Aufgabenbeispiele von Rechenregeln

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Addieren/Subtrahieren und Multiplizieren

Beispiel:

Berechne: 7,2 +0,8 ⋅ 6

Lösung einblenden

7,2 +0,8 ⋅ 6 = 7,2 +4,8 = 12

Punkt-vor-Strich

Beispiel:

Berechne: 2 + 18 : 6

Lösung einblenden

2 + 18 : 6

= 2 +3

= 5

Grundrechenarten verbal

Beispiel:

Dividiere die Zahl 55 durch die Differenz von 2 und -9.

Lösung einblenden

Zuerst müssen wir den Text in einen mathematischen Term übersetzen:

55 : (2 - ( - 9 ))

= 55 : (2 + 9)

= 55 : 11

= 5

Rechenregeln (Punkt vor Strich)

Beispiel:

Berechne: 10 · ( 49 - ( 48 +59 ) )

Lösung einblenden

10 · ( 49 - ( 48 +59 ) )

= 10 · ( 49 -48 -59 )

= 10 · ( -58 )

= -580

Potenzen mit Vorzeichen

Beispiel:

Berechne: -2 2 3

Lösung einblenden

Hier ist es ganz wichtig, dass man die Regel 'Hoch-vor-Punkt-vor-Strich' anwendet und unterscheidet, ob das Minus in Klammer ist (und damit mit potenziert werden muss) oder nicht.

-2 2 3

= -28

= -16

Rechenregeln (mit Potenzen)

Beispiel:

Berechne: - ( -5 ) 2 +2 ( -1 ) 3

Lösung einblenden

- ( -5 ) 2 +2 ( -1 ) 3

= -25 +2( -1 )

= -25 -2

= -27

Minusklammer - Rechenvorteile

Beispiel:

Löse zuerst die Klammer auf und berechne dann möglichst geschickt:
( 19 +21 ) + 81

Lösung einblenden

( 19 +21 ) + 81

Wir lösen zuerst die Klammer auf.
Weil ja ein "+" vor der Klammer steht, können wir sie einfach weglassen.

19 +21 +81

Jetzt suchen wir zwei Summanden, die gut zusammen passen und berechnen zuerst die Summe der beiden passenden Summanden:

= 40 +81

= 121

Ausmultiplizieren

Beispiel:

Multipliziere aus und berechne: 7 · ( -20 -8 )

Lösung einblenden

7 · ( -20 -8 )

Jetzt müssen wir die Klammer ausmultiplizieren:

= 7 · ( -20 ) + 7 · ( -8 )

= -140 -56

= -196

Ausklammern

Beispiel:

Klammere aus und berechne: -7 · 4 -7 · 11 -7 · ( -5 )

Lösung einblenden

-7 · 4 -7 · 11 -7 · ( -5 )

Jetzt klammern wir am besten den Faktor -7 aus:

= -7 · ( 4 +11 -5 )

= -7 · 10

= -70

Gleichungen

Beispiel:

Was muss in das Kästchen, damit die Gleichung stimmt?

3 · ( +9 ) +5 = 11

Lösung einblenden
3 · ( +9 ) +5 = 11 |-5
Wenn man zu 3 · ( +9 ) noch 5 dazuzählt, so erhält man 11. Also muss doch 3 · ( +9 ) um 5 kleiner als 11 sein, also 6
3 · ( +9 ) = 6 |:3
Wenn das 3-fache der Klammer ( +9 ) gerade 6 ergibt, dann muss doch die Klammer ( +9 ) selbst 6 : 3 = 2 sein.
+9 = 2 |-9
Wenn man zu noch 9 dazuzählt, so erhält man 2. Also muss doch um 9 kleiner als 2 sein, also -7
= -7 

Der gesuchte Wert für das Kästchens ⬜ ist somit: -7.

Dezimalzahl und Bruch

Beispiel:

Berechne möglichst geschickt: 5 3 + 0.9

(Brüche müssen vollständig gekürzt eingegeben werden.)

Lösung einblenden

Da der Nenner des Bruchs 3 ist, macht eine Umwandlung des Bruchs in eine Dezimalzahl wenig Sinn. Deswegen muss die Dezimalzahl in einen Bruch umgewandelt werden:

0.9 = 9 10
Jetzt kann man die Aufgabe mit Bruchrechnung lösen:
5 3 + 9 10
= 50 30 + 27 30
= 77 30 ≈ 2.567