Aufgabenbeispiele von Potenzfunktionen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Nullstellen berechnen

Beispiel:

Bestimme die Schnittpunkte der Funktion f mit f(x)= x 2 -3x -4 mit der x-Achse.

Lösung einblenden

An den Schnittpunkten mit der x-Achse müssen die Funktionswerte null sein, also müssen wir den Funktionsterm =0 setzen:

x 2 -3x -4 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +3 ± ( -3 ) 2 -4 · 1 · ( -4 ) 21

x1,2 = +3 ± 9 +16 2

x1,2 = +3 ± 25 2

x1 = 3 + 25 2 = 3 +5 2 = 8 2 = 4

x2 = 3 - 25 2 = 3 -5 2 = -2 2 = -1

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 3 2 ) 2 - ( -4 ) = 9 4 + 4 = 9 4 + 16 4 = 25 4

x1,2 = 3 2 ± 25 4

x1 = 3 2 - 5 2 = - 2 2 = -1

x2 = 3 2 + 5 2 = 8 2 = 4

Da die y-Werte als Funktionswerte =0 sein müssen, ergeben sich als Schnittpunkte mit der x-Achse:

S1( -1 |0), S2( 4 |0)

x-Werte berechnen (f(x) gegeben)

Beispiel:

Gegeben ist die Funktion f mit f(x)= x 2 +2x -3 . Berechne alle Stellen für die gilt: f(x) = 5.

Lösung einblenden

Es gilt f(x) = 5, also x 2 +2x -3 = 5.

x 2 +2x -3 = 5 | -5

x 2 +2x -8 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -2 ± 2 2 -4 · 1 · ( -8 ) 21

x1,2 = -2 ± 4 +32 2

x1,2 = -2 ± 36 2

x1 = -2 + 36 2 = -2 +6 2 = 4 2 = 2

x2 = -2 - 36 2 = -2 -6 2 = -8 2 = -4

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 1 2 - ( -8 ) = 1+ 8 = 9

x1,2 = -1 ± 9

x1 = -1 - 3 = -4

x2 = -1 + 3 = 2

An den Stellen x1 = -4 und x2 = 2 gilt also f(x)= 5.

x-Werte berechnen (schwerer)

Beispiel:

Gegeben ist die Funktion f mit f(x)= - x 4 +79 . Berechne alle Stellen für die gilt: f(x) = -2.

Lösung einblenden

Es gilt f(x) = -2, also - x 4 +79 = -2.

- x 4 +79 = -2 | -79
- x 4 = -81 |: ( -1 )
x 4 = 81 | 4
x1 = - 81 4 = -3
x2 = 81 4 = 3

An den Stellen x1 = -3 und x2 = 3 gilt also f(x)= -2.

Schnittpunkte berechnen

Beispiel:

Berechne die Schnittpunkte der Graphen der Funktionen f und g mit f(x)= x 3 -12 x 2 +37x -3 und g(x)= 2x -3 .

Lösung einblenden

An den Schnittstellen müssen die Funktionswerte der beiden Graphen gleich sein, also müssen wir die beiden Funktionsterme gleichsetzen:

x 3 -12 x 2 +37x -3 = 2x -3 | +3
x 3 -12 x 2 +37x = 2x | -2x
x 3 -12 x 2 +37x -2x = 0
x 3 -12 x 2 +35x = 0
x ( x 2 -12x +35 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x 2 -12x +35 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x2,3 = +12 ± ( -12 ) 2 -4 · 1 · 35 21

x2,3 = +12 ± 144 -140 2

x2,3 = +12 ± 4 2

x2 = 12 + 4 2 = 12 +2 2 = 14 2 = 7

x3 = 12 - 4 2 = 12 -2 2 = 10 2 = 5

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -6 ) 2 - 35 = 36 - 35 = 1

x1,2 = 6 ± 1

x1 = 6 - 1 = 5

x2 = 6 + 1 = 7

Um noch die y-Werte der Schnittpunkte zu erhalten, muss man die Lösungen entweder in f oder in g einsetzen (weil es Schnittpunkte sind, müssen ja bei diesem x-Wert beide y-Werte (also Funktionswerte) gleich sein).

g(0) = 20 -3 = -3 S1(0| -3 )

g( 5 ) = 25 -3 = 7 S2( 5 | 7 )

g( 7 ) = 27 -3 = 11 S3( 7 | 11 )

Termbestimmung mit Punktproben

Beispiel:

Bestimme a und n so, dass die Punkte A(1|-1) und B(-3|27 ) auf dem Graphen der Funktion f mit f(x)= a · x n liegen.

Lösung einblenden

Wir setzen einfach die beiden Punkte A(1|-1) und B(-3|27 ) in den Funktionsterm f(x)= a · x n ein und erhalten so die beiden Gleichungen:

I: -1 = a · 1 n
II: 27 = a · (-3) n

Aus I ergibt sich ja sofort -1 = a. Dies können wir gleich in II einsetzen:

II: 27 = - (-3) n | ⋅ ( -1 )

-27 = (-3) n

Durch Ausprobieren mit ganzzahligen n erhält man so n=3

Der gesuchte Funktionsterm ist somit: f(x)= - x 3

Größenvergleich bei Potenzfunktionen

Beispiel:

Gegeben sind die Funktionen f mit f(x)= x 2 , g mit g(x)= x 3 , h mit h(x)= x 4 .
Sortiere die drei Funktionswerte f(-0.4), -g(0.4) und h(0.4), ohne sie wirklich auszurechnen.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Das Schaubild rechts zeigt jeweils die Graphen von f (in schwarz), g (in blau) und h (in rot).

Zuerst überlegen wir, welche der Funktionswerte positiv und welche negativ sind:

  • f(-0.4) = ( -0,4 ) 2 > 0
  • -g(0.4) = - 0,4 3 < 0
  • h(0.4) = 0,4 4 > 0
  • Da -g(0.4) der einzige negative Funktionswert ist, muss dieser also der kleinste sein.

    Und weil die anderen beiden Werte positiv sind, schauen wir nur auf die Beträge:

    Dabei gilt f(-0.4) > h(0.4). Das sieht man zum einen am Schaubild rechts (f(x)=x2 in schwarz, g(x)=x3 in blau und h(x)=x4 in rot), aber auch direkt an den Zahlen:
    0.44 =0.42 ⋅ 0.4 ⋅ 0.4.

    Die richtige Reihenfolge ist also:
    -g(0.4)= - 0,4 3 < h(0.4)= 0,4 4 < f(-0.4)= ( -0,4 ) 2 .

Funktionswerte berechnen

Beispiel:

Gegeben ist die Funktion f mit f(x)= 24 x 3 +3 . Berechne den Funktionswert f(-1).

Lösung einblenden

Wir setzen -1 einfach für x in f(x)= 24 x 3 +3 ein:

f(-1) = 24 ( -1 ) 3 +3

= 24( -1 ) +3

= -24 +3

= -21