Aufgabenbeispiele von Anwendungen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Sinus und Thaleskreis (leicht)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Das große Dreieck ist gleichschenklig.

Der blaue Halbkreis hat einen Durchmesser von u = 7 cm.

Die Länge der gemeinsamen Kante der beiden Dreiecke beträgt v = 5.9 cm.

Bestimme die fehlende Winkelweite α.

Lösung einblenden

Am blauen Thaleskreis erkennt man sofort, dass γ ein rechter Winkel sein muss.

Nach der Definition des Sinus gilt im rechtwinkligen Dreieck sin(β)= Gegenkathete Hypotenuse

Damit folgt sin(β)= 5.9cm 7cm =0.843 und somit β=57.4°

Wegen der Winkelsumme im Dreieck muss gelten: 90° + β + φ = 180°.
Somit gilt φ = 90° - β° = 32.6°.

Wegen der Gleichschenkligkeit des großen Dreiecks muss nun aber β und (α+φ) gleich groß sein.

Mit α+32.6°=β=57.4° gilt nun: α = 24.9°

Sinus und Thaleskreis (schwer)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Das große Dreieck ist gleichschenklig. Bestimme die Länge der Strecke PQ.

Lösung einblenden

Am blauen Thaleskreis über dem ersten Dreieck erkennt man sofort, dass γ ein rechter Winkel sein muss.

Als Nebenwinkel von γ muss natürluch auch δ ein recher Winkel sein.

Aufgrund der Winkelsumme im zweiten Dreieck folgt δ + ε + 26° = 180°.

Daraus folgt ε = 180° - 90° - 26° = 64°.

Mit Hilfe der Gleichschenkligkeit des großen Dreiecks kann mann nun β bestimmen: Es gilt ε + 2⋅β = 180°. Daraus folgt β = 180° - ε 2 = 116° 2 = 58°

Mit Hilfe des Sinus kann man nun die Länge der gemeinsamen Seite g der beiden Dreiecke berechnen:

Da g die Gegenkathete von β ist, gilt: sin(β)=sin(58°) = g 6.5cm

Damit folgt g = sin(58°) ⋅ 6.5cm ≈ 5.5cm

Nun können wir im zweiten Dreieck den Sinus anwenden und so die gesuchte Seite PQ herausfinden: sin(ε)= g PQ

Setzt man die bekannten Werte ein, so folgt sin(64°)= 5.5 PQ

Damit folgt: PQ = 5.5 sin(64°) = 6.1cm

Trigonometrie Anwendungen

Beispiel:

Von einem Fenster in 10m Höhe kann man den entfernten Rand eines Kanals unter dem Winkel α=80° gegenüber der Senkrechten betrachten. Der vordere Rand des Kanals erscheinet unter dem Winkel β=35° gegenüber der Senkrechten. Wie breit ist der Kanal?

Lösung einblenden

In beiden Dreiecken gilt für den Tangens: tan(α)= Gegenkathete Ankathete .
Da nach der Gegenkathete gesucht wird, stellen wir um zu
Gegenkathete g1=Ankathete ⋅ tan(α)=10 ⋅ tan(80°) ≈56.7128

Genau gleich verfahren wir mit dem anderen Dreieck:
Gegenkathete g2=Ankathete ⋅ tan(β)=10 ⋅ tan(35°) ≈7.0021

Die gesuchte Strecke ist nun gerade die Differenz der beiden Gegenkatheten:
s=56.713 - 7.002 ≈ 49.711 m.

Winkel zw. Punkten im Koordinatensystem

Beispiel:

Berechne alle Längen und Winkel im Dreick ABC mit A(-3|-2), B(1|-2) und C(1|4).

Runde die Ergebnisse auf eine Nachkommastelle.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wenn man die drei Punkte in ein Koordinatensystem einträgt, erkennt man sofort, dass (zwischen B und C) a = 6 und (zwischen A und B) c = 4 sein müssen. Weil das Dreieck rechtwinklig ist, kann man b (zwischen A und C), also die Hypotenuse, mit dem Satz des Pythagoras berechnen:

Dreiecks mit Hilfe des Satzes des Pythagoras berechnen.

b2 = 62 + 42

b2 = 36 + 16

b2 = 52

b = 52 7.21

Da a (zwischen B und C) und c (zwischen A und B) parallel zu den Koordinatenachsen sind, muss der Winkel in B β = 90° sein.

Den Winkel α können wir mit dem Tangens berechnen:

tan(α) = Gegenkathete Ankathete = 6 4 = 1.5

Daraus folgt: α = arctan(1.5) ≈ 56.3°.

Wegen der Winkelsumme von 180° im Dreieck folgt: γ = 90°-56.3° = 33.7°