Aufgabenbeispiele von Bruchgleichungen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Bruchgleichungen (quadr.) einfach

Beispiel:

Bestimme erst die maximale Definitionsmenge D. Löse dann die Bruchgleichung:

- 25 x = -x

Lösung einblenden

Um die Definitionlücken (und damit die maximale Definitionsmenge) zu bestimmen, müssen wir einfach nach den Nullstellen der Nenner schauen: Hier erkennt man schnell als Nullstelle(n) der Nenner: 0

D=R\{0}

Wir multiplizieren den Nenner x weg!

- 25 x = -x |⋅( x )
- 25 x · x = -x · x
-25 = - x · x
-25 = - x 2
-25 = - x 2 | +25 + x 2
x 2 = 25 | 2
x1 = - 25 = -5
x2 = 25 = 5

(Alle Lösungen sind auch in der Definitionsmenge).

L={ -5 ; 5 }

Bruchgleichung (quadr.) 1

Beispiel:

Bestimme erst die maximale Definitionsmenge D. Löse dann die Bruchgleichung:

-1 - 2 x = x -4

Lösung einblenden

Um die Definitionlücken (und damit die maximale Definitionsmenge) zu bestimmen, müssen wir einfach nach den Nullstellen der Nenner schauen: Hier erkennt man schnell als Nullstelle(n) der Nenner: 0

D=R\{0}

Wir multiplizieren den Nenner x weg!

-1 - 2 x = x -4 |⋅( x )
-1 · x - 2 x · x = x · x -4 · x
-x -2 = x · x -4x
-x -2 = x 2 -4x | - x 2 +4x

- x 2 +3x -2 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -3 ± 3 2 -4 · ( -1 ) · ( -2 ) 2( -1 )

x1,2 = -3 ± 9 -8 -2

x1,2 = -3 ± 1 -2

x1 = -3 + 1 -2 = -3 +1 -2 = -2 -2 = 1

x2 = -3 - 1 -2 = -3 -1 -2 = -4 -2 = 2

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- x 2 +3x -2 = 0 |: -1

x 2 -3x +2 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 3 2 ) 2 - 2 = 9 4 - 2 = 9 4 - 8 4 = 1 4

x1,2 = 3 2 ± 1 4

x1 = 3 2 - 1 2 = 2 2 = 1

x2 = 3 2 + 1 2 = 4 2 = 2

(Alle Lösungen sind auch in der Definitionsmenge).

L={ 1 ; 2 }

Bruchgleichung (quadr.) 2

Beispiel:

Bestimme erst die maximale Definitionsmenge D. Löse dann die Bruchgleichung:

3x 2x +5 = -x -2

Lösung einblenden

Um die Definitionlücken (und damit die maximale Definitionsmenge) zu bestimmen, müssen wir einfach nach den Nullstellen der Nenner schauen: Hier erkennt man schnell als Nullstelle(n) der Nenner: - 5 2

D=R\{ - 5 2 }

Wir multiplizieren den Nenner 2x +5 weg!

3x 2x +5 = -x -2 |⋅( 2x +5 )
3x 2x +5 · ( 2x +5 ) = -x · ( 2x +5 ) -2 · ( 2x +5 )
3x = - x ( 2x +5 ) -4x -10
3x = -2 x 2 -9x -10
3x = -2 x 2 -9x -10 | +2 x 2 +9x +10
2 x 2 +12x +10 = 0 |:2

x 2 +6x +5 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -6 ± 6 2 -4 · 1 · 5 21

x1,2 = -6 ± 36 -20 2

x1,2 = -6 ± 16 2

x1 = -6 + 16 2 = -6 +4 2 = -2 2 = -1

x2 = -6 - 16 2 = -6 -4 2 = -10 2 = -5

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 3 2 - 5 = 9 - 5 = 4

x1,2 = -3 ± 4

x1 = -3 - 2 = -5

x2 = -3 + 2 = -1

(Alle Lösungen sind auch in der Definitionsmenge).

L={ -5 ; -1 }

doppelte Bruchgl. (quadr.)

Beispiel:

Löse die folgende Gleichung:

x 4x -16 +3x = - -2 2x -8

Lösung einblenden

D=R\{ 4 }

x 4( x -4 ) +3x = 2 2( x -4 ) |(Nenner faktorisiert)

Wir multiplizieren den Nenner 4( x -4 ) weg!

x 4( x -4 ) +3x = 2 2( x -4 ) |⋅( 4( x -4 ) )
x 4( x -4 ) · ( 4( x -4 ) ) + 3x · ( 4( x -4 ) ) = 2 2( x -4 ) · ( 4( x -4 ) )
x +12 x ( x -4 ) = 4
x + ( 12 x 2 -48x ) = 4
12 x 2 -47x = 4
12 x 2 -47x = 4 | -4

12 x 2 -47x -4 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +47 ± ( -47 ) 2 -4 · 12 · ( -4 ) 212

x1,2 = +47 ± 2209 +192 24

x1,2 = +47 ± 2401 24

x1 = 47 + 2401 24 = 47 +49 24 = 96 24 = 4

x2 = 47 - 2401 24 = 47 -49 24 = -2 24 = - 1 12

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "12 " teilen:

12 x 2 -47x -4 = 0 |: 12

x 2 - 47 12 x - 1 3 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 47 24 ) 2 - ( - 1 3 ) = 2209 576 + 1 3 = 2209 576 + 192 576 = 2401 576

x1,2 = 47 24 ± 2401 576

x1 = 47 24 - 49 24 = - 2 24 = -0.083333333333333

x2 = 47 24 + 49 24 = 96 24 = 4

Lösung x= 4 ist nicht in der Definitionsmenge!

L={ - 1 12 }

Bruchgl. mit x-Potenzen

Beispiel:

Löse die folgende Gleichung:

1 x = - 5 x 2 - 6 x 3

Lösung einblenden

D=R\{0}

Wir multiplizieren den Nenner x 3 weg!

1 x = - 5 x 2 - 6 x 3 |⋅( x 3 )
1 x · x 3 = - 5 x 2 · x 3 - 6 x 3 · x 3
x 2 = -5x -6
x 2 = -5x -6 | +5x +6

x 2 +5x +6 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -5 ± 5 2 -4 · 1 · 6 21

x1,2 = -5 ± 25 -24 2

x1,2 = -5 ± 1 2

x1 = -5 + 1 2 = -5 +1 2 = -4 2 = -2

x2 = -5 - 1 2 = -5 -1 2 = -6 2 = -3

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 5 2 ) 2 - 6 = 25 4 - 6 = 25 4 - 24 4 = 1 4

x1,2 = - 5 2 ± 1 4

x1 = - 5 2 - 1 2 = - 6 2 = -3

x2 = - 5 2 + 1 2 = - 4 2 = -2

(Alle Lösungen sind auch in der Definitionsmenge).

L={ -3 ; -2 }

Bruchgleichung mit Parameter

Beispiel:

Für x ≠ 0 und a ∈ Z\{0} ist die folgende Gleichung gegeben:

-8 + a x = -x

Bestimme a so, dass die Gleichung zwei (verschiedene) ganzzahlige Lösungen besitzt.

Lösung einblenden

D=R\{0}

-8 + a x = -x

Wir multiplizieren den Nenner x weg:

-8 + a x = -x |⋅x
-8 · x + a x · x = -x · x
-8x + a = - x 2
-8x + a + x 2 = 0
x 2 -8x + a = 0

Um jetzt ein a zu finden, für das die quadratische Gleichung zwei ganzzahlige Lösungen hat, bezeichnen wir die beiden Lösungen einfach mal mit p und q und schreiben einen faktorisierten Term mit diesen Lösungen auf:

(x-p)⋅(x-q)

Wenn wir jetzt den faktorisierten Term ausmultiplizieren, erkennen wir, dass auch hier die 1 der Koeffizient vor dem x² ist.

= x² - px - qx + pq
= x² - (p+q)x + pq

Es muss somit gelten:

x 2 -8x + a = x² - (p+q)x + pq

Wir müssen jetzt also nur noch zwei ganze Zahlen finden, deren Summe das Negative von -8 ist, also z.B.:

Mit p = 2 und q = 6 würde es funktionieren, denn -( 2 +6 ) = -8

Genauso muss dann auch a = p⋅q gelten, also a = 2 · 6 = 12

Zur Probe können wir ja noch mit a = 12 die quadratische Gleichung lösen, um zu überprüfen, ob die Lösungen wirklich ganzzahlig sind:

x 2 -8x +12 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +8 ± ( -8 ) 2 -4 · 1 · 12 21

x1,2 = +8 ± 64 -48 2

x1,2 = +8 ± 16 2

x1 = 8 + 16 2 = 8 +4 2 = 12 2 = 6

x2 = 8 - 16 2 = 8 -4 2 = 4 2 = 2

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -4 ) 2 - 12 = 16 - 12 = 4

x1,2 = 4 ± 4

x1 = 4 - 2 = 2

x2 = 4 + 2 = 6

L={ 2 ; 6 }