Aufgabenbeispiele von Prismen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Würfel V+O rückwärts
Beispiel:
Ein Würfel hat das Volumen V = 27 mm³. Berechne die Kantenlänge.
Das Volumen des Quaders berechnet man durch Multiplizieren der Seitenlängen: V = a ⋅ b ⋅ c
Bei einem Würfel sind ja alle Kantenlängen gleich, also gilt hier
V = a ⋅ a ⋅ a = a3
Es gilt somit:
27 mm³ = ⬜3
Mit gezieltem Probieren findet man, dass dies mit a = 3 mm funktioniert.
Volumen eines Prisma
Beispiel:
Berechne das Volumen V des dargestellten, senkrechten Prismas.
Das Volumen eines senkrechten Prismas berechnet man mit V = G ⋅ h,
also die Fläche der Grundseite multipliziert mit der Höhe des Prismas, wobei die Höhe hier die 9.5 cm nach schräg hinten ist.
Die Fläche der Grundseite berechnet man mit:
A = ⋅ Grundseite ⋅ Höhe (wofür beim rechtwinkligen Dreieck die Katheten benutzt werden können)
also hier:
A = ⋅ 10 cm ⋅ 7 cm = 35 cm²
Das wird dann mit der Höhe multipliziert: V = 35 cm² ⋅ 9.5 cm = 332.5 cm³
Volumen eines Prisma 2
Beispiel:
Ein Prisma hat die abgebildete Figur als Grundfläche und
die Höhe h = 100 cm. Berechne das Volumen des Prismas.
Wir berechnen natürlich zuerst den Flächeninhalt der abgebildeten Grundfläche und nutzen hierfür die Flächeninhaltsformel des Dreiecks:
G = c ⋅ hc
Dazu müssen wir zuerst noch die Höhe hc mit dem Satz des Pythagoras (im rechtwinkligen halben Dreieck) berechnen:
hc2 + ()2 = 92 |-()2
hc2 = 92 - ()2 = 92 - 4.52 = 81 - 20.25= 60.75
Daraus ergibt sich:
hc = ≈ 7.794
Und daraus ergibt sich wiederum für die Grundfläche G:
G = c ⋅ hc = ⋅ 9 ⋅ 7.794 ≈ 35.1
Man hätte den Flächeninhalt des gleichseitigen Dreiecks auch mit dessen Flächenformel berechnen können:
G =
a2 =
Um nun das gesuchte Volumen des Prismas zu berechnen, müssen wir nur noch die Grundfläche G mit der Höhe h=100 cm multiplizieren:
V = G ⋅ h ≈ 35.1 cm² ⋅ 100 cm ≈ 3507.4 cm³
Prismavolumen rückwärts (Skizze Grundfläche)
Beispiel:
Ein Prisma hat das Volumen V = 1210 m³, die Höhe h = 40 m und als Grundfläche das abgebildete rechtwinklige gleichschenklige Dreieck.
Berechne die rote Strecke x.
Da ja für das Volumen eines Prismas V = G ⋅ h gilt, können wir umgekehrt sofort die Grundfläche berechnen als :
G =
Jetzt müssen wir uns eine Formel für das rechtwinklige gleichschenklige Dreieck mit Basisseitenlänge x herleiten (oder in der Formelsammlung suchen ;-):
Nach dem Satz des Pythagoras gilt:
s2 + s2 = x2
also 2s2 = x2 oder eben s2
=
Für den Flächeninhalt des rechtwinklig und gleichschenkligen Dreiecks gilt wegen des rechten Winkels oben in C aber:
A =
mit s2 =
A =
Hier können wir jetzt die bereits ermittelte Grundfläche G = 30.25 einsetzen:
30.25 ≈
121 ≈ x2
x ≈
Für x = 11 m ist somit die Grundfläche G ≈ 30.3 m² und das Volumen des Prismas V ≈ 1210 m³