Aufgabenbeispiele von LGS
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Wert zum Einsetzen finden
Beispiel:
Gegeben ist die Gleichung mit 2 Variablen: = .
Bestimme y so, dass (1|y) eine Lösung dieser Gleichung ist.
Man setzt einfach x = 1 in die Gleichung ein und erhält:
=
Jetzt kann man die Gleichung nach y auflösen:
| = | |||
| = | |||
| = | | | ||
| = | |: | ||
| = |
Die Lösung ist somit: (1|3)
Wert zum Einsetzen finden (offen)
Beispiel:
Gegeben ist die Gleichung mit 2 Variablen: = .
Bestimme eine mögliche Lösung (x|y) dieser Gleichung ist.
Eine (der unendlich vielen) Lösungen wäre beispielsweise: (-4|2)
denn
1⋅
Eine weitere Lösung wäre aber auch: (-1|1)
denn 1⋅
Oder : (-7|3)
denn 1⋅
LGS (1 Var. schon aufgelöst)
Beispiel:
Löse das lineare Gleichungssystem:
Man erkennt, dass in der 1. Gleichung gar kein y mehr da ist.
Deswegen können wir diese Zeile sehr einfach nach x umstellen:
|
|
= |
|
|:( |
|
|
= |
|
Als neues LGS erhält man so:
Wegen der 1. Zeile können wir nun in der 2. Zeile das x
durch
|
|
= |
|
|
|
|
= |
|
|
|
|
= |
|
|
|
|
|
= |
|
|: |
|
|
= |
|
Somit haben wir eine Lösung für y.
Für x haben wir die Lösung ja oben schon erhalten: x =
Die Lösung des LGS ist damit: (-6|3)
LGS (1 Var. ohne Koeff.)
Beispiel:
Löse das lineare Gleichungssystem:
Man erkennt, dass in der 1. Gleichung kein Koeffizient vor dem x ist.
Deswegen ist es am einfachsten, wenn man diese Zeile nach x umstellt:
|
|
= |
|
|
|
|
|
= |
|
Als neues LGS erhält man so:
Wegen der 1. Zeile können wir nun in der 2. Zeile das x
durch (
|
|
= |
|
|
|
|
= |
|
|
|
|
= |
|
|
|
|
|
= |
|
|: |
|
|
= |
|
Somit haben wir eine Lösung für y.
Diese setzen wir nun in die bereits umgestellte 1. Zeile ein:
x =
=
=
also
x = -4
Die Lösung des LGS ist damit: (-4|5)
LGS (Standard)
Beispiel:
Löse das lineare Gleichungssystem:
Wir stellen die 1. Gleichung nach y um:
|
|
= |
|
|
|
|
= |
|
|
|
|
|
= |
|
|: |
|
|
= |
|
Als neues LGS erhält man so:
Wegen der 1. Zeile können wir nun in der 2. Zeile das y
durch (
|
|
= |
|
|
|
|
= |
|
|
|
|
= |
|
|⋅ 3 |
|
|
= |
|
|
|
|
= |
|
|
|
|
|
= |
|
|: |
|
|
= |
|
Somit haben wir eine Lösung für x.
Diese setzen wir nun in die bereits umgestellte 1. Zeile ein:
y =
=
=
also
y = -5
Die Lösung des LGS ist damit: (-6|-5)
LGS (vorher umformen)
Beispiel:
Löse das lineare Gleichungssystem:
| | = | | (I) | ||
| = | | (II) |
Zuerst formen wir die beiden Gleichungen so um, dass links nur noch die Variablen und rechts nur noch die Zahlenwerte stehen:
|
| = |
|
(I) | ||
| = |
|
(II) |
|
| = |
|
|
| (I) | |
| = |
|
| +
| (II) |
Man erkennt, dass in der 2. Gleichung kein Koeffizient vor dem y ist.
Deswegen ist es am einfachsten, wenn man diese Zeile nach y umstellt:
|
|
= |
|
|
|
|
= |
|
|
|
|
|
= |
|
|:( |
|
|
= |
|
Als neues LGS erhält man so:
Wegen der 2. Zeile können wir nun in der 1. Zeile das y
durch (
|
|
= |
|
|
|
|
= |
|
|
|
|
= |
|
|
|
|
|
= |
|
|: |
|
|
= |
|
Somit haben wir eine Lösung für x.
Diese setzen wir nun in die bereits umgestellte 2. Zeile ein:
y =
=
=
also
y = -4
Die Lösung des LGS ist damit: (-4|-4)
LGS zu Lösungen finden
Beispiel:
Finde ein lineares Gleichungssystem, bei dem x = 2 und y = -4 Lösungen sind.
Dabei darf keiner der Koeffizienten =0 sein.
Eigentlich kann man die Koeffizienten vor x und y frei wählen, z.B.:
2x
1x
Jetzt muss man einfach die Lösungen x = 2 und y = -4 einsetzen und ausrechnen:
2x
1x
So erhält mam als eine von unendlich vielen Lösungen:
2x
1x
LGS Lösungsvielfalt erkennen
Beispiel:
Bestimme die Lösungsmenge:
Wir stellen die 1. Gleichung nach y um:
|
|
= |
|
|
|
|
= |
|
|
|
|
|
= |
|
|: |
|
|
= |
|
Als neues LGS erhält man so:
Wegen der 1. Zeile können wir nun in der 2. Zeile das y
durch (
|
|
= |
|
|
|
|
= |
|
|
|
|
= |
|
|⋅ 2 |
|
|
= |
|
|
|
|
= |
|
|
|
|
|
= |
Somit haben wir eine Lösung für x.
Diese setzen wir nun in die bereits umgestellte 1. Zeile ein:
y =
=
=
also
y = -6
Die Lösung des LGS ist damit: (0|-6)
LGS Anwendungen
Beispiel:
Carola war 2 Stunden wandern. Danach hat sie 5 Schokobonbons gegessen. Als sie diese Werte in ihre Fitness-App einträgt, meldet diese, dass sie durch beide Aktionen zusammen 100 kcal Energie verbraucht hätte. Am Tag zuvor war sie 2 Stunden wandern und hat 4 Schokobonbons gegessen, wofür ihre Fitness-App einen Ernergieverbrauch von 140 kcal berechnete. Wie viele kcal verliert man bei einer Stunde Wandern, wie viel kcal hat ein Schokobonbon?
Wir bezeichnen x als kcal-Verbrauch bei einer Stunde Wandern und y als kcal eines Schokobonbons und
Aus den Sätzen der Aufgabenstellung ergibt sich somit folgendes lineare Gleichungssystem:
Wir stellen die 1. Gleichung nach y um:
|
|
= |
|
|
|
|
= |
|
|
|
|
|
= |
|
|:( |
|
|
= |
|
Als neues LGS erhält man so:
Wegen der 1. Zeile können wir nun in der 2. Zeile das y
durch (
|
|
= |
|
|
|
|
= |
|
|
|
|
= |
|
|⋅ 5 |
|
|
= |
|
|
|
|
= |
|
|
|
|
|
= |
|
|: |
|
|
= |
|
Somit haben wir eine Lösung für x.
Diese setzen wir nun in die bereits umgestellte 1. Zeile ein:
y =
=
=
also
y = 40
Die Lösung des LGS ist damit: (150|40)
Bezogen auf die Anwendungsaufgabe ergibt sich nun als Lösung:
kcal-Verbrauch bei einer Stunde Wandern (x-Wert): 150
kcal eines Schokobonbons (y-Wert): 40
