Aufgabenbeispiele von Antiproportionale Zuordnung
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Zweisatz (antiproportional)
Beispiel:
Karls hat für seine Geburtstagsparty 24 Flaschen Spezi bekommen.
Wie viele Flaschen würde jeder bekommen, wenn insgesamt 4 Personen auf der Party wären?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Um von 1 Gäste in der ersten Zeile auf 4 Gäste in der zweiten Zeile zu kommen, müssen wir mit 4 multiplizieren. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 24 Spezi-Flaschen durch 4 teilen, um auf den Wert zu kommen, der den 4 Gäste entspricht:
⋅ 4
|
![]() |
|
![]() |
: 4
|
⋅ 4
|
![]() |
|
![]() |
: 4
|
Damit haben wir nun den gesuchten Wert, der den 4 Gäste entspricht: 6 Spezi-Flaschen
Dreisatz (antiproportional)
Beispiel:
Ein Hausmeister hat ein extra Budget für die Schulreinigung in den Ferien, das er unter helfenden Schüler:innen aufteilen kann (er selbst bekommt nichts von dem Geld). Wenn er 4 Helfer:innen einstellt, reicht es für jeden 120 € Lohn.
Welchen Lohn könnte er jeder Helfer:in bezahlen, wenn er 3 Helfer:innen hätte?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Wir suchen einen möglichst großen Zwischenwert für die Helfer:innen in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 4 Helfer:innen teilen müssen.) Diese Zahl sollte eine Teiler von 4 und von 3 sein, also der ggT(4,3) = 1.
Wir suchen deswegen erst den entsprechenden Wert für 1 Helfer:innen:
|
Um von 4 Helfer:innen in der ersten Zeile auf 1 Helfer:innen in der zweiten Zeile zu kommen, müssen wir durch 4 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 120 € Lohn nicht durch 4 teilen, sondern mit 4 multiplizieren um auf den Wert zu kommen, der den 1 Helfer:innen links entspricht:
: 4
|
![]() |
|
![]() |
⋅ 4
|
: 4
|
![]() |
|
![]() |
⋅ 4
|
Jetzt müssen wir ja wieder die 1 Helfer:innen in der mittleren Zeile mit 3 multiplizieren, um auf die 3 Helfer:innen in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
: 4
⋅ 3
|
![]() ![]() |
|
![]() ![]() |
⋅ 4
: 3
|
Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 480 € Lohn in der mittleren Zeile durch 3 dividieren:
: 4
⋅ 3
|
![]() ![]() |
|
![]() ![]() |
⋅ 4
: 3
|
Damit haben wir nun den gesuchten Wert, der den 3 Helfer:innen entspricht: 160 € Lohn
Tabelle (antiproportional)
Beispiel:
Die Tabelle zeigt Werte von zwei Größen mit einem antiproportionalen Zusammenhang. Übertrage die Tabelle in dein Heft und berechne mit dem Dreisatz die fehlende Größen.
5 Gäste | 8 Spezi-Flaschen |
? | ? |
4 Gäste | ? |
Wir suchen einen möglichst großen Zwischenwert für die Gäste in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 5 Gäste teilen müssen.) Diese Zahl sollte eine Teiler von 5 und von 4 sein, also der ggT(5,4) = 1.
Wir suchen deswegen erst den entsprechenden Wert für 1 Gäste:
|
Um von 5 Gäste in der ersten Zeile auf 1 Gäste in der zweiten Zeile zu kommen, müssen wir durch 5 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 8 Spezi-Flaschen nicht durch 5 teilen, sondern mit 5 multiplizieren um auf den Wert zu kommen, der den 1 Gäste links entspricht:
: 5
|
![]() |
|
![]() |
⋅ 5
|
: 5
|
![]() |
|
![]() |
⋅ 5
|
Jetzt müssen wir ja wieder die 1 Gäste in der mittleren Zeile mit 4 multiplizieren, um auf die 4 Gäste in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
: 5
⋅ 4
|
![]() ![]() |
|
![]() ![]() |
⋅ 5
: 4
|
Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 40 Spezi-Flaschen in der mittleren Zeile durch 4 dividieren:
: 5
⋅ 4
|
![]() ![]() |
|
![]() ![]() |
⋅ 5
: 4
|
Damit haben wir nun den gesuchten Wert, der den 4 Gäste entspricht: 10 Spezi-Flaschen
Antiproportionalität überprüfen
Beispiel:
Prüfe, ob es sich um einen antiproportionalen Zusammenhang handelt; falls nicht, korrigiere die Werte.
Wir überprüfen zuerst, ob die 1 h den 12 Personen entsprechen.
: 3
⋅ 4
|
![]() ![]() |
|
![]() ![]() |
⋅ 3
: 4
|
Der urpsrünglich vorgegebene Wert 1 h (für 12 Personen) war also falsch, richtig wäre 3 h gewesen.
Jetzt überprüfen wir, ob die 8 h den 4 Personen entsprechen.
: 9
⋅ 4
|
![]() ![]() |
|
![]() ![]() |
⋅ 9
: 4
|
Der urpsrünglich vorgegebene Wert 8 h (für 4 Personen) war also falsch, richtig wäre 9 h gewesen.
Dreisatz (antiprop.) beide Richtungen
Beispiel:
Ein Hausmeister hat ein extra Budget für die Schulreinigung in den Ferien, das er unter helfenden Schüler:innen aufteilen kann (er selbst bekommt nichts von dem Geld). Wenn er 15 Helfer:innen einstellt, reicht es für jeden 40 € Lohn.
Welchen Lohn könnte er jeder Helfer:in bezahlen, wenn er 20 Helfer:innen hätte?
Wie viele Helfer:innen könnte man mit einem Lohn von 15 € bezahlen?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Wir suchen einen möglichst großen Zwischenwert für die Helfer:innen in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 15 Helfer:innen teilen müssen.) Diese Zahl sollte eine Teiler von 15 und von 20 sein, also der ggT(15,20) = 5.
Wir suchen deswegen erst den entsprechenden Wert für 5 Helfer:innen:
|
Um von 15 Helfer:innen in der ersten Zeile auf 5 Helfer:innen in der zweiten Zeile zu kommen, müssen wir durch 3 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 40 € Lohn nicht durch 3 teilen, sondern mit 3 multiplizieren um auf den Wert zu kommen, der den 5 Helfer:innen links entspricht:
: 3
|
![]() |
|
![]() |
⋅ 3
|
Jetzt müssen wir ja wieder die 5 Helfer:innen in der mittleren Zeile mit 4 multiplizieren, um auf die 20 Helfer:innen in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
: 3
⋅ 4
|
![]() ![]() |
|
![]() ![]() |
⋅ 3
: 4
|
Damit haben wir nun den gesuchten Wert, der den 20 Helfer:innen entspricht: 30 € Lohn
Für die andere Frage (Wie viele Helfer:innen könnte man mit einem Lohn von 15 € bezahlen?) vertauschen wir die linke mit der rechten Spalte in der Tabelle, weil wir jetzt ja zwei "€ Lohn"-Werte haben und nach einem "Helfer:innen"-Wert gesucht wird:
|
Wir suchen einen möglichst großen Zwischenwert für die € Lohn in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 40 € Lohn teilen müssen.) Diese Zahl sollte eine Teiler von 40 und von 15 sein, also der ggT(40,15) = 5.
Wir suchen deswegen erst den entsprechenden Wert für 5 € Lohn:
|
Um von 40 € Lohn in der ersten Zeile auf 5 € Lohn in der zweiten Zeile zu kommen, müssen wir durch 8 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 15 Helfer:innen nicht durch 8 teilen, sondern mit 8 multiplizieren um auf den Wert zu kommen, der den 5 € Lohn links entspricht:
: 8
|
![]() |
|
![]() |
⋅ 8
|
Jetzt müssen wir ja wieder die 5 € Lohn in der mittleren Zeile mit 3 multiplizieren, um auf die 15 € Lohn in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
: 8
⋅ 3
|
![]() ![]() |
|
![]() ![]() |
⋅ 8
: 3
|
Damit haben wir nun den gesuchten Wert, der den 15 € Lohn entspricht: 40 Helfer:innen
Wert bei Anti-Proport. (Anwendungen)
Beispiel:
Ein Raum wird mit 45 LED-Leuchten á 140 Lumen ausgeleuchtet. Aus ästhetischen Gründen sollen nur noch 20 Leuchten im Raum installiert sein, diese sollen aber die gleiche Helligkeit erzeugen. Wie viel Lumen brauchen dann diese neuen LED-Leuchten?
Da die Zuordnung der beiden Größen antiproportional ist, schreiben wir die Werte am besten mal in eine Tabelle:
Anzahl LED-Leuchten | Helligkeit |
---|---|
45 | 140 Lumen |
( : 45 ) | ( ⋅ 45 ) |
1 | 6300 Lumen |
( ⋅ 20 ) | ( : 20 ) |
20 | 630020 Lumen |
Die gesuchte Helligkeit ist also 630020 = 315 Lumen