Aufgabenbeispiele von Winkel
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Winkel im KoSy konstruieren (<180°)
Beispiel:
Zeichne die Punkte A(6|4) und B(2|4) in ein Koordinatensystem.
Zeichne den Winkel α = 53° so, dass A der Scheitel ist und B auf dem ersten Schenkel liegt.
Der zweite Schenkel schneidet die x-Achse im Punkt S. Lies die Koordinaten dieses Schnittpunkts S ab.
Wenn man die Punkte A und B in das Koordinatensystem eingezeichnet hat, muss man darauf achten, dass man den 2. Schenkel des Winkels im positiven Drehsinn (also gegen den Uhrzeigersinn) einzeichnet.
Dann erhält man den Schnittpunkt mit der x-Achse bei S(3|0).
Winkel im KoSy konstruieren
Beispiel:
Zeichne die Punkte A(9|4) und B(1|5) in ein Koordinatensystem.
Zeichne den Winkel α = 34° so, dass A der Scheitel ist und B auf dem ersten Schenkel liegt.
Der zweite Schenkel schneidet die x-Achse im Punkt S. Lies die Koordinaten dieses Schnittpunkts S ab.
Wenn man die Punkte A und B in das Koordinatensystem eingezeichnet hat, muss man darauf achten, dass man den 2. Schenkel des Winkels im positiven Drehsinn (also gegen den Uhrzeigersinn) einzeichnet.
Dann erhält man den Schnittpunkt mit der x-Achse bei S(1|0).
Winkel messen/schätzen
Beispiel:
Wähle die passende Winkelgröße für den eingezeichneten Winkel α.
Wenn man das Geodreieck richtig anlegt, erkennt man, dass der gegebene Winkel 89° sein muss.
Winkel zu 180° ergänzen
Beispiel:
Berechne den eingezeichneten Winkel α.
Der blaue Winkel mit 135° und α ergeben zusammen einen gestreckten Winkel, es gilt also:
135° + α = 180°
Also muss α doch 135° kleiner als 180° sein:
α = 180° - 135° = 45°
Winkel in Uhr
Beispiel:
Wenn es 10:00 Uhr ist, wie groß ist dann der Winkel α zwischen den beiden Zeigern?
Gesucht ist der kleinere Winkel.
Die Uhr setzt sich aus 12 gleich großen Sektoren für die 12 Stunden zusammen. Also muss der Winkel zwischen zwei Stunde-Strichchen immer genau 360°:12 = 30° sein.
Der Winkel zwischen 12 Uhr und 10 Uhr ist also 10 ⋅ 30° = 300°.
Der Winkel auf der linken Seite zwischen 10 Uhr und 10 Uhr ist mit 2 ⋅ 30° = 60° jedoch kleiner.
Somit ist der gesucht Winkel 60°.
Winkel von Kreisausschnitten
Beispiel:
(Alle Sektoren sind gleich groß)
Bestimme die Mittelpunktswinkel α der einzelnen Sektoren.
Wir können insgesamt 9 gleich große Sektoren erkennen.
Zusammen ergeben die 9 Sektoren einen vollen Kreis mit 360°, also gilt für den Mittelpunktswinkel eines Sektors:
α = = 40°
Innenwinkel Dreieck
Beispiel:
Zeichne das Dreieck ABC mit A(2|3), B(8|0) und C(9|7) in ein Koordinatensystem mit der Einheit 1 cm und miss die drei Innenwinkel.
Wenn man das Dreieck ABC ins Koordinatensystem einzeichnet, kann folgende Winkel abmessen:
α ≈ 56°
β ≈ 72°
γ ≈ 52°
Innenwinkel +Winkeleinteilung
Beispiel:
Zeichne das Dreieck ABC mit A(1|1), B(6|0) und C(1|4) in ein Koordinatensystem mit der Einheit 1 cm und miss die drei Innenwinkel.
Wenn man das Dreieck ABC ins Koordinatensystem einzeichnet, kann man folgende Winkel abmessen:
α ≈ 101°
β ≈ 27°
γ ≈ 51°
Weil der größte Winkel α = 101° > 90° ist, ist das Dreieck stumpfwinklig.