Aufgabenbeispiele von Erwartungswert

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Zufallsgröße (ohne Wahrscheinlichkeit)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Zwei gleiche Glücksräder wie rechts in der Abbildung werden gleichzeitig gedreht. Die Zufallsgröße X beschreibt die Summe der Zahlen die bei den beiden Glücksräder erscheinen. Gib alle Werte an, die die Zufallsgröße X annehmen kann.

Lösung einblenden

Für die Zufallsgröße X: 'Summe der beiden Glücksräder' sind folgende Werte möglich:

Zufallsgröße X23456
zugehörige
Ereignisse
1 - 11 - 2
2 - 1
1 - 3
2 - 2
3 - 1
2 - 3
3 - 2
3 - 3

Zufallsgröße WS-Verteilung

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(
Ein Würfel mit nebenstehendem Netz wird 2 mal geworfen. Die Zufallsgröße X beschreibt die Differenz zwischen der größeren Augenzahl und der kleineren Augenzahl (bzw. der beiden gleichgroßen Augenzahlen) der beiden Würfe. Stelle eine Wahrscheinlichkeitsverteilung für die Zufallsgröße X auf.

Lösung einblenden

Für die Zufallsgröße X: 'Differenz der beiden Würfe' sind folgende Werte möglich:

Zufallsgröße XX = 0X = 1X = 4X = 5
zugehörige
Ergebnisse
1 → 1
5 → 5
6 → 6
5 → 6
6 → 5
1 → 5
5 → 1
1 → 6
6 → 1
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(


Jetzt müssen die Wahrscheinlichkeiten der einzelnen Ereignisse erst mal (mit Hilfe eines Baums) berechnet werden.


Und somit können wir dann auch die Wahrscheinlichkeiten für die einzelnen Werte der Zufallsgröße berechnen.

Zufallsgröße XX = 0X = 1X = 4X = 5
zugehörige
Wahrscheinlichkeit P(X)
1 2 1 2
+ 1 6 1 6
+ 1 3 1 3
1 6 1 3
+ 1 3 1 6
1 2 1 6
+ 1 6 1 2
1 2 1 3
+ 1 3 1 2
  = 1 4 + 1 36 + 1 9 1 18 + 1 18 1 12 + 1 12 1 6 + 1 6



Hiermit ergibt sich die gesuchte Wahrscheinlichkeitsverteilung für die Zufallsgröße X:

Zufallsgröße X0145
P(X=k) 7 18 1 9 1 6 1 3

Zufallsgr. WS-Vert. (auch ohne zur.)

Beispiel:

In einer Urne sind zwei Kugeln, die mit der Zahl 1 beschriftet sind und zwei Kugeln, die mit der Zahl 9 beschriftet sind. Es werden zwei Kugeln ohne Zurücklegen gezogen.Die Zufallsgröße X beschreibt das Produkt der Zahlen der beiden gezogenen Kugeln. Stelle eine Wahrscheinlichkeitsverteilung für die Zufallsgröße X auf.

Lösung einblenden

Für die Zufallsgröße X: 'Produkt der beiden Kugeln' sind folgende Werte möglich:

Zufallsgröße XX = 1X = 9X = 81
zugehörige
Ergebnisse
1 → 11 → 9
9 → 1
9 → 9
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(


Jetzt müssen die Wahrscheinlichkeiten der einzelnen Ereignisse erst mal (mit Hilfe eines Baums) berechnet werden.


Und somit können wir dann auch die Wahrscheinlichkeiten für die einzelnen Werte der Zufallsgröße berechnen.

Zufallsgröße XX = 1X = 9X = 81
zugehörige
Wahrscheinlichkeit P(X)
1 2 1 3 1 2 2 3
+ 1 2 2 3
1 2 1 3
  = 1 6 1 3 + 1 3 1 6



Hiermit ergibt sich die gesuchte Wahrscheinlichkeitsverteilung für die Zufallsgröße X:

Zufallsgröße X1981
P(X=k) 1 6 2 3 1 6

Zufallsgr. WS-Vert. (ziehen bis erstmals ...)

Beispiel:

Aus einem Kartenstapel mit 11 Karten der Farbe Herz und 3 weiteren Karten soll solange eine Karte gezogen werden, bis eine Herz-Karte erscheint. Die Zufallsgröße X beschreibt dabei die Anzahl der Ziehungen, bis die erste Herz-Karte gezogen worden ist. Stelle eine Wahrscheinlichkeitsverteilung für die Zufallsgröße X auf.
(Denk daran, die Brüche vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Da ja nur 3 Karten vom Typ 'kein Herz' vorhanden sind, muss spätestens im 4-ten Versuch (wenn dann alle Karten vom Typ 'kein Herz' bereits gezogen und damit weg sind) eine Karte vom Typ 'Herz' gezogen werden.

Das heißt die Zufallsgröße X kann nur Werte zwischen 1 und 4 annehmen.

Aus dem reduzierten Baumdiagramm rechts kann man nun die Wahrscheinlichkeitsverteilung der Zufallsgröße X übernehmen:

Zufallsgröße X1234
P(X=k) 11 14 33 182 11 364 1 364

Zufallsgröße rückwärts

Beispiel:

In einer Urne sind 24 Kugeln, die mit verschiedenen Zahlen beschriftet sind. Dabei gibt es nur die Zahlen 2, 4 und 9 als Beschriftung. Es werden zwei Kugeln mit Zurücklegen gezogen. Die Zufallsgröße X beschreibt das Produkt der Zahlen der beiden gezogenen Kugeln. Bei der Wahrscheinlichkeitsverteilung von X sind nur der erste und der letzte Wert bekannt (siehe Tabelle). Wie viele Kugeln mit den oben genannten Zahlen als Beschriftung müssen jeweils in der Urne sein?

Zufallsgröße X4816183681
P(X=k) 9 64 ???? 1 16

Lösung einblenden

Für X=4 gibt es nur das Ereignis: '2'-'2', also dass zwei mal hintereinander '2' kommt.

Wenn p1 die Wahrscheinlichkeit von '2' ist, dann muss also für die Wahrscheinlichkeit, dass zwei mal hintereinander '2' kommt, gelten: P(X=4) = p1 ⋅ p1 (siehe Baumdiagramm).

Aus der Tabelle können wir aber P(X=4) = 9 64 heraus lesen, also muss gelten:

p1 ⋅ p1 = (p1)2 = 9 64 und somit p1 = 3 8 .

Ebenso gibt es für X=81 nur das Ereignis: '9'-'9', also dass zwei mal hintereinander '9' kommt.

Wenn p3 die Wahrscheinlichkeit von '9' ist, dann muss also für die Wahrscheinlichkeit, dass zwei mal hintereinander '9' kommt, gelten: P(X=81) = p3 ⋅ p3 (siehe Baumdiagramm).

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Aus der Tabelle können wir aber P(X=81) = 1 16 heraus lesen, also muss gelten:

p3 ⋅ p3 = (p3)2 = 1 16 und somit p3 = 1 4 .

Da es aber nur drei Optionen gibt, muss p1 + p2 + p3 = 1 gelten, also

p2 = 1 - p1 - p3 = 1 - 3 8 - 1 4 = 8 8 - 3 8 - 2 8 = 3 8

Um nun noch die jeweilige Anzahl der Kugeln mit gleicher Zahl zu ermittlen, müssen wir einfach die Wahrscheinlichkeit mit 24 multiplizieren, weil ja für die Wahrscheinlichkeit für eine der n Kugeln mit einer bestimmten Zahl gilt: p = n 24

Somit erhalten wir:

n2 = 3 8 ⋅ 24 = 9

n4 = 3 8 ⋅ 24 = 9

n9 = 1 4 ⋅ 24 = 6

Erwartungswerte

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Wie viele Punkte kann man bei dem abgebildeten Glücksrad erwarten?

Lösung einblenden

Die Zufallsgröße X beschreibt die Punktezahl auf einem Sektor des Glücksrads.

Erwartungswert der Zufallsgröße X

Ereignis 3 8 20 75
Zufallsgröße xi 3 8 20 75
P(X=xi) 4 8 2 8 1 8 1 8
xi ⋅ P(X=xi) 3 2 2 5 2 75 8

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 3⋅ 4 8 + 8⋅ 2 8 + 20⋅ 1 8 + 75⋅ 1 8

= 3 2 + 2+ 5 2 + 75 8
= 12 8 + 16 8 + 20 8 + 75 8
= 123 8

15.38

Einsatz für faires Spiel bestimmen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Bei einem Glücksrad wie rechts abgebildet soll das noch fehlende Feld mit einem Betrag so bestückt werden, dass das Spiel bei einem Einsatz von 8,5€ fair ist.

Lösung einblenden

Die Zufallsgröße X beschreibt die Auszahlung.

Die Zufallsgröße Y beschreibt den Gewinn, also Auszahlung - Einsatz.

Erwartungswerte der Zufallsgrößen X und Y

Ereignis 2 8 12 ?
Zufallsgröße xi 2 8 12 x
Zufallsgröße yi (Gewinn) -6.5 -0.5 3.5 x-8.5
P(X=xi) 4 8 2 8 1 8 1 8
xi ⋅ P(X=xi) 1 2 3 2 1 8 ⋅ x
yi ⋅ P(Y=yi) - 13 4 - 1 8 3.5 8 1 8 ⋅(x-8.5)

Um den gesuchten Auszahlungsbetrag zu berrechnen hat man zwei Möglichkeiten:

Entweder stellt man eine Gleichung auf, so dass der Erwartungswert des Auszahlungsbetrags gleich des Einsatzes ist ...

E(X) = 8.5

4 8 · 2 + 2 8 · 8 + 1 8 · 12 + 1 8 x = 8.5

1 +2 + 3 2 + 1 8 x = 8.5

1 +2 + 3 2 + 1 8 x = 8,5
1 8 x + 9 2 = 8,5 |⋅ 8
8( 1 8 x + 9 2 ) = 68
x +36 = 68 | -36
x = 32

... oder man stellt eine Gleichung auf, so dass der Erwartungswert des Gewinns gleich null ist:

E(Y) = 0

4 8 · ( -6,5 ) + 2 8 · ( -0,5 ) + 1 8 · 3,5 + 1 8 ( x -8,5 ) = 0

- 6,5 2 - 0,5 4 + 3,5 8 + 1 8 · x + 1 8 · ( -8,5 ) = 0

- 6,5 2 - 0,5 4 + 3,5 8 + 1 8 · x + 1 8 · ( -8,5 ) = 0
-3,25 -0,125 +0,4375 + 1 8 x -1,0625 = 0
1 8 x -4 = 0 |⋅ 8
8( 1 8 x -4 ) = 0
x -32 = 0 | +32
x = 32

In beiden Fällen ist also der gesuchte Betrag: 32

Erwartungswert ganz offen

Beispiel:

Ein Spielautomatenhersteller bekommt von einem Kunden den Auftrag einen Automaten zu entwickeln, der folgenden Bedingungen erfüllt.- Der Einsatz für ein Spiel soll 2€ betragen- auf lange Sicht soll er 10ct Gewinn pro Spiel für den Betreiber abwerfen- es sollen 5 verschiedene Felder (Kirsche, Zitrone, Apfel, Banane, Erdbeere) mit verschiedenen Auszahlungsbeträgen sein- bei einem Feld soll keine Auszahlung erfolgen- um Kunden zu locken soll bei einem Feld 30€ ausgezahlt werdenOrdne den 5 Optionen so Wahrscheinlichkeiten und Auszahlungsbeträge zu, dass diese Bedingungen erfüllt sind.

Lösung einblenden

Eine (von vielen möglichen) Lösungen:

Als erstes schreiben wir mal die Vorgaben in die Tabelle rein.

  Kirsche Zitrone Apfel Banane Erdbeere
X (z.B. Auszahlung) 0 30
Y Gewinn (Ausz. - Einsatz) -2 28
P(X) = P(Y)
Y ⋅ P(Y)

Jetzt setzen wir die Wahrscheinlichkeiten so, dass der negative Beitrag vom minimalen Betrag zum Erwartungswert den gleichen Betrag hat wie der positve vom maximalen Betrag.(dazu einfach jeweils den Gewinn in den Nenner der Wahrscheinlichkeit)

  Kirsche Zitrone Apfel Banane Erdbeere
X (z.B. Auszahlung) 0 30
Y Gewinn (Ausz. - Einsatz) -2 28
P(X) = P(Y) 1 2 1 28
Y ⋅ P(Y) -1 1

Bei der mittleren Option setzen wir den Betrag einfach gleich wie den Einsatz, so dass diese den Erwartungswert nicht verändert.
Als Wahrscheinlichkeit wählen wir einen Bruch so, dass die Restwahrscheinlichkeit für die verbleibenden zwei Optionen nicht allzu kompliziert wird.

  Kirsche Zitrone Apfel Banane Erdbeere
X (z.B. Auszahlung) 0 2 30
Y Gewinn (Ausz. - Einsatz) -2 0 28
P(X) = P(Y) 1 2 3 14 1 28
Y ⋅ P(Y) -1 0 1

Die bisherigen Optionen vereinen eine Wahrscheinlichkeit von 1 2 + 3 14 + 1 28 = 3 4
Als Restwahrscheinlichkeit für die verbleibenden Beträge bleibt nun also 1- 3 4 = 1 4 .
Diese wird auf die beiden verbleibenden Optionen verteilt:

  Kirsche Zitrone Apfel Banane Erdbeere
X (z.B. Auszahlung) 0 2 30
Y Gewinn (Ausz. - Einsatz) -2 0 28
P(X) = P(Y) 1 2 1 8 3 14 1 8 1 28
Y ⋅ P(Y) -1 0 1

Damit nun der Erwartungswert =0 wird, müssen sich die beiden noch verbleibenden Anteile daran gegenseitig aufheben. Dies erreicht man, in dem man den Gewinn jeweils gleich 'weit vom Einsatz weg' (nämlich 1) setzt.

  Kirsche Zitrone Apfel Banane Erdbeere
X (z.B. Auszahlung) 0 1 2 3 30
Y Gewinn (Ausz. - Einsatz) -2 -1 0 1 28
P(X) = P(Y) 1 2 1 8 3 14 1 8 1 28
Y ⋅ P(Y) -1 - 1 8 0 1 8 1

Weil der Erwartungswert ja aber nicht 0 sondern - 1 10 sein soll, müssen wir nun noch den Auszahlungsbetrag bei der 2. Option (betragsmäßig) vergrößern. Und zwar so, dass er mit der Wahrscheinlichkeit 1 8 multipliziert gerade um - 1 10 wächst.
Also x ⋅ 1 8 = - 1 10 => x= - 1 10 : 1 8 = - 4 5 = -0.8
Die neue Auszahlung für 'Zitrone' ist also 0.2

  Kirsche Zitrone Apfel Banane Erdbeere
X (z.B. Auszahlung) 0 0.2 2 3 30
Y Gewinn (Ausz. - Einsatz) -2 -1.8 0 1 28
P(X) = P(Y) 1 2 1 8 3 14 1 8 1 28
Y ⋅ P(Y) -1 - 9 40 0 1 8 1

Wenn man nun den Erwartungswert berechnet, kommt der gesuchte heraus:

E(Y)= -2⋅ 1 2 + -1.8⋅ 1 8 + 0⋅ 3 14 + 1⋅ 1 8 + 28⋅ 1 28

= -1 - 9 40 + 0+ 1 8 + 1
= - 40 40 - 9 40 + 0 40 + 5 40 + 40 40
= - 4 40
= - 1 10

-0.1

Erwartungswerte bei 'Ziehen bis erstmals ...'

Beispiel:

Aus einem Kartenstapel mit 7 Karten der Farbe Herz und 3 weiteren Karten soll solange eine Karte gezogen werden, bis eine Herz-Karte erscheint. Bestimme den Erwartungswert für die Anzahl der Ziehungen, bis das erste Herz erscheint.
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Wahrscheinlichkeiten für die verschiedenen Ausgänge

Die Wahrscheinlichkeit für ein 'Herz' im 1-ten Versuch st: 7 10

Die Wahrscheinlichkeit für ein 'Herz' im 2-ten Versuch st: 7 30

Die Wahrscheinlichkeit für ein 'Herz' im 3-ten Versuch st: 7 120

Die Wahrscheinlichkeit für ein 'Herz' im 4-ten Versuch st: 1 120

Die Zufallsgröße X beschreibt die Anzahl der Ziehungen. bis das erste Herz gekommen ist.

Erwartungswert der Zufallsgröße X

Ereignis 1 2 3 4
Zufallsgröße xi 1 2 3 4
P(X=xi) 7 10 7 30 7 120 1 120
xi ⋅ P(X=xi) 7 10 7 15 7 40 1 30

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 1⋅ 7 10 + 2⋅ 7 30 + 3⋅ 7 120 + 4⋅ 1 120

= 7 10 + 7 15 + 7 40 + 1 30
= 84 120 + 56 120 + 21 120 + 4 120
= 165 120
= 11 8

1.38

Erwartungswerte mit gesuchten Anzahlen im WS-Baum

Beispiel:

Auf einen Schüleraustausch bewerben sich 21 Mädchen und 11 Jungs. Weil aber leider weniger Plätze zur Verfügung stehen, muss gelost werden. Wie viele Mädchen kann man bei den ersten 3 verlosten Plätzen erwarten?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Wahrscheinlichkeiten für die verschiedenen Ausgänge

EreignisP
Mädchen -> Mädchen -> Mädchen 133 496
Mädchen -> Mädchen -> Jungs 77 496
Mädchen -> Jungs -> Mädchen 77 496
Mädchen -> Jungs -> Jungs 77 992
Jungs -> Mädchen -> Mädchen 77 496
Jungs -> Mädchen -> Jungs 77 992
Jungs -> Jungs -> Mädchen 77 992
Jungs -> Jungs -> Jungs 33 992

Die Wahrscheinlichkeit für 0 mal 'Mädchen' ist: 33 992

Die Wahrscheinlichkeit für 1 mal 'Mädchen' ist: 77 992 + 77 992 + 77 992 = 231 992

Die Wahrscheinlichkeit für 2 mal 'Mädchen' ist: 77 496 + 77 496 + 77 496 = 231 496

Die Wahrscheinlichkeit für 3 mal 'Mädchen' ist: 133 496

Die Zufallsgröße X beschreibt die Anzahl an Mädchen unter den drei verlosten Plätzen.

Erwartungswert der Zufallsgröße X

Ereignis 0 1 2 3
Zufallsgröße xi 0 1 2 3
P(X=xi) 33 992 231 992 231 496 133 496
xi ⋅ P(X=xi) 0 231 992 231 248 399 496

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 0⋅ 33 992 + 1⋅ 231 992 + 2⋅ 231 496 + 3⋅ 133 496

= 0+ 231 992 + 231 248 + 399 496
= 0 992 + 231 992 + 924 992 + 798 992
= 1953 992
= 63 32

1.97

Erwartungswerte mit best. Optionen im WS-Baum

Beispiel:

Ein leidenschaftlicher Mäxle-Spieler möchte eine Mäxle-Spielautomat bauen. Wie beim richtigen Mäxle sollen auch hier zwei normale Würfel gleichzeitig geworfen werden (bzw. dies eben simuliert). Bei einem Mäxle (also eine 1 und eine 2) soll dann 14€ ausbezahlt werden, bei einem Pasch (also zwei gleiche Augenzahlen) 9€ und bei 61-65 also (also ein Würfel 6 und der andere keine 6) noch 2€. Wie groß müsste der Einsatz sein, damit das Spiel fair wird?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Wahrscheinlichkeiten für die verschiedenen Ausgänge

EreignisP
1 -> 1 1 36
1 -> 2 1 36
1 -> 3 1 36
1 -> 4 1 36
1 -> 5 1 36
1 -> 6 1 36
2 -> 1 1 36
2 -> 2 1 36
2 -> 3 1 36
2 -> 4 1 36
2 -> 5 1 36
2 -> 6 1 36
3 -> 1 1 36
3 -> 2 1 36
3 -> 3 1 36
3 -> 4 1 36
3 -> 5 1 36
3 -> 6 1 36
4 -> 1 1 36
4 -> 2 1 36
4 -> 3 1 36
4 -> 4 1 36
4 -> 5 1 36
4 -> 6 1 36
5 -> 1 1 36
5 -> 2 1 36
5 -> 3 1 36
5 -> 4 1 36
5 -> 5 1 36
5 -> 6 1 36
6 -> 1 1 36
6 -> 2 1 36
6 -> 3 1 36
6 -> 4 1 36
6 -> 5 1 36
6 -> 6 1 36

Die Wahrscheinlichkeit für 'Mäxle' ist:

P('1'-'2') + P('2'-'1')
= 1 36 + 1 36 = 1 18

Die Wahrscheinlichkeit für 'Pasch' ist:

P('1'-'1') + P('2'-'2') + P('3'-'3') + P('4'-'4') + P('5'-'5') + P('6'-'6')
= 1 36 + 1 36 + 1 36 + 1 36 + 1 36 + 1 36 = 1 6

Die Wahrscheinlichkeit für '60er' ist:

P('1'-'6') + P('2'-'6') + P('3'-'6') + P('4'-'6') + P('5'-'6') + P('6'-'1') + P('6'-'2') + P('6'-'3') + P('6'-'4') + P('6'-'5')
= 1 36 + 1 36 + 1 36 + 1 36 + 1 36 + 1 36 + 1 36 + 1 36 + 1 36 + 1 36 = 5 18

Die Zufallsgröße X beschreibt den durch die beiden Würfel ausbezahlten Euro-Betrag.

Erwartungswert der Zufallsgröße X

Ereignis Mäxle Pasch 60er
Zufallsgröße xi 14 9 2
P(X=xi) 1 18 1 6 5 18
xi ⋅ P(X=xi) 7 9 3 2 5 9

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 14⋅ 1 18 + 9⋅ 1 6 + 2⋅ 5 18

= 7 9 + 3 2 + 5 9
= 14 18 + 27 18 + 10 18
= 51 18
= 17 6

2.83