x = - a

Wir multiplizieren den Nenner x weg:

- 12 x + x = - a |⋅x
- 12 x · x + x · x = - a · x
-12 + x 2 = - a x
-12 + x 2 + a x = 0
x 2 + a x -12 = 0

Um jetzt ein a zu finden, für das die quadratische Gleichung zwei ganzzahlige Lösungen hat, bezeichnen wir die beiden Lösungen einfach mal mit p und q und schreiben einen faktorisierten Term mit diesen Lösungen auf:

(x-p)⋅(x-q)

Wenn wir jetzt den faktorisierten Term ausmultiplizieren, erkennen wir, dass auch hier die 1 der Koeffizient vor dem x² ist.

= x² - px - qx + pq
= x² - (p+q)x + pq

Es muss somit gelten:

x 2 + a x -12 = x² - (p+q)x + pq

Wir müssen jetzt also nur noch zwei ganze Zahlen finden, deren Produkt -12 ist, also z.B.:

Mit p = 2 und q = -6 würde es funktionieren, denn 2 · ( -6 ) = -12

Genauso muss dann auch a = -(p+q) gelten, also a = -( 2 -6 ) = 4

Zur Probe können wir ja noch mit a = 4 die quadratische Gleichung lösen, um zu überprüfen, ob die Lösungen wirklich ganzzahlig sind:

x 2 +4x -12 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -4 ± 4 2 -4 · 1 · ( -12 ) 21

x1,2 = -4 ± 16 +48 2

x1,2 = -4 ± 64 2

x1 = -4 + 64 2 = -4 +8 2 = 4 2 = 2

x2 = -4 - 64 2 = -4 -8 2 = -12 2 = -6

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 2 2 - ( -12 ) = 4+ 12 = 16

x1,2 = -2 ± 16

x1 = -2 - 4 = -6

x2 = -2 + 4 = 2

L={ -6 ; 2 }