Aufgabenbeispiele von Logarithmus

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Exponentialgleichungen (einfach)

Beispiel:

Löse die folgende Gleichung:

2 x = 4

Lösung einblenden
2 x = 4 |lg(⋅)
lg( 2 x ) = lg( 4 )
x · lg( 2 ) = lg( 4 ) |: lg( 2 )
x = lg( 4 ) lg( 2 )
x = 2

L={ 2 }

Im Idealfall erkennt man bereits:

2 x = 4

2 x = 2 2

und kann so schneller und ohne WTR auf die Lösung x=2 kommen.

Exponentialgleichungen

Beispiel:

Löse die folgende Gleichung:

2 3 x +86 = 248

Lösung einblenden
2 3 x +86 = 248 | -86
2 3 x = 162 |:2
3 x = 81 |lg(⋅)
lg( 3 x ) = lg( 81 )
x · lg( 3 ) = lg( 81 ) |: lg( 3 )
x = lg( 81 ) lg( 3 )
x = 4

L={ 4 }

Im Idealfall erkennt man bereits:

3 x = 81

3 x = 3 4

und kann so schneller und ohne WTR auf die Lösung x=4 kommen.

log berechnen (einfach)

Beispiel:

Berechne den Logarithmus log 2 (32) .

Lösung einblenden

Wir suchen den Logarithmus von 32 zur Basis 2, also die Hochzahl mit der man 2 potenzieren muss, um auf 32 zu kommen.

Also was muss in das Kästchen, damit 2 = 32 gilt.

Aus der Erinnerung an die Potenzrechnung oder durch systematisches Probieren kommt man auf die Lösung:

log 2 (32) = 5, eben weil 25 = 32 gilt .

log berechnen

Beispiel:

Berechne den Logarithmus log 10 ( 10 3 ) .

Lösung einblenden

Wir suchen den Logarithmus von 10 3 zur Basis 10, also die Hochzahl mit der man 10 potenzieren muss, um auf 10 3 zu kommen.

Also was muss in das Kästchen, damit 10 = 10 3 gilt.

Wenn wir jetzt die 10 3 als 10 1 3 umschreiben, steht die Lösung praktisch schon da: 10 = 10 1 3

log 10 ( 10 3 ) = 1 3 , eben weil 10 1 3 = 10 3 gilt .