Aufgabenbeispiele von Prismen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Würfel V+O rückwärts
Beispiel:
Ein Würfel hat das Volumen V = 64 mm³. Berechne die Kantenlänge.
Das Volumen des Quaders berechnet man durch Multiplizieren der Seitenlängen: V = a ⋅ b ⋅ c
Bei einem Würfel sind ja alle Kantenlängen gleich, also gilt hier
V = a ⋅ a ⋅ a = a3
Es gilt somit:
64 mm³ = ⬜3
Mit gezieltem Probieren findet man, dass dies mit a = 4 mm funktioniert.
Volumen eines Prisma
Beispiel:
Berechne das Volumen V des dargestellten, senkrechten Prismas.
Das Volumen eines senkrechten Prismas berechnet man mit V = G ⋅ h,
also die Fläche der Grundseite multipliziert mit der Höhe des Prismas, wobei die Höhe hier die 5 cm nach schräg hinten ist.
Die Fläche der Grundseite berechnet man mit:
A = ⋅ Grundseite ⋅ Höhe (wofür beim rechtwinkligen Dreieck die Katheten benutzt werden können)
also hier:
A = ⋅ 10 cm ⋅ 7 cm = 35 cm²
Das wird dann mit der Höhe multipliziert: V = 35 cm² ⋅ 5 cm = 175 cm³
Volumen eines Prisma 2
Beispiel:
Ein Prisma hat die abgebildete Figur als Grundfläche und
die Höhe h = 50 cm. Berechne das Volumen des Prismas.
Wir berechnen natürlich zuerst den Flächeninhalt der abgebildeten Grundfläche und nutzen hierfür die Flächeninhaltsformel des Dreiecks:
G = c ⋅ hc
Dazu müssen wir zuerst noch die Höhe hc mit dem Satz des Pythagoras (im rechtwinkligen halben Dreieck) berechnen:
hc2 + ()2 = 62 |-()2
hc2 = 62 - ()2 = 62 - 32 = 36 - 9= 27
Daraus ergibt sich:
hc = ≈ 5.196
Und daraus ergibt sich wiederum für die Grundfläche G:
G = c ⋅ hc = ⋅ 6 ⋅ 5.196 ≈ 15.6
Man hätte den Flächeninhalt des gleichseitigen Dreiecks auch mit dessen Flächenformel berechnen können:
G =
a2 =
Um nun das gesuchte Volumen des Prismas zu berechnen, müssen wir nur noch die Grundfläche G mit der Höhe h=50 cm multiplizieren:
V = G ⋅ h ≈ 15.6 cm² ⋅ 50 cm ≈ 779.4 cm³
Prismavolumen rückwärts (Skizze Grundfläche)
Beispiel:
Ein Prisma hat das Volumen V = 7482.5 cm³, die Höhe h = 80 cm und als Grundfläche das abgebildete regelmäßige Sechseck.
Berechne die rote Strecke x.
Da ja für das Volumen eines Prismas V = G ⋅ h gilt, können wir umgekehrt sofort die Grundfläche berechnen als :
G =
Die Grundfläche dieses regelmäßigen Sechseck besteht aus 6 kleinen gleichseitigen Dreiecken. Deswegen muss der Flächeninhalt eines dieser 6 kleinen gleichseitigen
Dreiecke eben gerade A =
Jetzt müssen wir uns eine Formel für das gleichseitige Dreieck mit Basisseitenlänge x herleiten (oder in der Formelsammlung suchen ;-):
Nach dem Satz des Pythagoras gilt:
hc2 + (
hc2 = x2 - (
Daraus ergibt sich:
hc =
Und daraus ergibt sich wiederum für die Grundfläche ADreieck:
ADreieck =
Hier können wir jetzt die bereits ermittelte Grundfläche ADreieck = 15.59 einsetzen:
15.59 ≈
36 ≈ x2
x ≈
Für x = 6 cm ist somit die Grundfläche ADreieck ≈ 15.6 cm² und das Volumen des Prismas V ≈ 7482.5 cm³