Aufgabenbeispiele von Potenzfunktionen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Nullstellen berechnen

Beispiel:

Bestimme die Schnittpunkte der Funktion f mit f(x)= x 3 - x mit der x-Achse.

Lösung einblenden

An den Schnittpunkten mit der x-Achse müssen die Funktionswerte null sein, also müssen wir den Funktionsterm =0 setzen:

x 3 - x = 0
x ( x 2 -1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x 2 -1 = 0 | +1
x 2 = 1 | 2
x2 = - 1 = -1
x3 = 1 = 1

Da die y-Werte als Funktionswerte =0 sein müssen, ergeben sich als Schnittpunkte mit der x-Achse:

S1( -1 |0), S2(0|0), S3( 1 |0)

x-Werte berechnen (f(x) gegeben)

Beispiel:

Gegeben ist die Funktion f mit f(x)= x 4 - x 3 -1 . Berechne alle Stellen für die gilt: f(x) = -1.

Lösung einblenden

Es gilt f(x) = -1, also x 4 - x 3 -1 = -1.

x 4 - x 3 -1 = -1 | +1
x 4 - x 3 -1 +1 = 0
x 4 - x 3 = 0
x 3 ( x -1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x 3 = 0 | 3
x1 = 0

2. Fall:

x -1 = 0 | +1
x2 = 1

An den Stellen x1 = 0 und x2 = 1 gilt also f(x)= -1.

x-Werte berechnen (schwerer)

Beispiel:

Gegeben ist die Funktion f mit f(x)= - x 4 +82 . Berechne alle Stellen für die gilt: f(x) = 1.

Lösung einblenden

Es gilt f(x) = 1, also - x 4 +82 = 1.

- x 4 +82 = 1 | -82
- x 4 = -81 |: ( -1 )
x 4 = 81 | 4
x1 = - 81 4 = -3
x2 = 81 4 = 3

An den Stellen x1 = -3 und x2 = 3 gilt also f(x)= 1.

Schnittpunkte berechnen

Beispiel:

Berechne die Schnittpunkte der Graphen der Funktionen f und g mit f(x)= 2 x 3 -5x und g(x)= x 3 -4x .

Lösung einblenden

An den Schnittstellen müssen die Funktionswerte der beiden Graphen gleich sein, also müssen wir die beiden Funktionsterme gleichsetzen:

2 x 3 -5x = x 3 -4x | - ( x 3 -4x )
2 x 3 - x 3 -5x +4x = 0
x 3 - x = 0
x ( x 2 -1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x 2 -1 = 0 | +1
x 2 = 1 | 2
x2 = - 1 = -1
x3 = 1 = 1

Um noch die y-Werte der Schnittpunkte zu erhalten, muss man die Lösungen entweder in f oder in g einsetzen (weil es Schnittpunkte sind, müssen ja bei diesem x-Wert beide y-Werte (also Funktionswerte) gleich sein).

g( -1 ) = ( -1 ) 3 -4( -1 ) = 3 S1( -1 | 3 )

g(0) = 0 3 -40 = 0 S2(0|0)

g( 1 ) = 1 3 -41 = -3 S3( 1 | -3 )

Termbestimmung mit Punktproben

Beispiel:

Bestimme a und n so, dass die Punkte A(1|-1) und B(-2|-16 ) auf dem Graphen der Funktion f mit f(x)= a · x n liegen.

Lösung einblenden

Wir setzen einfach die beiden Punkte A(1|-1) und B(-2|-16 ) in den Funktionsterm f(x)= a · x n ein und erhalten so die beiden Gleichungen:

I: -1 = a · 1 n
II: -16 = a · (-2) n

Aus I ergibt sich ja sofort -1 = a. Dies können wir gleich in II einsetzen:

II: -16 = - (-2) n | ⋅ ( -1 )

16 = (-2) n

Durch Ausprobieren mit ganzzahligen n erhält man so n=4

Der gesuchte Funktionsterm ist somit: f(x)= - x 4

Größenvergleich bei Potenzfunktionen

Beispiel:

Gegeben sind die Funktionen f mit f(x)= x 2 , g mit g(x)= x 3 , h mit h(x)= x 4 .
Sortiere die drei Funktionswerte -f(1.5), -g(1.5) und -h(-1.5), ohne sie wirklich auszurechnen.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Das Schaubild rechts zeigt jeweils die Graphen von f (in schwarz), g (in blau) und h (in rot).

Zuerst überlegen wir, welche der Funktionswerte positiv und welche negativ sind:

  • -f(1.5) = - 1,5 2 < 0
  • -g(1.5) = - 1,5 3 < 0
  • -h(-1.5) = - ( -1,5 ) 4 < 0
  • Da alle Werte negativ sind, schauen wir zunächst nur auf die Beträge:

    Und weil 1.5 > 1 ist, werden die Betrags-Werte natürlich mit jeder Potenz immer größer. Das sieht man zum einen am Schaubild rechts (f(x)=x2 in schwarz, g(x)=x3 in blau und h(x)=x4 in rot), aber auch direkt an den Zahlen:
    1.53 =1.52 ⋅ 1.5 bzw. 1.54 =1.53 ⋅ 1.5,
    d.h. 1.53 > 1.52, also gilt - 1.53 < - 1.52 und 1.54 > 1.53, also gilt - 1.54 < - 1.53.

    Die richtige Reihenfolge ist also:
    -h(-1.5)= - ( -1,5 ) 4 < -g(1.5)= - 1,5 3 < -f(1.5)= - 1,5 2 .

Funktionswerte berechnen

Beispiel:

Gegeben ist die Funktion f mit f(x)= x 4 +4 x 3 -4 . Berechne den Funktionswert f(-2).

Lösung einblenden

Wir setzen -2 einfach für x in f(x)= x 4 +4 x 3 -4 ein:

f(-2) = ( -2 ) 4 +4 ( -2 ) 3 -4

= 16 +4( -8 ) -4

= 16 -32 -4

= -16 -4

= -20