Aufgabenbeispiele von Prismen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Würfel V+O rückwärts

Beispiel:

Ein Würfel hat das Volumen V = 27 mm³. Berechne die Kantenlänge.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Das Volumen des Quaders berechnet man durch Multiplizieren der Seitenlängen: V = a ⋅ b ⋅ c
Bei einem Würfel sind ja alle Kantenlängen gleich, also gilt hier
V = a ⋅ a ⋅ a = a3

Es gilt somit:

27 mm³ = ⬜3

Mit gezieltem Probieren findet man, dass dies mit a = 3 mm funktioniert.

Volumen eines Prisma

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Berechne das Volumen V des dargestellten, senkrechten Prismas.

Lösung einblenden

Das Volumen eines senkrechten Prismas berechnet man mit V = G ⋅ h,
also die Fläche der Grundseite multipliziert mit der Höhe des Prismas, wobei die Höhe hier die 5.5 cm nach schräg hinten ist.
Die Fläche der Grundseite berechnet man mit:
A = 1 2 ⋅ Grundseite ⋅ Höhe (wofür beim rechtwinkligen Dreieck die Katheten benutzt werden können)
also hier:

A = 1 2 ⋅ 4 cm ⋅ 5 cm = 10 cm²

Das wird dann mit der Höhe multipliziert: V = 10 cm² ⋅ 5.5 cm = 55 cm³

Volumen eines Prisma 2

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Ein Prisma hat die abgebildete Figur als Grundfläche und
die Höhe h = 40 m. Berechne das Volumen des Prismas.

Lösung einblenden

Die Grundfläche dieses regelmäßigen Sechseck besteht aus 6 kleinen gleichseitigen Dreiecken. Deswegen berechnen wir zuerst den Flächeninhalt eines dieser 6 kleinen gleichseitigen Dreiecke und nutzen hierfür die Flächeninhaltsformel des Dreiecks:

ADreieck = 1 2 c ⋅ hc

Dazu müssen wir zuerst noch die Höhe hc mit dem Satz des Pythagoras (im rechtwinkligen halben Dreieck) berechnen:

hc2 + ( 5 2 )2 = 52 |-( 5 2 )2

hc2 = 52 - ( 5 2 )2 = 52 - 2.52 = 25 - 6.25= 18.75

Daraus ergibt sich:

hc = 18,75 ≈ 4.33

Und daraus ergibt sich wiederum für die Grundfläche ADreieck:

ADreieck = 1 2 c ⋅ hc = 1 2 ⋅ 5 ⋅ 4.33 ≈ 10.8

Man hätte den Flächeninhalt des gleichseitigen Dreiecks auch mit dessen Flächenformel berechnen können:
ADreieck = 3 4 a2 = 3 4 25 ≈ 10.8

Damit haben wir den Flächeninhalt eines der 6 gleichseitiogen Dreiecke. Um nun auf die gesamte Grundfläche des Prismas, also auf das regelmäßige Sechseck zu kommen, müssen wir lediglich diese Dreiecksfläche ADreieck mal 6 nehmen:

G = 6 ⋅ ADreieck ≈ 6 ⋅ 10.8 ≈ 65

Um nun das gesuchte Volumen des Prismas zu berechnen, müssen wir nur noch die Grundfläche G mit der Höhe h=40 m multiplizieren:

V = G ⋅ h ≈ 65 m² ⋅ 40 m ≈ 2598.1 m³

Prismavolumen rückwärts

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Ein Prisma hat das Volumen V = 640 mm³, die Höhe h = 40 mm und als Grundfläche das abgebildete rechtwinklige gleichschenklige Dreieck.
Berechne die rote Strecke x.

Lösung einblenden

Da ja für das Volumen eines Prismas V = G ⋅ h gilt, können wir umgekehrt sofort die Grundfläche berechnen als :
G = V h 640 40 ≈ 16

Jetzt müssen wir uns eine Formel für das rechtwinklige gleichschenklige Dreieck mit Basisseitenlänge x herleiten (oder in der Formelsammlung suchen ;-):

Nach dem Satz des Pythagoras gilt:

s2 + s2 = x2

also 2s2 = x2 oder eben s2 = 1 2 x2

Für den Flächeninhalt des rechtwinklig und gleichschenkligen Dreiecks gilt wegen des rechten Winkels oben in C aber:
A = 1 2 s ⋅ s = 1 2 s2

mit s2 = 1 2 x2 gilt somit;

A = 1 2 1 2 x2 = 1 4 x2

Hier können wir jetzt die bereits ermittelte Grundfläche G = 16 einsetzen:

16 ≈ 1 4 x2 | ⋅4

64 ≈ x2

x ≈ 64 ≈ 8

Für x = 8 mm ist somit die Grundfläche G ≈ 16 mm² und das Volumen des Prismas V ≈ 640 mm³