Aufgabenbeispiele von Logarithmus

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Exponentialgleichungen (einfach)

Beispiel:

Löse die folgende Gleichung:

2 x = 1

Lösung einblenden
2 x = 1 |lg(⋅)
lg( 2 x ) = 0
x · lg( 2 ) = 0 |: lg( 2 )
x = 0 lg( 2 )
x = 0

L={0}

Im Idealfall erkennt man bereits:

2 x = 1

2 x = 20

und kann so schneller und ohne WTR auf die Lösung x=0 kommen.

Exponentialgleichungen

Beispiel:

Löse die folgende Gleichung:

2 -2x +2 = 1 2

Lösung einblenden

Wir schreiben einfach um:

2 -2x +2 = 1 2

2 -2x +2 = 2 -1

Jetzt stehen links und rechts zwei Potenzen mit der gleichen Basis 2.

Um die Gleichung zu lösen, können wir also einfach die beiden Exponenten (links: -2x +2 und rechts: -1) gleichsetzen:

-2x +2 = -1 | -2
-2x = -3 |:(-2 )
x = 3 2 = 1.5

L={ 3 2 }

log berechnen (einfach)

Beispiel:

Berechne den Logarithmus log 2 (64) .

Lösung einblenden

Wir suchen den Logarithmus von 64 zur Basis 2, also die Hochzahl mit der man 2 potenzieren muss, um auf 64 zu kommen.

Also was muss in das Kästchen, damit 2 = 64 gilt.

Aus der Erinnerung an die Potenzrechnung oder durch systematisches Probieren kommt man auf die Lösung:

log 2 (64) = 6, eben weil 26 = 64 gilt .

log berechnen

Beispiel:

Berechne den Logarithmus log 5 (1) .

Lösung einblenden

Wir suchen den Logarithmus von 1 zur Basis 5, also die Hochzahl mit der man 5 potenzieren muss, um auf 1 zu kommen.

Also was muss in das Kästchen, damit 5 = 1 gilt.

An dem Bruch mit der 1 im Zähler kann man schnell erkennen, dass die Hochzahl negativ sein muss. Um auf den Betrag des gesuchten Exponenten zu kommen, können wir auch zuerst mal nur den Nenner als 5-Potenz zu schreiben versuchen, also 5 = 1

Aus der Erinnerung an die Potenzrechnung oder durch systematisches Probieren kommt man auf die Lösung:

log 5 (1) = 0, eben weil 50 = 1 gilt .