Aufgabenbeispiele von Brüche vergleichen und ordnen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Zwei Brüche vergleichen

Beispiel:

Entscheide in allen drei Zeilen welcher Bruch größer ist, bzw. ob die beiden Brüche gleich groß sind:

Lösung einblenden

Vergleich von 2 3 und 1 3

Man sieht sehr schnell. dass diese beiden Brüche die gleichen Nenner haben. Natürlich ist dann derjenige Bruch größer, der den größeren Zähler hat (Schließlich bleibt bei der größeren Menge mehr übrig, wenn man diese durch 3 teilt, als bei der kleineren, wenn man diese durch 3 teilt). Es gilt hier also 2 3 > 1 3

Vergleich von 6 17 und 1 3

Da hier die Zähler und Nenner der beiden Brüche verschieden sind, bringen wir am besten die beiden Brüche auf den gleichen Nenner um sie besser vergleichen zu können:

6 17 = 18 51

1 3 = 17 51

Also gilt: 6 17 = 18 51 > 17 51 = 1 3 .

Es gilt hier also 6 17 > 1 3

Vergleich von 3 5 und 2 3

Da hier die Zähler und Nenner der beiden Brüche verschieden sind, bringen wir am besten die beiden Brüche auf den gleichen Nenner um sie besser vergleichen zu können:

3 5 = 9 15

2 3 = 10 15

Also gilt: 3 5 = 9 15 < 10 15 = 2 3 .

Es gilt hier also 3 5 < 2 3

Drei Brüche sortieren

Beispiel:

Sortiere die drei Brüche 23 4 , 4 8 9 und 28 5 von klein nach groß.

Lösung einblenden

Als erstes formen wir die Brüche um, so dass wir alle in gemischter Schreibweise vergleichen können:

23 4 = 20 + 3 4 = 20 4 + 3 4 = 5 + 3 4 = 5 3 4

4 8 9

28 5 = 25 + 3 5 = 25 5 + 3 5 = 5 + 3 5 = 5 3 5

Jetzt sieht man sofort, dass 4 8 9 die kleinste Zahl sein muss.

Bleibt noch zu entscheiden, ob 5 3 5 oder 5 3 4 größer ist.
Da ja beide die 5 vorne haben, müssen wir dazu nur die Brüche 3 5 und 3 4 betrachten.

Und weil beide Brüche die 3 im Zähler haben, muss 3 5 die kleinere Zahl sein, weil ja die 3 durch mehr geteilt werden muss als bei 3 4 .

3 5
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind gleich groß)

3 4
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind gleich groß)

Somit ergibt sich folgende Reihenfolge:

4 8 9 < 5 3 5 < 5 3 4 , also

4 8 9 < 28 5 < 23 4

Mitte finden

Beispiel:

Welcher Bruch liegt in der Mitte von 13 17 und 15 17 ?

Lösung einblenden

Da die Nenner gleich sind, genügt es die Mitte zwischen den Zählern der beiden Brüche zu finden.

Somit ist also 14 17 genau in der Mitte zwischen 13 17 und 15 17 .

Mitte finden (schwerer)

Beispiel:

Welcher Bruch liegt in der Mitte von 1 3 und 1 ?

Lösung einblenden

Um die Mitte zwischen zwei Brüchen zu finden, müssen wir die beiden Brüche erst einmal auf den gleichen Nenner bringen.

Dazu erweitern wir hier einfach jeweils mit dem Nenner des anderen Bruchs:

1 3 = 1 3 und 1 = 3 3

Somit ist also 2 3 genau in der Mitte zwischen 1 3 = 1 3 und 3 3 = 1.