Aufgabenbeispiele von am rechtwinkligen Dreieck

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Gegenkathete berechnen (Sinus)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Bestimme die Länge von b.

Lösung einblenden

Nach der Definition des Sinus gilt sin(β)= Gegenkathete Hypotenuse

Setzt man die gegebenen Werte ein, so folgt: sin(63°)= b 7.1cm

Multipliziert man nun mit 7.1cm, so folgt: b=sin(63°)*7.1cm

Also gilt b=6.33

Hypothenuse berechnen (Sinus)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Bestimme die Länge von c.

Lösung einblenden

Nach der Definition des Sinus gilt sin(β)= Gegenkathete Hypotenuse

Setzt man die gegebenen Werte ein, so folgt: sin(40°)= 4.2cm c

Multipliziert man nun mit c und teilt durch sin(40°),

so folgt: c= 4.2cm sin(40°)

Also gilt c=6.53

Winkel berechnen (Sinus)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Bestimme die Winkelweite γ.

Lösung einblenden

Nach der Definition des Sinus gilt sin(γ)= Gegenkathete Hypotenuse

Setzt man die gegebenen Werte ein, so folgt: sin(γ)= 5.8cm 6.7cm =0.866

Daraus ergibt sich γ=59.96°

Ankathete berechnen (Kosinus)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Bestimme die Länge von c.

Lösung einblenden

Nach der Definition des Kosinus gilt cos(β)= Ankathete Hypotenuse

Setzt man die gegebenen Werte ein, so folgt: cos(52°)= c 6.6cm

Multipliziert man nun mit 6.6cm, so folgt: c=cos(52°)*6.6cm

Also gilt c=4.06

Hypothenuse berechnen (Kosinus)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Bestimme die Länge von b.

Lösung einblenden

Nach der Definition des Kosinus gilt cos(α)= Ankathete Hypotenuse

Setzt man die gegebenen Werte ein, so folgt: cos(37°)= 5.5cm b

Multipliziert man nun mit b und teilt durch cos(37°),

so folgt: b= 5.5cm cos(37°)

Also gilt b=6.89

Winkel berechnen (Kosinus)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Bestimme die Winkelweite γ.

Lösung einblenden

Nach der Definition des Kosinus gilt cos(γ)= Ankathete Hypotenuse

Setzt man die gegebenen Werte ein, so folgt: cos(γ)= 5.9cm 7cm =0.843

Daraus ergibt sich γ = 32.56°

Gegenkathete berechnen (Tangens)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Bestimme die Länge von c.

Lösung einblenden

Nach der Definition des Tangens gilt tan(γ) = Gegenkathete Ankathete

Setzt man die gegebenen Werte ein, so folgt: tan(34°) = c 5.4cm

Multipliziert man nun mit 5.4cm, so folgt:

c = tan(34°)*5.4cm

Also gilt c = 3.64cm

Ankathete berechnen (Tangens)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Bestimme die Länge von a.

Lösung einblenden

Nach der Definition des Tangens gilt tan(β) = Gegenkathete Ankathete

Setzt man die gegebenen Werte ein, so folgt: tan(50°) = 4.8cm a

Multipliziert man nun mit 4.8cm und teilt durch tan(50°), so folgt:

a = 4.8cm tan(50°)

Also gilt a = 4.03cm

Winkel berechnen (Tangens)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Bestimme die Winkelweite α.

Lösung einblenden

Nach der Definition des Tangens gilt tan(α) = Gegenkathete Ankathete

Setzt man die gegebenen Werte ein, so folgt: tan(α) = 3.6cm 6cm =0.6

Daraus folgt: α = 30.96°

Gegenkathete berechnen (Tangens)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Bestimme die Länge von a.

Lösung einblenden

Nach der Definition des Tangens gilt tan(α) = Gegenkathete Ankathete

Setzt man die gegebenen Werte ein, so folgt: tan(52°) = a 4.1cm

Multipliziert man nun mit 4.1cm, so folgt:

a = tan(52°)*4.1cm

Also gilt a = 5.25cm