Aufgabenbeispiele von Logarithmus

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Exponentialgleichungen (einfach)

Beispiel:

Löse die folgende Gleichung:

4 x = 64

Lösung einblenden
4 x = 64 |lg(⋅)
lg( 4 x ) = lg( 64 )
x · lg( 4 ) = lg( 64 ) |: lg( 4 )
x = lg( 64 ) lg( 4 )
x = 3

L={ 3 }

Im Idealfall erkennt man bereits:

4 x = 64

4 x = 4 3

und kann so schneller und ohne WTR auf die Lösung x=3 kommen.

Exponentialgleichungen

Beispiel:

Löse die folgende Gleichung:

1 2 4 x = -2

Lösung einblenden
1 2 4 x = -2 |⋅2
4 x = -4

Diese Gleichung hat keine Lösung!

L={}

4 x muss immer >0 sein und kann daher nicht = -4 sein.

log berechnen (einfach)

Beispiel:

Berechne den Logarithmus log 4 (4) .

Lösung einblenden

Wir suchen den Logarithmus von 4 zur Basis 4, also die Hochzahl mit der man 4 potenzieren muss, um auf 4 zu kommen.

Also was muss in das Kästchen, damit 4 = 4 gilt.

Aus der Erinnerung an die Potenzrechnung oder durch systematisches Probieren kommt man auf die Lösung:

log 4 (4) = 1, eben weil 41 = 4 gilt .

log berechnen

Beispiel:

Berechne den Logarithmus log 3 ( 1 81 ) .

Lösung einblenden

Wir suchen den Logarithmus von 1 81 zur Basis 3, also die Hochzahl mit der man 3 potenzieren muss, um auf 1 81 zu kommen.

Also was muss in das Kästchen, damit 3 = 1 81 gilt.

An dem Bruch mit der 1 im Zähler kann man schnell erkennen, dass die Hochzahl negativ sein muss. Um auf den Betrag des gesuchten Exponenten zu kommen, können wir auch zuerst mal nur den Nenner als 3-Potenz zu schreiben versuchen, also 3 = 1 81

Aus der Erinnerung an die Potenzrechnung oder durch systematisches Probieren kommt man auf die Lösung:

log 3 ( 1 81 ) = -4, eben weil 3-4 = 1 81 gilt .