Aufgabenbeispiele von Logarithmus

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Exponentialgleichungen (einfach)

Beispiel:

Löse die folgende Gleichung:

4 x = 4

Lösung einblenden
4 x = 4 |lg(⋅)
lg( 4 x ) = lg( 4 )
x · lg( 4 ) = lg( 4 ) |: lg( 4 )
x = lg( 4 ) lg( 4 )
x = 1

L={ 1 }

Man erkennt bereits bei 4 x = 4 die Lösung x = 1.

Exponentialgleichungen

Beispiel:

Löse die folgende Gleichung:

6 -3x +1 = 1 6

Lösung einblenden

Wir schreiben einfach um:

6 -3x +1 = 1 6

6 -3x +1 = 6 -1

Jetzt stehen links und rechts zwei Potenzen mit der gleichen Basis 6.

Um die Gleichung zu lösen, können wir also einfach die beiden Exponenten (links: -3x +1 und rechts: -1) gleichsetzen:

-3x +1 = -1 | -1
-3x = -2 |:(-3 )
x = 2 3

L={ 2 3 }

log berechnen (einfach)

Beispiel:

Berechne den Logarithmus log 3 (81) .

Lösung einblenden

Wir suchen den Logarithmus von 81 zur Basis 3, also die Hochzahl mit der man 3 potenzieren muss, um auf 81 zu kommen.

Also was muss in das Kästchen, damit 3 = 81 gilt.

Aus der Erinnerung an die Potenzrechnung oder durch systematisches Probieren kommt man auf die Lösung:

log 3 (81) = 4, eben weil 34 = 81 gilt .

log berechnen

Beispiel:

Berechne den Logarithmus log 3 ( 3 4 ) .

Lösung einblenden

Wir suchen den Logarithmus von 3 4 zur Basis 3, also die Hochzahl mit der man 3 potenzieren muss, um auf 3 4 zu kommen.

Also was muss in das Kästchen, damit 3 = 3 4 gilt.

Wenn wir jetzt die 3 4 als 3 1 4 umschreiben, steht die Lösung praktisch schon da: 3 = 3 1 4

log 3 ( 3 4 ) = 1 4 , eben weil 3 1 4 = 3 4 gilt .