Aufgabenbeispiele von Erwartungswert

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Zufallsgröße (ohne Wahrscheinlichkeit)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(
Ein Würfel mit nebenstehendem Netz wird 2 mal geworfen. Die Zufallsgröße X beschreibt dabei die Summe der Augenzahlen der beiden Würfe. Gib alle Werte an, die die Zufallsgröße X annehmen kann.

Lösung einblenden

Für die Zufallsgröße X: 'Summe der beiden Augenzahlen' sind folgende Werte möglich:

Zufallsgröße X4567810
zugehörige
Ereignisse
2 - 22 - 3
3 - 2
3 - 32 - 5
5 - 2
3 - 5
5 - 3
5 - 5

Zufallsgröße WS-Verteilung

Beispiel:

Drei normale Würfel werden gleichzeitig geworfen. Die Zufallsgröße X beschreibt die Anzahl der gewürfelten 6er. Stelle eine Wahrscheinlichkeitsverteilung für die Zufallsgröße X auf.

Lösung einblenden

Für die Zufallsgröße X: 'Anzahl der 6er' sind folgende Werte möglich:

Zufallsgröße XX = 0X = 1X = 2X = 3
zugehörige
Ergebnisse
0 → 0 → 00 → 0 → 1
0 → 1 → 0
1 → 0 → 0
0 → 1 → 1
1 → 0 → 1
1 → 1 → 0
1 → 1 → 1
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(


Jetzt müssen die Wahrscheinlichkeiten der einzelnen Ereignisse erst mal (mit Hilfe eines Baums) berechnet werden.


Und somit können wir dann auch die Wahrscheinlichkeiten für die einzelnen Werte der Zufallsgröße berechnen.

Zufallsgröße XX = 0X = 1X = 2X = 3
zugehörige
Wahrscheinlichkeit P(X)
5 6 5 6 5 6 5 6 5 6 1 6
+ 5 6 1 6 5 6
+ 1 6 5 6 5 6
5 6 1 6 1 6
+ 1 6 5 6 1 6
+ 1 6 1 6 5 6
1 6 1 6 1 6
  = 125 216 25 216 + 25 216 + 25 216 5 216 + 5 216 + 5 216 1 216



Hiermit ergibt sich die gesuchte Wahrscheinlichkeitsverteilung für die Zufallsgröße X:

Zufallsgröße X0123
P(X=k) 125 216 25 72 5 72 1 216

Zufallsgr. WS-Vert. (auch ohne zur.)

Beispiel:

In einem Kartenstapel sind nur noch zwei Karten mit dem Wert 2, vier Karten mit dem Wert 5 und vier 10er.Es werden zwei Karten ohne Zurücklegen gezogen. Die Zufallsgröße X beschreibt die Differenz zwischen dem größeren und dem kleineren Wert der beiden gezogenen Karten. Stelle eine Wahrscheinlichkeitsverteilung für die Zufallsgröße X auf.

Lösung einblenden

Für die Zufallsgröße X: 'Differenz der beiden Karten' sind folgende Werte möglich:

Zufallsgröße XX = 0X = 3X = 5X = 8
zugehörige
Ergebnisse
2 → 2
5 → 5
10 → 10
2 → 5
5 → 2
5 → 10
10 → 5
2 → 10
10 → 2
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(


Jetzt müssen die Wahrscheinlichkeiten der einzelnen Ereignisse erst mal (mit Hilfe eines Baums) berechnet werden.


Und somit können wir dann auch die Wahrscheinlichkeiten für die einzelnen Werte der Zufallsgröße berechnen.

Zufallsgröße XX = 0X = 3X = 5X = 8
zugehörige
Wahrscheinlichkeit P(X)
1 5 1 9
+ 2 5 3 9
+ 2 5 3 9
1 5 4 9
+ 2 5 2 9
2 5 4 9
+ 2 5 4 9
1 5 4 9
+ 2 5 2 9
  = 1 45 + 2 15 + 2 15 4 45 + 4 45 8 45 + 8 45 4 45 + 4 45



Hiermit ergibt sich die gesuchte Wahrscheinlichkeitsverteilung für die Zufallsgröße X:

Zufallsgröße X0358
P(X=k) 13 45 8 45 16 45 8 45

Zufallsgr. WS-Vert. (ziehen bis erstmals ...)

Beispiel:

Eine Lehrerin sammelt die Hausaufgaben von einigen Schülern ein, um zu kontrollieren, ob diese auch ordentlich gemacht wurden. Aus Zeitgründen möchte sie aber nicht alle, sondern nur ein paar wenige einsammeln, welche durch ein Losverfahren ausgewählt werden. Aus (der unbegründeten) Angst ungerecht behandelt zu werden, bestehen die 2 Jungs darauf, dass unbedingt immer eine Hausaufgabe eines der 15 Mädchen der Klasse eingesammelt wird. Deswegen wird solange gelost, bis das erste Mädchen gezogen wird.Die Zufallsgröße X beschreibt dabei die Anzahl der nach diesem Verfahren einsammelten Hausaufgaben. Stelle eine Wahrscheinlichkeitsverteilung für die Zufallsgröße X auf.
(Denk daran, die Brüche vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Da ja nur 2 Hausaufgaben vom Typ 'Jungs' vorhanden sind, muss spätestens im 3-ten Versuch (wenn dann alle Hausaufgaben vom Typ 'Jungs' bereits gezogen und damit weg sind) eine Hausaufgabe vom Typ 'Mädchen' gezogen werden.

Das heißt die Zufallsgröße X kann nur Werte zwischen 1 und 3 annehmen.

Aus dem reduzierten Baumdiagramm rechts kann man nun die Wahrscheinlichkeitsverteilung der Zufallsgröße X übernehmen:

Zufallsgröße X123
P(X=k) 15 17 15 136 1 136

Zufallsgröße rückwärts

Beispiel:

Ein Glücksrad hat drei Sektoren, die mit den Zahlen 1, 2 und 3 beschriftet sind. Es wird zwei mal gedreht. Die Zufallsgröße X beschreibt dabei die Summe der Zahlen die bei den beiden Glücksraddrehungen erscheinen. Bei der Wahrscheinlichkeitsverteilung von X sind nur der erste und der letzte Wert bekannt (siehe Tabelle). Wie groß müssen jeweils die Winkel der Sektoren sein?

Zufallsgröße X23456
P(X=k) 121 324 ??? 1 16

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Für X=2 gibt es nur das Ereignis: '1'-'1', also dass zwei mal hintereinander '1' kommt.

Wenn p1 die Wahrscheinlichkeit von '1' ist, dann muss also für die Wahrscheinlichkeit, dass zwei mal hintereinander '1' kommt, gelten: P(X=2) = p1 ⋅ p1 (siehe Baumdiagramm).

Aus der Tabelle können wir aber P(X=2) = 121 324 heraus lesen, also muss gelten:

p1 ⋅ p1 = (p1)2 = 121 324 und somit p1 = 11 18 .

Ebenso gibt es für X=6 nur das Ereignis: '3'-'3', also dass zwei mal hintereinander '3' kommt.

Wenn p3 die Wahrscheinlichkeit von '3' ist, dann muss also für die Wahrscheinlichkeit, dass zwei mal hintereinander '3' kommt, gelten: P(X=6) = p3 ⋅ p3 (siehe Baumdiagramm).

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Aus der Tabelle können wir aber P(X=6) = 1 16 heraus lesen, also muss gelten:

p3 ⋅ p3 = (p3)2 = 1 16 und somit p3 = 1 4 .

Da es aber nur drei Optionen gibt, muss p1 + p2 + p3 = 1 gelten, also

p2 = 1 - p1 - p3 = 1 - 11 18 - 1 4 = 36 36 - 22 36 - 9 36 = 5 36

Um nun noch die Mittelpunktswinkel der drei Sektoren zu ermittlen, müssen wir einfach die Wahrscheinlichkeit mit 360° multiplizieren, weil ja für die Wahrscheinlichkeit eines Sektors mit Mittelpunktswinkel α gilt: p = α 360°

Somit erhalten wir:

α1 = 11 18 ⋅ 360° = 220°

α2 = 5 36 ⋅ 360° = 50°

α3 = 1 4 ⋅ 360° = 90°

Erwartungswerte

Beispiel:

Bei einer Tombola steht auf jedem zehnten Los 200 Punkte, auf jedem fünften Los 35 Punkte, auf jedem vierten Los 8 Punkte und auf allen anderen 1 Punkt. Wie viele Punkte bringt ein Los durchschnttlich ein?

Lösung einblenden

Die Zufallsgröße X beschreibt die Anzahl der Punkte auf einem Los.

Erwartungswert der Zufallsgröße X

Ereignis 200 35 8 1
Zufallsgröße xi 200 35 8 1
P(X=xi) 1 10 1 5 1 4 9 20
xi ⋅ P(X=xi) 20 7 2 9 20

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 200⋅ 1 10 + 35⋅ 1 5 + 8⋅ 1 4 + 1⋅ 9 20

= 20+ 7+ 2+ 9 20
= 589 20

29.45

Einsatz für faires Spiel bestimmen

Beispiel:

In einer Urne sind 4 Kugeln, die mit 10€ beschriftet sind, 4 Kugeln, die mit 20€ und 9 Kugeln, die mit 24€ beschriftet sind. Bei dem Spiel bekommt man den Betrag, der auf der Kugel steht, ausbezahlt. Außerdem sind noch weitere 3 Kugeln in der Urne. Mit welchem Betrag müsste man diese beschriften, damit das Spiel bei einem Einsatz von 21,6€ fair wäre?

Lösung einblenden

Die Zufallsgröße X beschreibt die Auszahlung.

Die Zufallsgröße Y beschreibt den Gewinn, also Auszahlung - Einsatz.

Erwartungswerte der Zufallsgrößen X und Y

Ereignis 10 20 24 ?
Zufallsgröße xi 10 20 24 x
Zufallsgröße yi (Gewinn) -11.6 -1.6 2.4 x-21.6
P(X=xi) 4 20 4 20 9 20 3 20
xi ⋅ P(X=xi) 2 4 54 5 3 20 ⋅ x
yi ⋅ P(Y=yi) - 46.4 20 - 6.4 20 21.6 20 3 20 ⋅(x-21.6)

Um den gesuchten Auszahlungsbetrag zu berrechnen hat man zwei Möglichkeiten:

Entweder stellt man eine Gleichung auf, so dass der Erwartungswert des Auszahlungsbetrags gleich des Einsatzes ist ...

E(X) = 21.6

4 20 · 10 + 4 20 · 20 + 9 20 · 24 + 3 20 x = 21.6

2 +4 + 54 5 + 3 20 x = 21.6

2 +4 + 54 5 + 3 20 x = 21,6
3 20 x + 84 5 = 21,6 |⋅ 20
20( 3 20 x + 84 5 ) = 432
3x +336 = 432 | -336
3x = 96 |:3
x = 32

... oder man stellt eine Gleichung auf, so dass der Erwartungswert des Gewinns gleich null ist:

E(Y) = 0

4 20 · ( -11,6 ) + 4 20 · ( -1,6 ) + 9 20 · 2,4 + 3 20 ( x -21,6 ) = 0

- 11,6 5 - 1,6 5 + 21,6 20 + 3 20 · x + 3 20 · ( -21,6 ) = 0

- 11,6 5 - 1,6 5 + 21,6 20 + 3 20 · x + 3 20 · ( -21,6 ) = 0
-2,32 -0,32 +1,08 + 3 20 x -3,24 = 0
3 20 x -4,8 = 0 |⋅ 20
20( 3 20 x -4,8 ) = 0
3x -96 = 0 | +96
3x = 96 |:3
x = 32

In beiden Fällen ist also der gesuchte Betrag: 32

Erwartungswert ganz offen

Beispiel:

Eine Klasse möchte beim Schulfest ein Glücksrad mit Spielgeld anbieten. Dabei soll das Glücksrad in Sektoren aufgeteilt werden, in denen der Auszahlungsbetrag (z.B. 3€) drin steht. Nach langer Diskussion einigt man sich auf folgende Punkte:• Das Spiel mit dem Glücksrad muss fair sein • Der Einsatz soll 7€ betragen• Der minimale Auszahlungsbetrag soll 4€ sein• Der maximale Auszahlungsbetrag soll soll 30€ sein• Es sollen genau 4 Sektoren mit verschiedenen Auszahlungsbeträgen auf dem Glücksrad seinFinde eine Möglichkeit für solch ein Glücksrad und trage diese in die Tabelle ein.

Lösung einblenden

Eine (von vielen möglichen) Lösungen:

Als erstes schreiben wir mal die Vorgaben in die Tabelle rein.

  Feld1 Feld2 Feld3 Feld4
X (z.B. Auszahlung) 4 30
Y Gewinn (Ausz. - Einsatz) -3 23
P(X) = P(Y)
Y ⋅ P(Y)

Jetzt setzen wir die Wahrscheinlichkeiten so, dass der negative Beitrag vom minimalen Betrag zum Erwartungswert den gleichen Betrag hat wie der positve vom maximalen Betrag.(dazu einfach jeweils den Gewinn in den Nenner der Wahrscheinlichkeit)

  Feld1 Feld2 Feld3 Feld4
X (z.B. Auszahlung) 4 30
Y Gewinn (Ausz. - Einsatz) -3 23
P(X) = P(Y) 1 3 1 23
Y ⋅ P(Y) -1 1

Die bisherigen Optionen vereinen eine Wahrscheinlichkeit von 1 3 + 1 23 = 26 69
Als Restwahrscheinlichkeit für die verbleibenden Beträge bleibt nun also 1- 26 69 = 43 69 .
Diese wird auf die beiden verbleibenden Optionen verteilt:

  Feld1 Feld2 Feld3 Feld4
X (z.B. Auszahlung) 4 30
Y Gewinn (Ausz. - Einsatz) -3 23
P(X) = P(Y) 1 3 43 138 43 138 1 23
Y ⋅ P(Y) -1 1

Damit nun der Erwartungswert =0 wird, müssen sich die beiden noch verbleibenden Anteile daran gegenseitig aufheben. Dies erreicht man, in dem man den Gewinn jeweils gleich 'weit vom Einsatz weg' (nämlich 3 2 ) setzt.

  Feld1 Feld2 Feld3 Feld4
X (z.B. Auszahlung) 4 5.5 8.5 30
Y Gewinn (Ausz. - Einsatz) -3 -1.5 1.5 23
P(X) = P(Y) 1 3 43 138 43 138 1 23
Winkel 120° 112.17° 112.17° 15.65°
Y ⋅ P(Y) -1 - 43 92 43 92 1

Wenn man nun den Erwartungswert berechnet, kommt der gesuchte heraus:

E(Y)= -3⋅ 1 3 + -1.5⋅ 43 138 + 1.5⋅ 43 138 + 23⋅ 1 23

= -1 - 43 92 + 43 92 + 1
= - 92 92 - 43 92 + 43 92 + 92 92
= 0 92
= 0

Erwartungswerte bei 'Ziehen bis erstmals ...'

Beispiel:

Aus einem Kartenstapel mit 2 Karten der Farbe Herz und 2 weiteren Karten soll solange eine Karte gezogen werden, bis eine Herz-Karte erscheint. Bestimme den Erwartungswert für die Anzahl der Ziehungen, bis das erste Herz erscheint.
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Wahrscheinlichkeiten für die verschiedenen Ausgänge

Die Wahrscheinlichkeit für ein 'Herz' im 1-ten Versuch st: 1 2

Die Wahrscheinlichkeit für ein 'Herz' im 2-ten Versuch st: 1 3

Die Wahrscheinlichkeit für ein 'Herz' im 3-ten Versuch st: 1 6

Die Zufallsgröße X beschreibt die Anzahl der Ziehungen. bis das erste Herz gekommen ist.

Erwartungswert der Zufallsgröße X

Ereignis 1 2 3
Zufallsgröße xi 1 2 3
P(X=xi) 1 2 1 3 1 6
xi ⋅ P(X=xi) 1 2 2 3 1 2

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 1⋅ 1 2 + 2⋅ 1 3 + 3⋅ 1 6

= 1 2 + 2 3 + 1 2
= 3 6 + 4 6 + 3 6
= 10 6
= 5 3

1.67

Erwartungswerte mit gesuchten Anzahlen im WS-Baum

Beispiel:

Auf einen Schüleraustausch bewerben sich 12 Mädchen und 9 Jungs. Weil aber leider weniger Plätze zur Verfügung stehen, muss gelost werden. Wie viele Mädchen kann man bei den ersten 3 verlosten Plätzen erwarten?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Wahrscheinlichkeiten für die verschiedenen Ausgänge

EreignisP
Mädchen -> Mädchen -> Mädchen 22 133
Mädchen -> Mädchen -> Jungs 99 665
Mädchen -> Jungs -> Mädchen 99 665
Mädchen -> Jungs -> Jungs 72 665
Jungs -> Mädchen -> Mädchen 99 665
Jungs -> Mädchen -> Jungs 72 665
Jungs -> Jungs -> Mädchen 72 665
Jungs -> Jungs -> Jungs 6 95

Die Wahrscheinlichkeit für 0 mal 'Mädchen' ist: 6 95

Die Wahrscheinlichkeit für 1 mal 'Mädchen' ist: 72 665 + 72 665 + 72 665 = 216 665

Die Wahrscheinlichkeit für 2 mal 'Mädchen' ist: 99 665 + 99 665 + 99 665 = 297 665

Die Wahrscheinlichkeit für 3 mal 'Mädchen' ist: 22 133

Die Zufallsgröße X beschreibt die Anzahl an Mädchen unter den drei verlosten Plätzen.

Erwartungswert der Zufallsgröße X

Ereignis 0 1 2 3
Zufallsgröße xi 0 1 2 3
P(X=xi) 6 95 216 665 297 665 22 133
xi ⋅ P(X=xi) 0 216 665 594 665 66 133

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 0⋅ 6 95 + 1⋅ 216 665 + 2⋅ 297 665 + 3⋅ 22 133

= 0+ 216 665 + 594 665 + 66 133
= 0 665 + 216 665 + 594 665 + 330 665
= 1140 665
= 12 7

1.71

Erwartungswerte mit best. Optionen im WS-Baum

Beispiel:

Ein leidenschaftlicher Mäxle-Spieler möchte eine Mäxle-Spielautomat bauen. Wie beim richtigen Mäxle sollen auch hier zwei normale Würfel gleichzeitig geworfen werden (bzw. dies eben simuliert). Bei einem Mäxle (also eine 1 und eine 2) soll dann 16€ ausbezahlt werden, bei einem Pasch (also zwei gleiche Augenzahlen) 8€ und bei 61-65 also (also ein Würfel 6 und der andere keine 6) noch 2€. Wie groß müsste der Einsatz sein, damit das Spiel fair wird?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Wahrscheinlichkeiten für die verschiedenen Ausgänge

EreignisP
1 -> 1 1 36
1 -> 2 1 36
1 -> 3 1 36
1 -> 4 1 36
1 -> 5 1 36
1 -> 6 1 36
2 -> 1 1 36
2 -> 2 1 36
2 -> 3 1 36
2 -> 4 1 36
2 -> 5 1 36
2 -> 6 1 36
3 -> 1 1 36
3 -> 2 1 36
3 -> 3 1 36
3 -> 4 1 36
3 -> 5 1 36
3 -> 6 1 36
4 -> 1 1 36
4 -> 2 1 36
4 -> 3 1 36
4 -> 4 1 36
4 -> 5 1 36
4 -> 6 1 36
5 -> 1 1 36
5 -> 2 1 36
5 -> 3 1 36
5 -> 4 1 36
5 -> 5 1 36
5 -> 6 1 36
6 -> 1 1 36
6 -> 2 1 36
6 -> 3 1 36
6 -> 4 1 36
6 -> 5 1 36
6 -> 6 1 36

Die Wahrscheinlichkeit für 'Mäxle' ist:

P('1'-'2') + P('2'-'1')
= 1 36 + 1 36 = 1 18

Die Wahrscheinlichkeit für 'Pasch' ist:

P('1'-'1') + P('2'-'2') + P('3'-'3') + P('4'-'4') + P('5'-'5') + P('6'-'6')
= 1 36 + 1 36 + 1 36 + 1 36 + 1 36 + 1 36 = 1 6

Die Wahrscheinlichkeit für '60er' ist:

P('1'-'6') + P('2'-'6') + P('3'-'6') + P('4'-'6') + P('5'-'6') + P('6'-'1') + P('6'-'2') + P('6'-'3') + P('6'-'4') + P('6'-'5')
= 1 36 + 1 36 + 1 36 + 1 36 + 1 36 + 1 36 + 1 36 + 1 36 + 1 36 + 1 36 = 5 18

Die Zufallsgröße X beschreibt den durch die beiden Würfel ausbezahlten Euro-Betrag.

Erwartungswert der Zufallsgröße X

Ereignis Mäxle Pasch 60er
Zufallsgröße xi 16 8 2
P(X=xi) 1 18 1 6 5 18
xi ⋅ P(X=xi) 8 9 4 3 5 9

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 16⋅ 1 18 + 8⋅ 1 6 + 2⋅ 5 18

= 8 9 + 4 3 + 5 9
= 8 9 + 12 9 + 5 9
= 25 9

2.78