Aufgabenbeispiele von Antiproportionale Zuordnung
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Zweisatz (antiproportional)
Beispiel:
Um den noch fehlenden Betrag für eine Klassenfahrt zu bekommen, veranstaltet eine Schulkasse ein Lotterie. Wenn sie 1€ für ein Los verlangen, müssten sie 300 Lose verkaufen um genügend Geld zusammen zu bekommen.
Wie viele Lose müssten sie bei einem Lospreis von 3 € verkaufen?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Um von 1 € Lospreis in der ersten Zeile auf 3 € Lospreis in der zweiten Zeile zu kommen, müssen wir mit 3 multiplizieren. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 300 Lose durch 3 teilen, um auf den Wert zu kommen, der den 3 € Lospreis entspricht:
|
⋅ 3
|
![]() |
|
![]() |
: 3
|
|
⋅ 3
|
![]() |
|
![]() |
: 3
|
Damit haben wir nun den gesuchten Wert, der den 3 € Lospreis entspricht: 100 Lose
Dreisatz (antiproportional)
Beispiel:
Bei einer großen Baustelle muss das Erdreich der Baugrube abtransportiert werden. 8 Lastwagen müssten dafür 5 mal fahren.
Wie oft müssten 10 LKWs fahren?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Wir suchen einen möglichst großen Zwischenwert für die Lastwagen in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 8 Lastwagen teilen müssen.) Diese Zahl sollte eine Teiler von 8 und von 10 sein, also der ggT(8,10) = 2.
Wir suchen deswegen erst den entsprechenden Wert für 2 Lastwagen:
|
Um von 8 Lastwagen in der ersten Zeile auf 2 Lastwagen in der zweiten Zeile zu kommen, müssen wir durch 4 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 5 Fuhren nicht durch 4 teilen, sondern mit 4 multiplizieren um auf den Wert zu kommen, der den 2 Lastwagen links entspricht:
|
: 4
|
![]() |
|
![]() |
⋅ 4
|
|
: 4
|
![]() |
|
![]() |
⋅ 4
|
Jetzt müssen wir ja wieder die 2 Lastwagen in der mittleren Zeile mit 5 multiplizieren, um auf die 10 Lastwagen in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 4
⋅ 5
|
![]() ![]() |
|
![]() ![]() |
⋅ 4
: 5
|
Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 20 Fuhren in der mittleren Zeile durch 5 dividieren:
|
: 4
⋅ 5
|
![]() ![]() |
|
![]() ![]() |
⋅ 4
: 5
|
Damit haben wir nun den gesuchten Wert, der den 10 Lastwagen entspricht: 4 Fuhren
Tabelle (antiproportional)
Beispiel:
Die Tabelle zeigt Werte von zwei Größen mit einem antiproportionalen Zusammenhang. Übertrage die Tabelle in dein Heft und berechne mit dem Dreisatz die fehlende Größen.
| 5 Gäste | 8 Spezi-Flaschen |
| ? | ? |
| 4 Gäste | ? |
Wir suchen einen möglichst großen Zwischenwert für die Gäste in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 5 Gäste teilen müssen.) Diese Zahl sollte eine Teiler von 5 und von 4 sein, also der ggT(5,4) = 1.
Wir suchen deswegen erst den entsprechenden Wert für 1 Gäste:
|
Um von 5 Gäste in der ersten Zeile auf 1 Gäste in der zweiten Zeile zu kommen, müssen wir durch 5 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 8 Spezi-Flaschen nicht durch 5 teilen, sondern mit 5 multiplizieren um auf den Wert zu kommen, der den 1 Gäste links entspricht:
|
: 5
|
![]() |
|
![]() |
⋅ 5
|
|
: 5
|
![]() |
|
![]() |
⋅ 5
|
Jetzt müssen wir ja wieder die 1 Gäste in der mittleren Zeile mit 4 multiplizieren, um auf die 4 Gäste in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 5
⋅ 4
|
![]() ![]() |
|
![]() ![]() |
⋅ 5
: 4
|
Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 40 Spezi-Flaschen in der mittleren Zeile durch 4 dividieren:
|
: 5
⋅ 4
|
![]() ![]() |
|
![]() ![]() |
⋅ 5
: 4
|
Damit haben wir nun den gesuchten Wert, der den 4 Gäste entspricht: 10 Spezi-Flaschen
Antiproportionalität überprüfen
Beispiel:
Prüfe, ob es sich um einen antiproportionalen Zusammenhang handelt; falls nicht, korrigiere die Werte so, dass der Zusammenhang antiproportional wird.
Wir überprüfen zuerst, ob die 250 Lose den 2 € Lospreis entsprechen.
|
: 5
⋅ 2
|
![]() ![]() |
|
![]() ![]() |
⋅ 5
: 2
|
Der urpsrünglich vorgegebene Wert 250 Lose(für 2 € Lospreis) war also korrekt.
Jetzt überprüfen wir, ob die 23 Lose den 20 € Lospreis entsprechen.
|
: 1
⋅ 4
|
![]() ![]() |
|
![]() ![]() |
⋅ 1
: 4
|
Der urpsrünglich vorgegebene Wert 23 Lose (für 20 € Lospreis) war also falsch, richtig wäre 25 Lose gewesen.
Dreisatz (antiprop.) beide Richtungen
Beispiel:
Bei einer großen Baustelle muss das Erdreich der Baugrube abtransportiert werden. 12 Lastwagen müssten dafür 3 mal fahren.
Wie oft müssten 18 LKWs fahren?
Wie viele LKWs bräuchte man, damit es mit 9 Fuhren für jeden reicht?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Wir suchen einen möglichst großen Zwischenwert für die Lastwagen in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 12 Lastwagen teilen müssen.) Diese Zahl sollte eine Teiler von 12 und von 18 sein, also der ggT(12,18) = 6.
Wir suchen deswegen erst den entsprechenden Wert für 6 Lastwagen:
|
Um von 12 Lastwagen in der ersten Zeile auf 6 Lastwagen in der zweiten Zeile zu kommen, müssen wir durch 2 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 3 Fuhren nicht durch 2 teilen, sondern mit 2 multiplizieren um auf den Wert zu kommen, der den 6 Lastwagen links entspricht:
|
: 2
|
![]() |
|
![]() |
⋅ 2
|
Jetzt müssen wir ja wieder die 6 Lastwagen in der mittleren Zeile mit 3 multiplizieren, um auf die 18 Lastwagen in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 2
⋅ 3
|
![]() ![]() |
|
![]() ![]() |
⋅ 2
: 3
|
Damit haben wir nun den gesuchten Wert, der den 18 Lastwagen entspricht: 2 Fuhren
Um von 3 Fuhren in der ersten Zeile auf 9 Fuhren in der zweiten Zeile zu kommen, müssen wir mit 3 multiplizieren. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 12 Lastwagen durch 3 teilen, um auf den Wert zu kommen, der den 9 Fuhren entspricht:
|
⋅ 3
|
![]() |
|
![]() |
: 3
|
|
⋅ 3
|
![]() |
|
![]() |
: 3
|
Damit haben wir nun den gesuchten Wert, der den 9 Fuhren entspricht: 4 Lastwagen
Wert bei Anti-Proport. (Anwendungen)
Beispiel:
Eine Drohne muss eine bestimmte Strecke zurücklegen. Wenn sie dabei mit einer Geschwindigkeit von 30 km/h fliegt, braucht sie dafür 8 Minuten.Wie lange braucht sie bei einer Geschwindigkeit von 25 km/h?
Da die Zuordnung der beiden Größen antiproportional ist, schreiben wir die Werte am besten mal in eine Tabelle:
| Geschwindigkeit | Flugzeit |
|---|---|
| 30 km/h | 8 min |
| ( : 30 ) | ( ⋅ 30 ) |
| 1 km/h | min |
| ( ⋅ 25 ) | ( : 25 ) |
| 25 km/h | min |
Die gesuchte Flugzeit ist also = = 9 ≈ 9.6 min


