Aufgabenbeispiele von Bruchgleichungen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Bruchgleichungen (quadr.) einfach

Beispiel:

Bestimme erst die maximale Definitionsmenge D. Löse dann die Bruchgleichung:

10x x -2 = -2x

Lösung einblenden

Um die Definitionlücken (und damit die maximale Definitionsmenge) zu bestimmen, müssen wir einfach nach den Nullstellen der Nenner schauen: Hier erkennt man schnell als Nullstelle(n) der Nenner: 2

D=R\{ 2 }

Wir multiplizieren den Nenner x -2 weg!

10x x -2 = -2x |⋅( x -2 )
10x x -2 · ( x -2 ) = -2x · ( x -2 )
10x = -2 x ( x -2 )
10x = -2 x 2 +4x
10x = -2 x 2 +4x | - ( -2 x 2 +4x )
2 x 2 +10x -4x = 0
2 x 2 +6x = 0
2 x ( x +3 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x +3 = 0 | -3
x2 = -3

(Alle Lösungen sind auch in der Definitionsmenge).

L={ -3 ; 0}

Bruchgleichung (quadr.) 1

Beispiel:

Bestimme erst die maximale Definitionsmenge D. Löse dann die Bruchgleichung:

x -3 = -11 - 7 x

Lösung einblenden

Um die Definitionlücken (und damit die maximale Definitionsmenge) zu bestimmen, müssen wir einfach nach den Nullstellen der Nenner schauen: Hier erkennt man schnell als Nullstelle(n) der Nenner: 0

D=R\{0}

Wir multiplizieren den Nenner x weg!

x -3 = -11 - 7 x |⋅( x )
x · x -3 · x = -11 · x - 7 x · x
x · x -3x = -11x -7
x 2 -3x = -11x -7
x 2 -3x = -11x -7 | +11x +7

x 2 +8x +7 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -8 ± 8 2 -4 · 1 · 7 21

x1,2 = -8 ± 64 -28 2

x1,2 = -8 ± 36 2

x1 = -8 + 36 2 = -8 +6 2 = -2 2 = -1

x2 = -8 - 36 2 = -8 -6 2 = -14 2 = -7

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 4 2 - 7 = 16 - 7 = 9

x1,2 = -4 ± 9

x1 = -4 - 3 = -7

x2 = -4 + 3 = -1

(Alle Lösungen sind auch in der Definitionsmenge).

L={ -7 ; -1 }

Bruchgleichung (quadr.) 2

Beispiel:

Bestimme erst die maximale Definitionsmenge D. Löse dann die Bruchgleichung:

-4 x +2 + x -1 = 0

Lösung einblenden

Um die Definitionlücken (und damit die maximale Definitionsmenge) zu bestimmen, müssen wir einfach nach den Nullstellen der Nenner schauen: Hier erkennt man schnell als Nullstelle(n) der Nenner: -2

D=R\{ -2 }

- 4 x +2 + x -1 = 0

Wir multiplizieren den Nenner x +2 weg!

- 4 x +2 + x -1 = 0 |⋅( x +2 )
- 4 x +2 · ( x +2 ) + x · ( x +2 ) -1 · ( x +2 ) = 0
-4 + x ( x +2 ) - x -2 = 0
-4 + ( x 2 +2x ) - x -2 = 0
x 2 + x -6 = 0

x 2 + x -6 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -1 ± 1 2 -4 · 1 · ( -6 ) 21

x1,2 = -1 ± 1 +24 2

x1,2 = -1 ± 25 2

x1 = -1 + 25 2 = -1 +5 2 = 4 2 = 2

x2 = -1 - 25 2 = -1 -5 2 = -6 2 = -3

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 1 2 ) 2 - ( -6 ) = 1 4 + 6 = 1 4 + 24 4 = 25 4

x1,2 = - 1 2 ± 25 4

x1 = - 1 2 - 5 2 = - 6 2 = -3

x2 = - 1 2 + 5 2 = 4 2 = 2

(Alle Lösungen sind auch in der Definitionsmenge).

L={ -3 ; 2 }

doppelte Bruchgl. (quadr.)

Beispiel:

Löse die folgende Gleichung:

3x = - x 5x +5 - -35,2 x +1

Lösung einblenden

D=R\{ -1 }

3x = - x 5x +5 + 35,2 x +1
3x = - x 5( x +1 ) + 35,2 x +1 |(Nenner faktorisiert)

Wir multiplizieren den Nenner 5( x +1 ) weg!

3x = - x 5( x +1 ) + 35,2 x +1 |⋅( 5( x +1 ) )
3x · ( 5( x +1 ) ) = - x 5( x +1 ) · ( 5( x +1 ) ) + 35,2 x +1 · ( 5( x +1 ) )
15 x ( x +1 ) = -x +176
15 x · x +15 x · 1 = -x +176
15 x · x +15x = -x +176
15 x 2 +15x = -x +176
15 x 2 +15x = -x +176 | + x -176

15 x 2 +16x -176 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -16 ± 16 2 -4 · 15 · ( -176 ) 215

x1,2 = -16 ± 256 +10560 30

x1,2 = -16 ± 10816 30

x1 = -16 + 10816 30 = -16 +104 30 = 88 30 = 44 15 ≈ 2.93

x2 = -16 - 10816 30 = -16 -104 30 = -120 30 = -4

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "15 " teilen:

15 x 2 +16x -176 = 0 |: 15

x 2 + 16 15 x - 176 15 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 8 15 ) 2 - ( - 176 15 ) = 64 225 + 176 15 = 64 225 + 2640 225 = 2704 225

x1,2 = - 8 15 ± 2704 225

x1 = - 8 15 - 52 15 = - 60 15 = -4

x2 = - 8 15 + 52 15 = 44 15 = 2.9333333333333

(Alle Lösungen sind auch in der Definitionsmenge).

L={ -4 ; 44 15 }

Bruchgl. mit x-Potenzen

Beispiel:

Löse die folgende Gleichung:

5 x = -1 - 6 x 2

Lösung einblenden

D=R\{0}

Wir multiplizieren den Nenner x 2 weg!

5 x = -1 - 6 x 2 |⋅( x 2 )
5 x · x 2 = -1 · x 2 - 6 x 2 · x 2
5x = - x 2 -6
5x = - x 2 -6 | + x 2 +6

x 2 +5x +6 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -5 ± 5 2 -4 · 1 · 6 21

x1,2 = -5 ± 25 -24 2

x1,2 = -5 ± 1 2

x1 = -5 + 1 2 = -5 +1 2 = -4 2 = -2

x2 = -5 - 1 2 = -5 -1 2 = -6 2 = -3

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 5 2 ) 2 - 6 = 25 4 - 6 = 25 4 - 24 4 = 1 4

x1,2 = - 5 2 ± 1 4

x1 = - 5 2 - 1 2 = - 6 2 = -3

x2 = - 5 2 + 1 2 = - 4 2 = -2

(Alle Lösungen sind auch in der Definitionsmenge).

L={ -3 ; -2 }

Bruchgleichung mit Parameter

Beispiel:

Für x ≠ 0 und a ∈ Z\{0} ist die folgende Gleichung gegeben:

12 x + a = -x

Bestimme a so, dass die Gleichung zwei (verschiedene) ganzzahlige Lösungen besitzt.

Lösung einblenden

D=R\{0}

12 x + a = -x

Wir multiplizieren den Nenner x weg:

12 x + a = -x |⋅x
12 x · x + a · x = -x · x
12 + a x = - x 2
12 + a x + x 2 = 0
x 2 + a x +12 = 0

Um jetzt ein a zu finden, für das die quadratische Gleichung zwei ganzzahlige Lösungen hat, bezeichnen wir die beiden Lösungen einfach mal mit p und q und schreiben einen faktorisierten Term mit diesen Lösungen auf:

(x-p)⋅(x-q)

Wenn wir jetzt den faktorisierten Term ausmultiplizieren, erkennen wir, dass auch hier die 1 der Koeffizient vor dem x² ist.

= x² - px - qx + pq
= x² - (p+q)x + pq

Es muss somit gelten:

x 2 + a x +12 = x² - (p+q)x + pq

Wir müssen jetzt also nur noch zwei ganze Zahlen finden, deren Produkt 12 ist, also z.B.:

Mit p = 2 und q = 6 würde es funktionieren, denn 2 · 6 = 12

Genauso muss dann auch a = -(p+q) gelten, also a = -( 2 +6 ) = -8

Zur Probe können wir ja noch mit a = -8 die quadratische Gleichung lösen, um zu überprüfen, ob die Lösungen wirklich ganzzahlig sind:

x 2 -8x +12 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +8 ± ( -8 ) 2 -4 · 1 · 12 21

x1,2 = +8 ± 64 -48 2

x1,2 = +8 ± 16 2

x1 = 8 + 16 2 = 8 +4 2 = 12 2 = 6

x2 = 8 - 16 2 = 8 -4 2 = 4 2 = 2

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -4 ) 2 - 12 = 16 - 12 = 4

x1,2 = 4 ± 4

x1 = 4 - 2 = 2

x2 = 4 + 2 = 6

L={ 2 ; 6 }